
Depth Map Prediction from a Single Image
using a Multi-Scale Deep Network

David Eigen
deigen@cs.nyu.edu

Christian Puhrsch
cpuhrsch@nyu.edu

Rob Fergus
fergus@cs.nyu.edu

Dept. of Computer Science, Courant Institute, New York University

Abstract

Predicting depth is an essential component in understanding the 3D geometry of
a scene. While for stereo images local correspondence suffices for estimation,
finding depth relations from a single image is less straightforward, requiring in-
tegration of both global and local information from various cues. Moreover, the
task is inherently ambiguous, with a large source of uncertainty coming from the
overall scale. In this paper, we present a new method that addresses this task by
employing two deep network stacks: one that makes a coarse global prediction
based on the entire image, and another that refines this prediction locally. We also
apply a scale-invariant error to help measure depth relations rather than scale. By
leveraging the raw datasets as large sources of training data, our method achieves
state-of-the-art results on both NYU Depth and KITTI, and matches detailed depth
boundaries without the need for superpixelation.

1 Introduction
Estimating depth is an important component of understanding geometric relations within a scene. In
turn, such relations help provide richer representations of objects and their environment, often lead-
ing to improvements in existing recognition tasks [18], as well as enabling many further applications
such as 3D modeling [16, 6], physics and support models [18], robotics [4, 14], and potentially rea-
soning about occlusions.

While there is much prior work on estimating depth based on stereo images or motion [17], there has
been relatively little on estimating depth from a single image. Yet the monocular case often arises in
practice: Potential applications include better understandings of the many images distributed on the
web and social media outlets, real estate listings, and shopping sites. These include many examples
of both indoor and outdoor scenes.

There are likely several reasons why the monocular case has not yet been tackled to the same degree
as the stereo one. Provided accurate image correspondences, depth can be recovered deterministi-
cally in the stereo case [5]. Thus, stereo depth estimation can be reduced to developing robust image
point correspondences — which can often be found using local appearance features. By contrast,
estimating depth from a single image requires the use of monocular depth cues such as line angles
and perspective, object sizes, image position, and atmospheric effects. Furthermore, a global view
of the scene may be needed to relate these effectively, whereas local disparity is sufficient for stereo.

Moreover, the task is inherently ambiguous, and a technically ill-posed problem: Given an image, an
infinite number of possible world scenes may have produced it. Of course, most of these are physi-
cally implausible for real-world spaces, and thus the depth may still be predicted with considerable
accuracy. At least one major ambiguity remains, though: the global scale. Although extreme cases
(such as a normal room versus a dollhouse) do not exist in the data, moderate variations in room
and furniture sizes are present. We address this using a scale-invariant error in addition to more

1

common scale-dependent errors. This focuses attention on the spatial relations within a scene rather
than general scale, and is particularly apt for applications such as 3D modeling, where the model is
often rescaled during postprocessing.

In this paper we present a new approach for estimating depth from a single image. We directly
regress on the depth using a neural network with two components: one that first estimates the global
structure of the scene, then a second that refines it using local information. The network is trained
using a loss that explicitly accounts for depth relations between pixel locations, in addition to point-
wise error. Our system achieves state-of-the art estimation rates on NYU Depth and KITTI, as well
as improved qualitative outputs.

2 Related Work
Directly related to our work are several approaches that estimate depth from a single image. Saxena
et al. [15] predict depth from a set of image features using linear regression and a MRF, and later
extend their work into the Make3D [16] system for 3D model generation. However, the system
relies on horizontal alignment of images, and suffers in less controlled settings. Hoiem et al. [6] do
not predict depth explicitly, but instead categorize image regions into geometric structures (ground,
sky, vertical), which they use to compose a simple 3D model of the scene.

More recently, Ladicky et al. [12] show how to integrate semantic object labels with monocular
depth features to improve performance; however, they rely on handcrafted features and use super-
pixels to segment the image. Karsch et al. [7] use a kNN transfer mechanism based on SIFT Flow
[11] to estimate depths of static backgrounds from single images, which they augment with motion
information to better estimate moving foreground subjects in videos. This can achieve better align-
ment, but requires the entire dataset to be available at runtime and performs expensive alignment
procedures. By contrast, our method learns an easier-to-store set of network parameters, and can be
applied to images in real-time.

