
Sequence to Sequence Learning

with Neural Networks

Ilya Sutskever
Google

ilyasu@google.com

Oriol Vinyals
Google

vinyals@google.com

Quoc V. Le
Google

qvl@google.com

Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence
learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT-14 dataset, the translations produced by the LSTM
achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU
score was penalized on out-of-vocabulary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its
BLEU score increases to 36.5, which is close to the previous state of the art. The
LSTM also learned sensible phrase and sentence representations that are sensitive
to word order and are relatively invariant to the active and the passive voice. Fi-
nally, we found that reversing the order of the words in all source sentences (but
not target sentences) improved the LSTM’s performance markedly, because doing
so introduced many short term dependencies between the source and the target
sentence which made the optimization problem easier.

1 Introduction

Deep Neural Networks (DNNs) are extremely powerful machine learning models that achieve ex-
cellent performance on difficult problems such as speech recognition [13, 7] and visual object recog-
nition [19, 6, 21, 20]. DNNs are powerful because they can perform arbitrary parallel computation
for a modest number of steps. A surprising example of the power of DNNs is their ability to sort
N N -bit numbers using only 2 hidden layers of quadratic size [27]. So, while neural networks are
related to conventional statistical models, they learn an intricate computation. Furthermore, large
DNNs can be trained with supervised backpropagation whenever the labeled training set has enough
information to specify the network’s parameters. Thus, if there exists a parameter setting of a large
DNN that achieves good results (for example, because humans can solve the task very rapidly),
supervised backpropagation will find these parameters and solve the problem.

Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets
can be sensibly encoded with vectors of fixed dimensionality. It is a significant limitation, since
many important problems are best expressed with sequences whose lengths are not known a-priori.
For example, speech recognition and machine translation are sequential problems. Likewise, ques-
tion answering can also be seen as mapping a sequence of words representing the question to a

1

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is very similar to Cho et al. [5].
Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to
focus on different parts of their input, and an elegant variant of this idea was successfully applied
to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another
popular technique for mapping sequences to sequences with neural networks, although it assumes a
monotonic alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 380M parameters each) using a simple left-to-right beam-search decoder. This is
by far the best result achieved by direct translation with large neural networks. For comparison,
the BLEU score of a SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was
achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the
reference translation contained a word not covered by these 80k. This result shows that a relatively
unoptimized neural network architecture which has much room for improvement outperforms a
mature phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline
by 3.2 BLEU points and is close to the previous state-of-the-art (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different

2

sentences meanings will be far. A qualitative evaluation supports this claim, showing that our model
is aware of word order and is fairly invariant to the active and passive voice.

2 The model

The Recurrent Neural Network (RNN) [31, 28] is a natural generalization of feedforward neural
networks to sequences. Given a sequence of inputs (x1, . . . , xT), a standard RNN computes a
sequence of outputs (y1, . . . , yT) by iterating the following equation:

ht = sigm
(

W hxxt +W hhht−1

)

yt = W yhht

The RNN can easily map sequences to sequences whenever the alignment between the inputs the
outputs is known ahead of time. However, it is not clear how to apply an RNN to problems whose
input and the output sequences have different lengths with complicated and non-monotonic relation-
ships.

A simple strategy for general sequence learning is to map the input sequence to a fixed-sized vector
using one RNN, and then to map the vector to the target sequence with another RNN (this approach
has also been taken by Cho et al. [5]). While it could work in principle since the RNN is provided
with all the relevant information, it would be difficult to train the RNNs due to the resulting long
term dependencies [14, 4] (figure 1) [16, 15]. However, the Long Short-Term Memory (LSTM) [16]
is known to learn problems with long range temporal dependencies, so an LSTM may succeed in
this setting.

The goal of the LSTM is to estimate the conditional probability p(y1, . . . , yT ′ |x1, . . . , xT) where
(x1, . . . , xT) is an input sequence and y1, . . . , yT ′ is its corresponding output sequence whose length
T ′ may differ from T . The LSTM computes this conditional probability by first obtaining the fixed-
dimensional representation v of the input sequence (x1, . . . , xT) given by the last hidden state of the
LSTM, and then computing the probability of y1, . . . , yT ′ with a standard LSTM-LM formulation
whose initial hidden state is set to the representation v of x1, . . . , xT :

p(y1, . . . , yT ′ |x1, . . . , xT) =
T ′

∏

t=1

p(yt|v, y1, . . . , yt−1) (1)

In this equation, each p(yt|v, y1, . . . , yt−1) distribution is represented with a softmax over all the
words in the vocabulary. We use the LSTM formulation from Graves [10]. Note that we require that
each sentence ends with a special end-of-sentence symbol “<EOS>”, which enables the model to
define a distribution over sequences of all possible lengths. The overall scheme is outlined in figure
1, where the shown LSTM computes the representation of “A”, “B”, “C”, “<EOS>” and then uses
this representation to compute the probability of “W”, “X”, “Y”, “Z”, “<EOS>”.

Our actual models differ from the above description in three important ways. First, we used two
different LSTMs: one for the input sequence and another for the output sequence, because doing
so increases the number model parameters at negligible computational cost and makes it natural to
train the LSTM on multiple language pairs simultaneously [18]. Second, we found that deep LSTMs
significantly outperformed shallow LSTMs, so we chose an LSTM with four layers. Third, we found
it extremely valuable to reverse the order of the words of the input sentence. So for example, instead
of mapping the sentence a, b, c to the sentence α, β, γ, the LSTM is asked to map c, b, a to α, β, γ,
where α, β, γ is the translation of a, b, c. This way, a is in close proximity to α, b is fairly close to
β, and so on, a fact that makes it easy for SGD to “establish communication” between the input and
the output. We found this simple data transformation to greatly boost the performance of the LSTM.

