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Abstract

We introduce a novel probabilistic tracking algorithm that incorporates combi-
natorial data association constraints and model-based track management using
variational Bayes. We use a Bethe entropy approximation to incorporate data
association constraints that are often ignored in previous probabilistic tracking al-
gorithms. Noteworthy aspects of our method include a model-based mechanism
to replace heuristic logic typically used to initiate and destroy tracks, and an as-
signment posterior with linear computation cost in window length as opposed to
the exponential scaling of previous MAP-based approaches. We demonstrate the
applicability of our method on radar tracking and computer vision problems.

The field of tracking is broad and possesses many applications, particularly in radar/sonar [1],
robotics [14], and computer vision [3]. Consider the following problem: A radar is tracking a flying
object, referred to as a target, using measurements of range, bearing, and elevation; it may also have
Doppler measurements of radial velocity. We would like to construct a track which estimates the tra-
jectory of the object over time. The Kalman filter [16], or a more general state space model, is used
to filter out measurement errors. The key difference between tracking and filtering is the presence of
clutter (noise measurements) and missed detections of true objects. We must determine which mea-
surement to “plug in” to the filter before applying it; this is known as data association. Additionally
complicating the situation is that we may be in a multi-target tracking scenario in which there are
multiple objects to track and we do not know which measurement originated from which object.

There is a large body of work on tracking algorithms given its standing as a long-posed and important
problem. Algorithms vary primarily on their approach to data association. The dominant approach
uses a sliding window MAP estimate of the measurement-to-track assignment, in particular the
multiple hypothesis tracker (MHT) [1]. In the standard MHT, at every frame the algorithm finds
the most likely matching of measurements to tracks, in the form of an assignment matrix, under a
one-to-one constraint (see Figure 1). One track can only result in one measurement, and vice versa,
which we refer to as framing constraints. As is typical in MAP estimation, once an assignment
is determined, the filters are updated and the tracker proceeds as if these assignments were known
to be correct. The one-to-one constraint makes MAP estimation a bipartite matching task where
algorithms exist to solve it exactly in polynomial time in the number of tracks NT [15]. However,
the multi-frame MHT finds the joint MAP assignment over multiple frames, in which case the
assignment problem is known to be NP-hard, although good approximate solvers exist [20].
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Figure 1: Simple scenario with a track swap: filtered state estimates ∗, associated measurements +, and clutter ·;
and corresponding graphical model. Note that Xk is a matrix since it contains state vectors for all three tracks.
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Despite the complexity of the MHT, it only finds a sliding window MAP estimate of measurement-
to-track assignments. If a clutter measurement is by chance associated with a track for the duration
of a window then the tracker will assume with certainty that the measurement originated from that
track, and never reconsider despite all future evidence to the contrary. If multiple clutter (or other-
wise incorrect) measurements are associated with a track, then it may veer “off into space” and result
in spurious tracks. Likewise, an endemic problem in tracking is the issue of track swaps, where two
trajectories can cross and get mixed up as shown in Figure 1. Alternatives to the MAP approach
include the probabilistic MHT (PMHT) [9, Ch. 4] and probabilistic data association (PDA). How-
ever, the PMHT drops the one-to-one constraint in data association and the PDA only allows for a
single target. This led to the development of the joint PDA (JPDA) algorithm for multiple targets,
which utilizes heuristic calculations of the assignment weights and does not scale to multiple frame
assignment. Particle filter implementations of the JPDA have tried to alleviate these issues, but they
have not been adopted into real-time systems due to their inefficiency and lack of robustness. The
probability hypothesis density (PHD) filter [19] addresses many of these issues, but only estimates
the intensity of objects and does not model full trajectories; this is undesirable since the identity of
an object is required for many applications including the examples in this paper.

Lázaro-Gredilla et al. [18] made the first attempt at a variational Bayes (VB) tracker. In their ap-
proach every trajectory follows a Gaussian process (GP); measurements are thus modeled by a mix-
ture of GPs. We develop additional VB machinery to retain the framing constraints, which are
dropped in Lázaro-Gredilla et al. [18] despite being viewed as important in many systems. Sec-
ondly, our algorithm utilizes a state space approach (e.g. Kalman filters) to model tracks, providing
linear rather than cubic time complexity in track length. Hartikainen and Särkkä [11] showed by an
equivalence that there is little loss of modeling flexibility by taking a state space approach over GPs.