More broadly, stereo depth estimation has been extensively investigated. Scharstein et al. [17] pro-
vide a survey and evaluation of many methods for 2-frame stereo correspondence, organized by
matching, aggregation and optimization techniques. In a creative application of multiview stereo,
Snavely et al. [20] match across views of many uncalibrated consumer photographs of the same
scene to create accurate 3D reconstructions of common landmarks.

Machine learning techniques have also been applied in the stereo case, often obtaining better results
while relaxing the need for careful camera alignment [8, 13, 21, 19]. Most relevant to this work is
Konda et al. [8], who train a factored autoencoder on image patches to predict depth from stereo
sequences; however, this relies on the local displacements provided by stereo.

There are also several hardware-based solutions for single-image depth estimation. Levin et al. [10]
perform depth from defocus using a modified camera aperture, while the Kinect and Kinect v2 use
active stereo and time-of-flight to capture depth. Our method makes indirect use of such sensors
to provide ground truth depth targets during training; however, at test time our system is purely
software-based, predicting depth from RGB images.

3 Approach
3.1 Model Architecture
Our network is made of two component stacks, shown in Fig. 1. A coarse-scale network first predicts
the depth of the scene at a global level. This is then refined within local regions by a fine-scale
network. Both stacks are applied to the original input, but in addition, the coarse network’s output
is passed to the fine network as additional first-layer image features. In this way, the local network
can edit the global prediction to incorporate finer-scale details.

3.1.1 Global Coarse-Scale Network
The task of the coarse-scale network is to predict the overall depth map structure using a global view
of the scene. The upper layers of this network are fully connected, and thus contain the entire image
in their field of view. Similarly, the lower and middle layers are designed to combine information
from different parts of the image through max-pooling operations to a small spatial dimension. In
so doing, the network is able to integrate a global understanding of the full scene to predict the
depth. Such an understanding is needed in the single-image case to make effective use of cues such

2

9x9 conv
 2 stride
2x2 pool

11x11 conv
 4 stride
 2x2 pool

Fine 1

Coarse 1

5x5 conv
2x2 pool

Coarse 2

96

64

Coarse 5

256 256

Coarse 6

4096

63

Concatenate

384

Coarse 4

Fine 3

Coarse

Fine 4

Refined

3x3 conv full3x3 conv 3x3 conv

5x5 conv

full

1

164

Fine 2

5x5 conv

Input

384

Coarse 3 Coarse 7

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

9x9 conv
 2 stride
2x2 pool

11x11 conv
 4 stride
 2x2 pool

Fine 1

Coarse 1

5x5 conv
2x2 pool

Coarse 2

96

64

Coarse 5

256 256

Coarse 6

4096

63

Concatenate

384

Coarse 4

Fine 3

Coarse

Fine 4

Refined

3x3 conv full3x3 conv 3x3 conv

5x5 conv

full

1

164

Fine 2

5x5 conv

Input

384

Coarse 3 Coarse 7

Coarse Fine
Layer input 1 2,3,4 5 6 7 1,2,3,4
Size (NYUDepth) 304x228 37x27 18x13 8x6 1x1 74x55 74x55
Size (KITTI) 576x172 71x20 35x9 17x4 1x1 142x27 142x27
Ratio to input /1 /8 /16 /32 – /4 /4

Figure 1: Model architecture.

predict depth explicitly, but instead categorize image regions into geometric structures (ground, sky,
vertical), which they use to compose a simple 3D model of the scene.

More recently, Ladicky et al. [?] show how to integrate semantic object labels with monocular depth
features to improve performance; however, they rely on handcrafted features and use superpixels to
segment the image. Karsch et al. [?] use a kNN transfer mechanism based on SIFT Flow [?] to esti-
mate depths of static backgrounds from single images, which they augment with motion information
to better estimate moving foreground subjects in videos. This can achieve better alignment, but re-
quires the entire dataset to be available at runtime and performs expensive alignment procedures.
By contrast, our method learns an easier-to-store set of network parameters, and can be applied to
images in real-time.

