Hidden Technical Debt in Machine Learning Systems

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex Metadata Paper Reviews Supplemental

Authors

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison

Abstract

Machine learning offers a fantastically powerful toolkit for building useful complexprediction systems quickly. This paper argues it is dangerous to think ofthese quick wins as coming for free. Using the software engineering frameworkof technical debt, we find it is common to incur massive ongoing maintenancecosts in real-world ML systems. We explore several ML-specific risk factors toaccount for in system design. These include boundary erosion, entanglement,hidden feedback loops, undeclared consumers, data dependencies, configurationissues, changes in the external world, and a variety of system-level anti-patterns.