Most novel tracking algorithms neglect the critical issue of track management. Many tracking algo-
rithms unrealistically assume that the number of tracks NT is known a priori and fixed. Additional
“wrapper logic” is placed around the trackers to initiate and destroy tracks. This logic involves many
heuristics such as M -of-N logic [1, Ch. 3]. Our method replaces these heuristics in a model-based
manner to make significant performance gains. We call our method a complete variational tracker
as it simultaneously does inference for track management, data association, and state estimation.

The outline of the paper is as follows: We first describe the full joint probability distribution of
the tracking problem in Section 1. This includes how to solve the track management problem by
augmenting tracks with an active/dormant state to address the issue of an unknown number of tracks.
By studying the full joint we develop a new conjugate prior on assignment matrices in Section 2.
Using this new formulation we develop a variational algorithm for estimating the measurement-to-
track assignments and track states in Section 3. To retain the framing constraints and efficiently
scale in tracks and measurements, we modify the variational lower bound in Section 4 using a Bethe
entropy approximation. This results in a loopy belief propagation (BP) algorithm being used as
a subroutine in our method. In Sections 5–6 we show the improvements our method makes on a
difficult radar tracking example and a real data computer vision problem in sports.

Our paper presents the following novel contributions: First, we develop the first efficient deter-
ministic approximate inference algorithm for solving the full tracking problem, which includes the
framing constraints and track management. The most important observation is that the VB assign-
ment posterior has an induced factorization over time with regard to assignment matrices. Therefore,
the computational cost of our variational approach is linear in window length as opposed to the ex-
ponential cost of the MAP approach. The most astounding aspect is that by introducing a weaker
approximation (VB factorization vs MAP) we lower the computational cost from exponential to
linear; this is a truly rare and noteworthy example. Second, in the process, we develop new approx-
imate inference methods on assignment matrices and a new conjugate assignment prior (CAP). We
believe these methods have much larger applicability beyond our current tracking algorithm. Third,
we develop a process to handle the track management problem in a model-based way.

1 Model Setup for the Tracking Problem

In this section we describe the full model used in the tracking problem and develop an unambiguous
notation. At each time step k ∈ N1, known as a frame, we observe NZ(k) ∈ N0 measurements,
in a matrix Zk = {zj,k}NZ(k)

j=1 , from both real targets and clutter (spurious measurements). In the

2



radar example zj,k ∈ Z is a vector of position measurements in R3. In data association we estimate
the assignment matrices A, where Aij = 1 if and only if track i is associated with measurement j.
Recall that each track is associated with at most one measurement, and vice versa, implying:

NT∑
i=0

Aij = 1 , j ∈ 1:NZ ,

NZ∑
j=0

Aij = 1 , i ∈ 1:NT , A00 = 0 . (1)

The zero indices of A ∈ {0, 1}NT+1×NZ+1 are the “dummy row” and “dummy column” to repre-
sent the assignment of a measurement to clutter and the assignment of a track to a missed detection.

Distribution on Assignments Although not explicitly stated in the literature, a careful exam-
ination of the cost functions used in the MAP optimization in MHT yields a particular and in-
tuitive prior on the assignment matrices. The number of tracks NT is assumed known a pri-
ori and NZ is random. The corresponding generative process on assignment matrices is as fol-
lows: 1) Start with a one-to-one mapping from measurements to tracks: A← INT×NT

. 2) Each
track is observed with probability PD ∈ [0, 1]NT . Only keep the columns of detected tracks:
A←A(·,d), di ∼ Bernoulli(PD(i)). 3) Sample a Poisson number of clutter measurements
(columns): A←[A ,0NT×Nc

], Nc ∼ Poisson(λ). 4) Use a random permutation vector π to make
the measurement order arbitrary: A←A(·,π). 5) Append a dummy row and column on A to satisfy
the summation constraints (1). This process gives the following normalized prior on assignments:

P (A|PD) = λNc exp(−λ)/NZ !
NT∏
i=1

PD(i)
di(1− PD(i))1−di . (2)

Note that the detections d, NZ , and clutter measurement count Nc are deterministic functions of A.