More broadly, stereo depth estimation has been extensively investigated. Scharstein et al. [?] provide
a survey and evaluation of many methods for 2-frame stereo correspondence methods, organized by
matching, aggregation and optimization techniques. In a creative application of multiview stereo,
Snavely et al. [?] match across views of many uncalibrated consumer photographs of the same scene
to create accurate 3D reconstructions of common landmarks.

Machine learning techniques have been applied in the stereo case, often obtaining better results
while relaxing the need for careful camera alignment [?, ?, ?, ?]. Most relevant to this work is
Konda et al. [?], who train a factored autoencoder on image patches to predict depth from stereo
sequences; however, this relies on the local displacements provided by stereo.

There are also several hardware-based solutions for single-image depth estimation. Levin et al. [?]
perform depth from defocus using a modified camera aperature, while the Kinect and Kinect v2 use
active stereo and time-of-flight to capture depth. Our method makes indirect use of such sensors
to provide ground truth depth targets during training; however, at test time our system is purely
software-based, predicting depth from RGB images only.

2

Figure 1: Model architecture.

as vanishing points, object locations, and room alignment. A local view (as is commonly used for
stereo matching) is insufficient to notice important features such as these.

As illustrated in Fig. 1, the global, coarse-scale network contains five feature extraction layers of
convolution and max-pooling, followed by two fully connected layers. The input, feature map and
output sizes are also given in Fig. 1. The final output is at 1/4-resolution compared to the input
(which is itself downsampled from the original dataset by a factor of 2), and corresponds to a center
crop containing most of the input (as we describe later, we lose a small border area due to the first
layer of the fine-scale network and image transformations).

Note that the spatial dimension of the output is larger than that of the topmost convolutional feature
map. Rather than limiting the output to the feature map size and relying on hardcoded upsampling
before passing the prediction to the fine network, we allow the top full layer to learn templates over
the larger area (74x55 for NYU Depth). These are expected to be blurry, but will be better than the
upsampled output of a 8x6 prediction (the top feature map size); essentially, we allow the network
to learn its own upsampling based on the features. Sample output weights are shown in Fig. 2

All hidden layers use rectified linear units for activations, with the exception of the coarse output
layer 7, which is linear. Dropout is applied to the fully-connected hidden layer 6. The convolu-
tional layers (1-5) of the coarse-scale network are pretrained on the ImageNet classification task [1]
— while developing the model, we found pretraining on ImageNet worked better than initializing
randomly, although the difference was not very large1.

3.1.2 Local Fine-Scale Network
After taking a global perspective to predict the coarse depth map, we make local refinements using
a second, fine-scale network. The task of this component is to edit the coarse prediction it receives
to align with local details such as object and wall edges. The fine-scale network stack consists of
convolutional layers only, along with one pooling stage for the first layer edge features.

While the coarse network sees the entire scene, the field of view of an output unit in the fine network
is 45x45 pixels of input. The convolutional layers are applied across feature maps at the target output
size, allowing a relatively high-resolution output at 1/4 the input scale.

More concretely, the coarse output is fed in as an additional low-level feature map. By design, the
coarse prediction is the same spatial size as the output of the first fine-scale layer (after pooling),

1When pretraining, we stack two fully connected layers with 4096 - 4096 - 1000 output units each, with
dropout applied to the two hidden layers, as in [9]. We train the network using random 224x224 crops from the
center 256x256 region of each training image, rescaled so the shortest side has length 256. This model achieves
a top-5 error rate of 18.1% on the ILSVRC2012 validation set, voting with 2 flips and 5 translations per image.

3

(a) (b)
Figure 2: Weight vectors from layer Coarse 7 (coarse output), for (a) KITTI and (b) NYUDepth.
Red is positive (farther) and blue is negative (closer); black is zero. Weights are selected uniformly
and shown in descending order by l2 norm. KITTI weights often show changes in depth on either
side of the road. NYUDepth weights often show wall positions and doorways.

and we concatenate the two together (Fine 2 in Fig. 1). Subsequent layers maintain this size using
zero-padded convolutions.

All hidden units use rectified linear activations. The last convolutional layer is linear, as it predicts
the target depth. We train the coarse network first against the ground-truth targets, then train the
fine-scale network keeping the coarse-scale output fixed (i.e. when training the fine network, we do
not backpropagate through the coarse one).
3.2 Scale-Invariant Error
The global scale of a scene is a fundamental ambiguity in depth prediction. Indeed, much of the error
accrued using current elementwise metrics may be explained simply by how well the mean depth is
predicted. For example, Make3D trained on NYUDepth obtains 0.41 error using RMSE in log space
(see Table 1). However, using an oracle to substitute the mean log depth of each prediction with the
mean from the corresponding ground truth reduces the error to 0.33, a 20% relative improvement.
Likewise, for our system, these error rates are 0.28 and 0.22, respectively. Thus, just finding the
average scale of the scene accounts for a large fraction of the total error.

Motivated by this, we use a scale-invariant error to measure the relationships between points in the
scene, irrespective of the absolute global scale. For a predicted depth map y and ground truth y∗,
each with n pixels indexed by i, we define the scale-invariant mean squared error (in log space) as

D(y, y∗) =
1

2n

n�

i=1

(log yi − log y∗i + α(y, y∗))2, (1)

where α(y, y∗) = 1
n

�
i(log y

∗
i −log yi) is the value of α that minimizes the error for a given (y, y∗).

For any prediction y, eα is the scale that best aligns it to the ground truth. All scalar multiples of y
have the same error, hence the scale invariance.

Two additional ways to view this metric are provided by the following equivalent forms. Setting
di = log yi− log y∗i to be the difference between the prediction and ground truth at pixel i, we have

D(y, y∗) =
1

2n2

�

i,j

�
(log yi − log yj)− (log y∗i − log y∗j)

�2 (2)

=
1

n

�

i

d2i −
1

n2

�

i,j

didj =
1

n

�

i

d2i −
1

n2

�
�

i

di

�2

(3)

Eqn. 2 expresses the error by comparing relationships between pairs of pixels i, j in the output: to
have low error, each pair of pixels in the prediction must differ in depth by an amount similar to that
of the corresponding pair in the ground truth. Eqn. 3 relates the metric to the original l2 error, but
with an additional term, − 1

n2

�
ij didj , that credits mistakes if they are in the same direction and

penalizes them if they oppose. Thus, an imperfect prediction will have lower error when its mistakes
are consistent with one another. The last part of Eqn. 3 rewrites this as a linear-time computation.

In addition to the scale-invariant error, we also measure the performance of our method according
to several error metrics have been proposed in prior works, as described in Section 4.

3.3 Training Loss
In addition to performance evaluation, we also tried using the scale-invariant error as a training loss.
Inspired by Eqn. 3, we set the per-sample training loss to

4

L(y, y∗) =
1

n

�

i

d2i −
λ

n2

�
�

i

di

�2

(4)

where di = log yi − log y∗i and λ ∈ [0, 1]. Note the output of the network is log y; that is, the final
linear layer predicts the log depth. Setting λ = 0 reduces to elementwise l2, while λ = 1 is the
scale-invariant error exactly. We use the average of these, i.e. λ = 0.5, finding that this produces
good absolute-scale predictions while slightly improving qualitative output.

During training, most of the target depth maps will have some missing values, particularly near
object boundaries, windows and specular surfaces. We deal with these simply by masking them out
and evaluating the loss only on valid points, i.e. we replace n in Eqn. 4 with the number of pixels
that have a target depth, and perform the sums excluding pixels i that have no depth value.

3.4 Data Augmentation
We augment the training data with random online transformations (values shown for NYUDepth) 2:

• Scale: Input and target images are scaled by s ∈ [1, 1.5], and the depths are divided by s.
• Rotation: Input and target are rotated by r ∈ [−5, 5] degrees.
• Translation: Input and target are randomly cropped to the sizes indicated in Fig. 1.
• Color: Input values are multiplied globally by a random RGB value c ∈ [0.8, 1.2]3.
• Flips: Input and target are horizontally flipped with 0.5 probability.

Note that image scaling and translation do not preserve the world-space geometry of the scene. This
is easily corrected in the case of scaling by dividing the depth values by the scale s (making the
image s times larger effectively moves the camera s times closer). Although translations are not
easily fixed (they effectively change the camera to be incompatible with the depth values), we found
that the extra data they provided benefited the network even though the scenes they represent were
slightly warped. The other transforms, flips and in-plane rotation, are geometry-preserving. At test
time, we use a single center crop at scale 1.0 with no rotation or color transforms.