Track Model We utilize a state space formulation overK time steps. The latent states x1:K ∈ XK
follow a Markov process, while the measurements z1:K ∈ ZK are iid conditional on the track state:

p(z1:K ,x1:K) = p(x1)

K∏
k=2

p(xk|xk−1)
K∏
k=1

p(zk|xk) , (3)

where we have dropped the track and measurements indices i and j. Although more general models
are possible, within this paper each track independently follows a linear system (i.e. Kalman filter):

p(xk|xk−1) = N (xk|Fxk−1,Q) , p(zk|xk) = N (zk|Hxk,R) . (4)

Track Meta-states We address the track management problem by augmenting track states with a
two-state Markov model with an active/dormant meta-state sk in a 1-of-N encoding:

P (s1:K) = P (s1)

K∏
k=2

P (sk|sk−1) , sk ∈ {0, 1}NS . (5)

This effectively allows us to handle an unknown number of tracks by making NT arbitrarily large;
PD is now a function of s with a very small PD in the dormant state and a larger PD in the active
state. Extensions with a larger number of statesNS are easily implementable. We refer to the collec-
tion of track meta-states over all tracks at frame k as Sk := {si,k}NT

i=1; likewise, Xk := {xi,k}NT
i=1.

Full Model We combine the assignment process and track models to get the full model joint:

p(Z1:K ,X1:K ,A1:K ,S1:K) =

K∏
k=1

p(Zk|Xk,Ak)p(Xk|Xk−1)P (Sk|Sk−1)P (Ak|Sk) (6)

=

K∏
k=1

P (Ak|Sk) ·
NT∏
i=1

p(xi,k|xi,k−1)P (si,k|si,k−1)·
NZ(k)∏
j=1

p0(zj,k)
Ak

0j

NT∏
i=1

p(zj,k|xi,k, Akij = 1)A
k
ij ,

where p0 is the clutter distribution, which is often a uniform distribution. The traditional goal
in tracking is to compute p(Xk|Z1:k), the exact computation of which is intractable due to the
“combinatorial explosion” in summing out the assignments A1:k. The MHT MAP-based approach
tackles this with P (Ak1:k2 |Z1:k) ≈ I{Ak1:k2 = Âk1:k2} for a sliding window w = k2 − k1 + 1.
Clearly an approximation is needed, but we show how to do much better than the MAP approach
of the MHT. This motivates the next section where we derive a conjugate prior on the assignments
A1:k, which is useful for improving upon MAP; and we cast (2) as a special case of this distribution.
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2 The Conjugate Assignment Prior

Given that we must compute the posterior P (A|Z),1 it is natural to ask what conjugate priors on A
are possible. Deriving approximate inference procedures is often greatly simplified if the prior on
the parameters is conjugate to the complete data likelihood: p(Z,X|A) [2]. We follow the standard
procedure for deriving the conjugate prior for an exponential family (EF) complete likelihood:

p(Z,X|A) =

NZ∏
j=1

p0(zj)
A0j

NT∏
i=1

p(zj |xi, Aij = 1)Aij

NT∏
i=1

p(xi) =

NT∏
i=1

p(xi) exp(1
>(A� L)1) ,

Lij := log p(zj |xi, Aij = 1) , Li0 := 0 , L0j := log p0(zj) , (7)

where we have introduced the matrix L ∈ RNT+1×NZ+1 to represent log likelihood contributions
from various assignments. Therefore, we have the following EF quantities [4, Ch. 2.4]: base measure
h(Z,X) =

∏NT

i=1 p(xi), partition function g(A) = 1, natural parameters η(A) = vecA, and suffi-
cient statistics T (Z,X) = vecL. This implies the conjugate assignments prior (CAP) for P (A|χ):

CAP(A|χ) := Z(χ)−1I{A ∈ A} exp(1>(χ�A)1) , Z(χ) :=
∑
A∈A

exp(1>(χ�A)1) , (8)

whereA is the set of all assignment matrices that obey the one-to-one constraints (1). Note that χ is
a function of the track meta-states S. We recover the assignment prior of (2) in the form of the CAP
distribution (8) via the following parameter settings, with σ(·) denoting the logistic,

χij = log

(
PD(i)

(1− PD(i))λ

)
= σ−1(PD(i))− log λ , i ∈ 1:NT , j ∈ 1:NZ , χ0j = χi0 = 0 . (9)

Due to the symmetries in the prior of (9) we can analytically normalize (8) in this special case:

Z(χ)−1 = P (A1:NT ,1:NZ
= 0) = Poisson(NZ |λ)

NT∏
i=1

(1− PD(i)) . (10)

Given that the dummy row and columns of χ are zero in (9), equation (10) is clearly the only way
to get (8) to match (2) for the 0 assignment case.