4 Experiments
We train our model on the raw versions both NYU Depth v2 [18] and KITTI [3]. The raw distribu-
tions contain many additional images collected from the same scenes as in the more commonly used
small distributions, but with no preprocessing; in particular, points for which there is no depth value
are left unfilled. However, our model’s natural ability to handle such gaps as well as its demand for
large training sets make these fitting sources of data.

4.1 NYU Depth
The NYU Depth dataset [18] is composed of 464 indoor scenes, taken as video sequences using
a Microsoft Kinect camera. We use the official train/test split, using 249 scenes for training and
215 for testing, and construct our training set using the raw data for these scenes. RGB inputs are
downsampled by half, from 640x480 to 320x240. Because the depth and RGB cameras operate at
different variable frame rates, we associate each depth image with its closest RGB image in time,
and throw away frames where one RGB image is associated with more than one depth (such a one-
to-many mapping is not predictable). We use the camera projections provided with the dataset to
align RGB and depth pairs; pixels with no depth value are left missing and are masked out. To
remove many invalid regions caused by windows, open doorways and specular surfaces we also
mask out depths equal to the minimum or maximum recorded for each image.

The training set has 120K unique images, which we shuffle into a list of 220K after evening the
scene distribution (1200 per scene). We test on the 694-image NYU Depth v2 test set (with filled-in
depth values). We train the coarse network for 2M samples using SGD with batches of size 32.
We then hold it fixed and train the fine network for 1.5M samples (given outputs from the already-
trained coarse one). Learning rates are: 0.001 for coarse convolutional layers 1-5, 0.1 for coarse full
layers 6 and 7, 0.001 for fine layers 1 and 3, and 0.01 for fine layer 2. These ratios were found by
trial-and-error on a validation set (folded back into the training set for our final evaluations), and the
global scale of all the rates was tuned to a factor of 5. Momentum was 0.9. Training took 38h for
the coarse network and 26h for fine, for a total of 2.6 days using a NVidia GTX Titan Black. Test
prediction takes 0.33s per batch (0.01s/image).

2For KITTI, s ∈ [1, 1.2], and rotations are not performed (images are horizontal from the camera mount).

5

4.2 KITTI
The KITTI dataset [3] is composed of several outdoor scenes captured while driving with car-
mounted cameras and depth sensor. We use 56 scenes from the “city,” “residential,” and “road”
categories of the raw data. These are split into 28 for training and 28 for testing. The RGB images
are originally 1224x368, and downsampled by half to form the network inputs.

The depth for this dataset is sampled at irregularly spaced points, captured at different times using
a rotating LIDAR scanner. When constructing the ground truth depths for training, there may be
conflicting values; since the RGB cameras shoot when the scanner points forward, we resolve con-
flicts at each pixel by choosing the depth recorded closest to the RGB capture time. Depth is only
provided within the bottom part of the RGB image, however we feed the entire image into our model
to provide additional context to the global coarse-scale network (the fine network sees the bottom
crop corresponding to the target area).

The training set has 800 images per scene. We exclude shots where the car is stationary (acceleration
below a threshold) to avoid duplicates. Both left and right RGB cameras are used, but are treated
as unassociated shots. The training set has 20K unique images, which we shuffle into a list of 40K
(including duplicates) after evening the scene distribution. We train the coarse model first for 1.5M
samples, then the fine model for 1M. Learning rates are the same as for NYU Depth. Training took
took 30h for the coarse model and 14h for fine; test prediction takes 0.40s/batch (0.013s/image).