Although the conjugate prior (8) allows us to “compute” the posterior, χposterior = χprior + L, com-
puting E[A] or Z(χ) remains difficult in general. This will cause problems in Section 3, but be
ameliorated in Section 4 by a slight modification of the variational objective.

One insight into the partition function Z(χ) is that if we slightly change the constraints in A so
that all the rows and columns must sum to one, i.e. we do not use a dummy row or column and A
becomes the set of permutation matrices, then Z(χ) is equal to the matrix permanent of exp(χ),
which is #P-complete to compute [24]. Although the matrix permanent is #P-complete, accurate
and computationally efficient approximations exist, some based on belief propagation [25; 17].

3 Variational Formulation

As explained in Section 1, exact inference on the full model in (6) is intractable, and as promised we
show how to perform better inference than the existing solution of sliding window MAP. Our vari-
ational tracker enforces the factorization constraint that the posterior factorizes across assignment
matrices and latent track states:

p(A1:K ,X1:K ,S1:K |Z1:K) ≈ q(A1:K ,X1:K ,S1:K) = q(A1:K)q(X1:K ,S1:K) . (11)

In some sense we can think of A as the “parameters” with X and S as the “latent variables” and
use the common variational practice of factorizing these two groups of variables. This gives the
variational lower bound L(q):

L(q) = Eq[log p(Z1:K ,X1:K ,A1:K ,S1:K)] + H[q(X1:K ,S1:K)] + H[q(A1:K)] , (12)

1In this section we drop the frame index k and implicitly condition on meta-states Sk for brevity.
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where H[·] denotes the Shannon entropy. From inspecting the VB lower bound (12) and (6) we
arrive at the following induced factorizations without forcing further factorization upon (11):

q(A1:K) =

K∏
k=1

q(Ak) , q(X1:K ,S1:K) =

NT∏
i=1

q(xi,·)q(si,·) . (13)

In other words, the approximate posterior on assignment matrices factorizes across time; and the
approximate posterior on latent states factorizes across tracks.

State Posterior Update Based on the induced factorizations in (13) we derive the updates for the
track states xi,· and meta-states si,· separately. Additionally, we derive the updates for each track
separately. We begin with the variational updates for q(xi,·) using the standard VB update rules [4,
Ch. 10] and (6), denoting equality to an additive constant with c

=,

log q(xi,·)
c
= log p(xi,·) +

K∑
k=1

NZ(k)∑
j=1

E[Akij ] logN (zj,k|Hxi,k,R) (14)

=⇒ q(xi,·) ∝ p(xi,·)
K∏
k=1

NZ(k)∏
j=1

N (zj,k|Hxi,k,R/E[Akij ]) . (15)

Using the standard product of Gaussians formula [6] this is proportional to

q(xi,·) ∝ p(xi,·)
K∏
k=1

N (z̃i,k|Hxi,k,R/E[di,k]) , z̃i,k :=
1

E[di,k]

NZ∑
j=1

E[Akij ]zj,k , (16)

and recall that E[di,k] = 1− E[Aki0] =
∑NZ

j=1 E[Akij ]. The form of the posterior q(xi,·) is equiva-
lent to a linear dynamical system with pseudo-measurements z̃i,k and non-stationary measurement
covariance R/E[di,k]. Therefore, q(xi,·) is simply implemented using a Kalman smoother [22].

Meta-state Posterior Update We next consider the posterior on the track meta-states:

log q(si,·)
c
= logP (si,·) +

K∑
k=1

Eq(Ak)[logP (Ak|Sk)]
c
= logP (si,·) +

K∑
k=1

s>i,k`i,k , (17)

`i,k(s) := E[di,k] log(PD(s)) + (1− E[di,k]) log(1− PD(s)) , s ∈ 1:NS (18)

=⇒ q(si,·) ∝ P (si,·)
K∏
k=1

exp(s>i,k`i,k) , (19)

where (18) follows from (2). If P (si,·) follows a Markov chain then the form for q(si,·) is the same
as a hidden Markov model (HMM) with emission log likelihoods `i,k ∈ [R−]NS . Therefore, the
meta-state posterior q(si,·) update is implemented using the forward-backward algorithm [21].

Like the MHT, our algorithm also works in an online fashion using a (much larger) sliding window.

Assignment Matrix Update The reader can verify using (7)–(9) that the exact updates under the
lower bound L(q) (12) yields a product of CAP distributions:

q(A1:K) =

K∏
k=1

CAP(Ak|Eq(Xk)[Lk] + Eq(Sk)[χk]) . (20)

This poses a challenging problem, as the state posterior updates of (16) and (19) require Eq(Ak)[Ak];
since q(Ak) is a CAP distribution we know from Section 2 its expectation is difficult to compute.

4 The Assignment Matrix Update Equations

In this section we modify the variational lower bound (12) to obtain a tractable algorithm. The
resulting algorithm uses loopy belief propagation to compute Eq(Ak)[Ak] for use in (16) and (19).
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We first note that the CAP distribution (8) is naturally represented as a factor graph:

CAP(A|χ) ∝
NT∏
i=1

fRi (Ai·)

NZ∏
j=1

fCj (A·j)

NT∏
i=0

NZ∏
j=0

fSij(Aij) , (21)

with fRi (v) := I{
∑NZ

j=0 vj = 1} (R for row factors), fCj (v) := I{
∑NT

i=0 vi = 1} (C for column
factors), and fSij(v) := exp(χijv). We use reparametrization methods (see [10]) to convert (21) to a
pairwise factor graph, where derivation of the Bethe free energy is easier. The Bethe entropy is:

Hβ [q(A)] :=

NT∑
i=1

NZ∑
j=0

H[q(ri, Aij)] +

NZ∑
j=1

NT∑
i=0

H[q(cj , Aij)]

−
NT∑
i=1

NZH[q(ri)]−
NZ∑
j=1

NTH[q(cj)]−
NT∑
i=1

NZ∑
j=1

H[q(Aij)] (22)

=

NT∑
i=1

H[q(Ai·)] +

NZ∑
j=1

H[q(A·j)]−
NT∑
i=1

NZ∑
j=1

H[q(Aij)] , (23)

where the pairwise conversion used constrained auxiliary variables ri := Ai· and cj := A·j ; and
used the implied relations H[q(ri, Aij)] = H[q(ri)] + H[q(Aij |ri)] = H[q(ri)] = H[q(Ai·)].

We define an altered variational lower bound Lβ(q), which merely replaces the entropy H[q(Ak)]
with Hβ [q(Ak)].2 Note that Lβ(q)

c
= L(q) with respect to q(X1:K ,S1:K), which implies the state

posterior updates under the old bound L(q) in (16) and (19) remain unchanged with the new bound
Lβ(q). To get the new update equations for q(Ak) we examine Lβ(q) in terms of q(A1:K):

Lβ(q)
c
= Eq[log p(Z1:K |X1:K ,A1:K)] + Eq[logP (A1:K |S1:K)] +

K∑
k=1

Hβ [q(Ak)] (24)

c
=

K∑
k=1

Eq(Ak)[1
>(Ak � (Eq(Xk)[Lk] + Eq(Sk)[χk]))1] +

K∑
k=1

Hβ [q(Ak)] (25)

c
=

K∑
k=1

Eq(Ak)[logCAP(Ak|Eq(Xk)[Lk] + Eq(Sk)[χk])] + Hβ [q(Ak)] . (26)

This corresponds to the Bethe free energy of the factor graph described in (21), with E[Lk] + E[χk]
as the CAP parameter [26; 12]. Therefore, we can compute E[Ak] using loopy belief propagation.

Loopy BP Derivation We define the key (row/column) quantities for the belief propagation:
µRij := msgfR

i →Aij
, µCij := msgfC

j →Aij
, νRij := msgAij→fR

i
, νCij := msgAij→fC

j
,

where all messages form functions in {0, 1} → R+. Using the standard rules of BP we derive:

νRij(x) = µCij(x)f
S
ij(x) , µRij(1) =

∏
k 6=j

νRik(0) , µRij(0) =
∑
l 6=j

νRil (1)
∏
k 6=j,l

νRik(0) , (27)

where we have exploited that there is only one nonzero value in the row Ai,·. Notice that

µRij(1) =

NZ∏
k=0

νRik(0)
/
νRij(0) =⇒ µ̃Rij :=

µRij(0)

µRij(1)
=

NZ∑
l=0

νRil (1)

νRil (0)
−
νRij(1)