4.3 Baselines and Comparisons
We compare our method against Make3D trained on the same datasets, as well as the published
results of other current methods [12, 7]. As an additional reference, we also compare to the mean
depth image computed across the training set. We trained Make3D on KITTI using a subset of 700
images (25 per scene), as the system was unable to scale beyond this size. Depth targets were filled
in using the colorization routine in the NYUDepth development kit. For NYUDepth, we used the
common distribution training set of 795 images. We evaluate each method using several errors from
prior works, as well as our scale-invariant metric:

Threshold: % of yi s.t. max(yi
y∗
i
,
y∗
i

yi
) = δ < thr RMSE (linear):

�
1

|T |
�

y∈T ||yi − y∗
i ||2

Abs Relative difference: 1
|T |

�
y∈T |y − y∗|/y∗ RMSE (log):

�
1

|T |
�

y∈T || log yi − log y∗
i ||2

Squared Relative difference: 1
|T |

�
y∈T ||y − y∗||2/y∗ RMSE (log, scale-invariant): The error Eqn. 1

Note that the predictions from Make3D and our network correspond to slightly different center crops
of the input. We compare them on the intersection of their regions, and upsample predictions to the
full original input resolution using nearest-neighbor. Upsampling negligibly affects performance
compared to downsampling the ground truth and evaluating at the output resolution. 3

5 Results
5.1 NYU Depth
Results for NYU Depth dataset are provided in Table 1. As explained in Section 4.3, we compare
against the data mean and Make3D as baselines, as well as Karsch et al. [7] and Ladicky et al. [12].
(Ladicky et al. uses a joint model which is trained using both depth and semantic labels). Our system
achieves the best performance on all metrics, obtaining an average 35% relative gain compared to
the runner-up. Note that our system is trained using the raw dataset, which contains many more
example instances than the data used by other approaches, and is able to effectively leverage it to
learn relevant features and their associations.

This dataset breaks many assumptions made by Make3D, particularly horizontal alignment of the
ground plane; as a result, Make3D has relatively poor performance in this task. Importantly, our
method improves over it on both scale-dependent and scale-invariant metrics, showing that our sys-
tem is able to predict better relations as well as better means.

Qualitative results are shown on the left side of Fig. 4, sorted top-to-bottom by scale-invariant MSE.
Although the fine-scale network does not improve in the error measurements, its effect is clearly
visible in the depth maps — surface boundaries have sharper transitions, aligning to local details.
However, some texture edges are sometimes also included. Fig. 3 compares Make3D as well as

3On NYUDepth, log RMSE is 0.285 vs 0.286 for upsampling and downsampling, respectively, and scale-
invariant RMSE is 0.219 vs 0.221. The intersection is 86% of the network region and 100% of Make3D for
NYUDepth, and 100% of the network and 82% of Make3D for KITTI.

6

Mean Make3D Ladicky&al Karsch&al Coarse Coarse + Fine
threshold δ < 1.25 0.418 0.447 0.542 – 0.618 0.611 higher
threshold δ < 1.252 0.711 0.745 0.829 – 0.891 0.887 is
threshold δ < 1.253 0.874 0.897 0.940 – 0.969 0.971 better
abs relative difference 0.408 0.349 – 0.350 0.228 0.215
sqr relative difference 0.581 0.492 – – 0.223 0.212 lower
RMSE (linear) 1.244 1.214 – 1.2 0.871 0.907 is
RMSE (log) 0.430 0.409 – – 0.283 0.285 better
RMSE (log, scale inv.) 0.304 0.325 – – 0.221 0.219

Table 1: Comparison on the NYUDepth dataset
input m3d coarse L2 L2 scale-inv ground truth

input

m3d

coarse

L2

sc.-inv

g.truth

Figure 3: Qualitative comparison of Make3D, our method trained with l2 loss (λ = 0), and our
method trained with both l2 and scale-invariant loss (λ = 0.5).

outputs from our network trained using losses with λ = 0 and λ = 0.5. While we did not observe
numeric gains using λ = 0.5, it did produce slight qualitative improvements in more detailed areas.

5.2 KITTI
We next examine results on the KITTI driving dataset. Here, the Make3D baseline is well-suited
to the dataset, being composed of horizontally aligned images, and achieves relatively good results.
Still, our method improves over it on all metrics, by an average 31% relative gain. Just as impor-
tantly, there is a 25% gain in both the scale-dependent and scale-invariant RMSE errors, showing
there is substantial improvement in the predicted structure. Again, the fine-scale network does not
improve much over the coarse one in the error metrics, but differences between the two can be seen
in the qualitative outputs.

The right side of Fig. 4 shows examples of predictions, again sorted by error. The fine-scale network
produces sharper transitions here as well, particularly near the road edge. However, the changes are
somewhat limited. This is likely caused by uncorrected alignment issues between the depth map
and input in the training data, due to the rotating scanner setup. This dissociates edges from their
true position, causing the network to average over their more random placements. Fig. 3 shows
Make3D performing much better on this data, as expected, while using the scale-invariant error as a
loss seems to have little effect in this case.

Mean Make3D Coarse Coarse + Fine
threshold δ < 1.25 0.556 0.601 0.679 0.692 higher
threshold δ < 1.252 0.752 0.820 0.897 0.899 is
threshold δ < 1.253 0.870 0.926 0.967 0.967 better
abs relative difference 0.412 0.280 0.194 0.190
sqr relative difference 5.712 3.012 1.531 1.515 lower
RMSE (linear) 9.635 8.734 7.216 7.156 is
RMSE (log) 0.444 0.361 0.273 0.270 better
RMSE (log, scale inv.) 0.359 0.327 0.248 0.246

Table 2: Comparison on the KITTI dataset.
6 Discussion
Predicting depth estimates from a single image is a challenging task. Yet by combining information
from both global and local views, it can be performed reasonably well. Our system accomplishes
this through the use of two deep networks, one that estimates the global depth structure, and another
that refines it locally at finer resolution. We achieve a new state-of-the-art on this task for NYU
Depth and KITTI datasets, having effectively leveraged the full raw data distributions.

In future work, we plan to extend our method to incorporate further 3D geometry information,
such as surface normals. Promising results in normal map prediction have been made by Fouhey
et al. [2], and integrating them along with depth maps stands to improve overall performance [16].
We also hope to extend the depth maps to the full original input resolution by repeated application
of successively finer-scaled local networks.

7

!"# !$# !%# !&#

!"#

!$#

!%#

!&#

Figure 4: Example predictions from our algorithm. NYUDepth on left, KITTI on right. For each
image, we show (a) input, (b) output of coarse network, (c) refined output of fine network, (d) ground
truth. The fine scale network edits the coarse-scale input to better align with details such as object
boundaries and wall edges. Examples are sorted from best (top) to worst (bottom).

Acknowledgements
The authors are grateful for support from ONR #N00014-13-1-0646, NSF #1116923, #1149633 and
Microsoft Research.

8

References
[1] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-fei. Imagenet: A large-scale hierarchical

image database. In CVPR, 2009.
[2] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d primitives for single image under-

standing. In ICCV, 2013.
[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. Inter-

national Journal of Robotics Research (IJRR), 2013.
[4] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller, and Y. Le-

Cun. Learning long-range vision for autonomous off-road driving. Journal of Field Robotics,
26(2):120–144, 2009.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

[6] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. In ACM SIGGRAPH, pages
577–584, 2005.

[7] K. Karsch, C. Liu, S. B. Kang, and N. England. Depth extraction from video using non-
parametric sampling. In TPAMI, 2014.

[8] K. Konda and R. Memisevic. Unsupervised learning of depth and motion. In
arXiv:1312.3429v2, 2013.

[9] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

[10] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a conventional
camera with a coded aperture. In SIGGRAPH, 2007.

[11] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman. Sift flow: dense correspondence across
difference scenes. 2008.

[12] M. P. Lubor Ladicky, Jianbo Shi. Pulling things out of perspective. In CVPR, 2014.
[13] R. Memisevic and C. Conrad. Stereopsis via deep learning. In NIPS Workshop on Deep

Learning, 2011.
[14] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using monocular vision

and reinforcement learning. In ICML, pages 593–600, 2005.
[15] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monocular images. In

NIPS, 2005.
[16] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3-d scene structure from a single still

image. TPAMI, 2008.
[17] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo corre-

spondence algorithms. IJCV, 47:7–42, 2002.
[18] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference

from rgbd images. In ECCV, 2012.
[19] F. H. Sinz, J. Q. Candela, G. H. Bakır, C. E. Rasmussen, and M. O. Franz. Learning depth

from stereo. In Pattern Recognition, pages 245–252. Springer, 2004.
[20] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3d.

2006.
[21] K. Yamaguchi, T. Hazan, D. Mcallester, and R. Urtasun. Continuous markov random fields for

robust stereo estimation. In arXiv:1204.1393v1, 2012.

9