νRij(0)
∈ R+ , (28)

where we have pulled µRij(1) out of (27). We write the ratio of messages to row factors νR as
ν̃Rij := νRij(1)/ν

R
ij(0) = (µCij(1)/µ

C
ij(0)) exp(χij) ∈ R+ . (29)

We symmetrically apply (27)–(29) to the column (i.e. C) messages µ̃Cij and ν̃Cij . As is common in
binary graphs, we summarize the entire message passing update scheme in terms of message ratios:

µ̃Rij =

NZ∑
l=0

ν̃Ril − ν̃Rij , ν̃Rij =
exp(χij)

µ̃Cij
, µ̃Cij =

NT∑
l=0

ν̃Clj − ν̃Cij , ν̃Cij =
exp(χij)

µ̃Rij
. (30)

Finally, we compute the marginal distributions E[Aij ] by normalizing the product of the incoming
messages to each variable: E[Aij ] = P (Aij = 1) = σ(χij − log µ̃Rij − log µ̃Cij).

2In most models Hβ [·] ≈ H[·], but without proof we always observe Hβ [·] ≤ H[·]; so Lβ is a lower bound.

6



track 1

track 2track 3

(a) Radar Example
PA S C

0

20

40

60

80

100

P
e
rf

o
rm

a
n

c
e
 (

%
)

(b) SIAP Metrics
ARI NC−ARI 0−1

0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e

(c) Assignment Accuracy

Figure 2: Left: The output of the trackers on the radar example. We show the true trajectories (red ·), 2D MHT
(solid magenta), 3D MHT (solid green), and OMGP (cyan ∗). The state estimates for the VB tracker when
active (black ◦) and dormant (black ×) are shown, where a ≥ 90% threshold on the meta-state s is used to
deem a track active for plotting. Center: SIAP metrics for N = 100 realizations of the scenario on the left
with 95% error bars. We show positional accuracy (i.e. RMSE) (PA, lower better), spurious tracks (S, lower
better), and track completeness (C, higher better). The bars are in order: VB tracker (blue), 3D MHT (cyan),
2D MHT (yellow), and OMGP (red). The PA has been rescaled relative to OMGP so all metrics are in %.
Right: Same as center but looking at assignment accuracy on ARI (higher better), no clutter (NC) ARI (higher
better), and 0-1 loss (lower better) for classifying measurements as clutter.

5 Radar Tracking Example

We borrow the radar tracking example of the OMGP paper [18]. We have made the example more
realistic by adding clutter λ = 8 and missed detections PD = 0.5, which were omitted in [18];
and also used N = 100 realizations to get confidence intervals on the results. We also compare
with the 2D and 3D (i.e. multi-frame) MHT trackers as a baseline as they are the most widely used
methods in practice. The OMGP requires the number of tracks NT to be specified in advance, so
we provided it with the true number of tracks, which should have given it an extra advantage. The
trackers were evaluated using the SIAP metrics, which are the standard evaluation metrics in the
field [7]. We also use the adjusted Rand index (ARI) [13] to compare the accuracy of the assignments
made by the algorithms; the “no clutter” ARI (which ignores clutter) and the 0-1 loss for classifying
measurements as clutter also serve as assignment metrics.

In Figure 2(a) both OMGP and 2D MHT miss the real tracks and create spurious tracks from clutter
measurements. The 3D MHT does better, but misses the western portion of track 3 and makes a swap
between track 1 and 3 at their intersection. By contrast, the VB tracker gets the scenario almost
perfect, except for a small bit of the southern portion of track 2. In that area, VB designates the
track as dormant, acknowledging that the associated measurements are likely clutter. This replaces
the notion of a “confirmed” track in the standard tracking literature with a model-based method,
and demonstrates the advantages of using a principled and model-based paradigm for the track
management problem. This is quantitatively shown over repeated trials in Figure 2(b) in terms of
positional error; even more striking are illustrations of the near lack of spurious tracks in VB and
much higher completeness than the competing methods. We also show that the assignments are
much more accurate in Figure 2(c). To check the statistical significance of our results we used a
paired t-test to compare the difference between VB and the second best method, the 3D MHT. Both
the SIAP and assignment metrics all have p ≤ 10−4.

6 Real Data: Video Tracking in Sports

We use the VS-PETS 2003 soccer player data set as a real data example to validate our method.
The data set is a 2500 frame video of players moving around a soccer field, with annotated ground
truth; the variety of player interactions make it a challenging test case for multi-object tracking
algorithms. To demonstrate the robustness of our tracker to correct a detector provided minimal
training examples, we used multi-scale histogram of oriented gradients (HOG) features from 50
positive and 50 negative examples of soccer players to train a sliding window support vector machine
(SVM) [23]. HOG features have been shown to work particularly well for pedestrian detection on
the Caltech and INRIA data sets, and thus used for this example [8]. For each frame, the center of
each bounding box is provided as the only input to our tracker. Despite modest detection rates from
HOG-SVM, our tracker is still capable of separating clutter and dealing with missed detections.
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(b) Soccer Assignment Metrics

Figure 3: Left: Example from soccer player tracking. We show the filtered state estimates of the MHT (ma-
genta ·) and VB tracker (cyan ◦) for the last 25 frames as well as the true positions (black). The green boxes
show the detection of the HOG-SVM for the current frame. Right: Same as Figure 2(c) but for the soccer data.
Methods in order: VB-DP (dark blue), VB (light blue), 3D MHT (green), 2D MHT (orange), and OMGP (red).
Soccer data source: http://www.cvg.rdg.ac.uk/slides/pets.html.

We modeled player motion using (4) with F and Q derived from an NCV model [1, Ch. 1.5]. The
parameters for the NCV, R, PD, λ, and the track meta-state parameters were trained by optimizing
the variational lower bound Lβ on the first 1000 frames, although the algorithm did not appear sen-
sitive to these parameters. We additionally show an extension to the VB tracker with nonparametric
clutter map learning; we learned the clutter map by passing the training measurements into a VB
Dirichlet process (DP) mixture [5] with their probability of being clutter under q(A) as weights. The
resulting posterior predictive distribution served as p0 in the test phase; we refer to this method as
the VB-DP tracker. We split the remainder of the data into 70 sequences ofK = 20 frames for a test
set. Due to the nature of this example, we evaluate the batch accuracy of assigning boxes to the cor-
rect players. This demonstrates the utility of our algorithm for building a database of player images
for later processing and other applications. In Figure 3(b) we show the ARI and related assignment
metrics for VB-DP, VB, 2D MHT, 3D MHT, and OMGP. Note that the ARI only evaluates the
accuracy of the MAP assignment estimate of VB; VB additionally provides uncertainty estimates
on the assignments, unlike the MHT. VB manages to increase the no clutter ARI to 0.95 ± 0.01
from 0.86± 0.01 for 3D MHT; and decrease the 0-1 clutter loss to 0.18± 0.01 from 0.21± 0.01 for
OMGP. Using the nonparametric clutter map lowered the 0-1 loss to 0.016 ± 0.005 and increased
the ARI to 0.94±0.01 (vs. 0.76±0.01 for the 2D and 3D MHT) as the VB-DP tracker knew certain
areas, such as the post in the lower right, were more prone to clutter. As in the radar example the
VB vs. MHT and VB vs. OMGP improvements are significant at p ≤ 10−4. The poor NC-ARI of
OMGP is likely due to its lack of framing constraints, ignoring prior information on the assignments.

Furthermore, in Figure 3(a) we plot filtered state estimates for the (non-DP) VB tracker; we again
use the ≥ 90% meta-state threshold as a “confirmed track.” We see that the MHT is tricked by the
various false detections from HOG-SVM and has spurious tracks across the field; the VB tracker
“introspectively” knows when a track is unlikely to be real. While both the MHT and VB detect the
referee in the upper right of the frame, the VB tracker quickly sets this track to dormant when he
leaves the frame. The MHT temporarily extrapolates the track into the field before destroying it.

7 Conclusions

The model-based manner of handling the track management problem shows clear advantages and
may be the path forward for the field, which can clearly benefit from algorithms that eliminate
arbitrary tuning parameters. Our method may be desirable even in tracking scenarios under which
a full posterior does not confer advantages over a point estimate. We improve accuracy and reduce
the exponential cost of the MAP approach to linear, which is a result of the induced factorizations
of (13). We have also incorporated the often neglected framing constraints into our variational
algorithm, which fits nicely with loopy belief propagation methods. Other areas, such as more
sophisticated meta-state models, provide opportunities to extend this work into more applications of
tracking and prove it as a general method and alternative to dominant approaches such as the MHT.
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