3 Experiments

We applied our method to the WMT’14 English to French MT task in two ways. We used it to
directly translate the input sentence without using a reference SMT system and we it to rescore the
n-best lists of an SMT baseline. We report the accuracy of these translation methods, present sample
translations, and visualize the resulting sentence representation.

3

3.1 Dataset details

We used the WMT’14 English to French dataset. We trained our models on a subset of 12M sen-
tences consisting of 348M French words and 304M English words, which is a clean “selected”
subset from [29]. We chose this translation task and this specific training set subset because of the
public availability of a tokenized training and test set together with 1000-best lists from the baseline
SMT [29].

As typical neural language models rely on a vector representation for each word, we used a fixed
vocabulary for both languages. We used 160,000 of the most frequent words for the source language
and 80,000 of the most frequent words for the target language. Every out-of-vocabulary word was
replaced with a special “UNK” token.

3.2 Decoding and Rescoring

The core of our experiments involved training a large deep LSTM on many sentence pairs. We
trained it by maximizing the log probability of a correct translation T given the source sentence S,
so the training objective is

1/|S|
∑

(T,S)∈S

log p(T |S)

where S is the training set. Once training is complete, we produce translations by finding the most
likely translation according to the LSTM:

T̂ = argmax
T

p(T |S) (2)

We search for the most likely translation using a simple left-to-right beam search decoder which
maintains a small number B of partial hypotheses, where a partial hypothesis is a prefix of some
translation. At each timestep we extend each partial hypothesis in the beam with every possible
word in the vocabulary. This greatly increases the number of the hypotheses so we discard all but
the B most likely hypotheses according to the model’s log probability. As soon as the “<EOS>”
symbol is appended to a hypothesis, it is removed from the beam and is added to the set of complete
hypotheses. While this decoder is approximate, it is simple to implement. Interestingly, our system
performs well even with a beam size of 1, and a beam of size 2 provides most of the benefits of beam
search (Table 1).

We also used the LSTM to rescore the 1000-best lists produced by the baseline system [29]. To
rescore an n-best list, we computed the log probability of every hypothesis with our LSTM and took
an even average with their score and the LSTM’s score.

3.3 Reversing the Source Sentences

While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not
reversed). By doing so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU
scores of its decoded translations increased from 25.9 to 30.6.

While we do not have a complete explanation to this phenomenon, we believe that it is caused by
the introduction of many short term dependencies to the dataset. Normally, when we concatenate a
source sentence with a target sentence, each word in the source sentence is far from its corresponding
word in the target sentence. As a result, the problem has a large “minimal time lag” [17]. By
reversing the words in the source sentence, the average distance between corresponding words in
the source and target language is unchanged. However, the first few words in the source language
are now very close to the first few words in the target language, so the problem’s minimal time lag is
greatly reduced. Thus, backpropagation has an easier time “establishing communication” between
the source sentence and the target sentence, which in turn results in substantially improved overall
performance.

Initially, we believed that reversing the input sentences would only lead to more confident predic-
tions in the early parts of the target sentence and to less confident predictions in the later parts. How-
ever, LSTMs trained on reversed source sentences did much better on long sentences than LSTMs

4

trained on the raw source sentences (see sec. 3.7), which suggests that reversing the input sentences
results in LSTMs with better memory utilization.

3.4 Training details

We found that the LSTM models are fairly easy to train. We used deep LSTMs with 4 layers,
with 1000 cells at each layer and 1000 dimensional word embeddings, with an input vocabulary
of 160,000 and an output vocabulary of 80,000. We found deep LSTMs to significantly outperform
shallow LSTMs, where each additional layer reduced perplexity by nearly 10%, possibly due to their
much larger hidden state. We used a naive softmax over 80,000 words at each output. The resulting
LSTM has 380M parameters of which 64M are pure recurrent connections (32M for the “encoder”
LSTM and 32M for the “decoder” LSTM). The complete training details are given below:

• We initialized all of the LSTM’s parameters with the uniform distribution between -0.08
and 0.08

• We used stochastic gradient descent without momentum, with a fixed learning rate of 0.7.
After 5 epochs, we begun halving the learning rate every half epoch. We trained our models
for a total of 7.5 epochs.

• We used batches of 128 sequences for the gradient and divided it the size of the batch
(namely, 128).

• Although LSTMs tend to not suffer from the vanishing gradient problem, they can have
exploding gradients. Thus we enforced a hard constraint on the norm of the gradient [10,
25] by scaling it when its norm exceeded a threshold. For each training batch, we compute

s = ‖g‖2, where g is the gradient divided by 128. If s > 5, we set g = 5g
s

.

• Different sentences have different lengths. Most sentences are short (e.g., length 20-30)
but some sentences are long (e.g., length > 100), so a minibatch of 128 randomly chosen
training sentences will have many short sentences and few long sentences, and as a result,
much of the computation in the minibatch is wasted. To address this problem, we made
sure that all sentences within a minibatch were roughly of the same length, which a 2x
speedup.

3.5 Parallelization

A C++ implementation of deep LSTM with the configuration from the previous section on a sin-
gle GPU processes a speed of approximately 1,700 words per second. This was too slow for our
purposes, so we parallelized our model using an 8-GPU machine. Each layer of the LSTM was
executed on a different GPU and communicated its activations to the next GPU (or layer) as soon
as they were computed. Our models have 4 layers of LSTMs, each of which resides on a separate
GPU. The remaining 4 GPUs were used to parallelize the softmax, so each GPU was responsible
for multiplying by a 1000× 20000 matrix. The resulting implementation achieved a speed of 6,300
(both English and French) words per second with a minibatch size of 128. Training took about a ten
days with this implementation.

3.6 Experimental Results

We used the cased BLEU score [24] to evaluate the quality of our translations. We computed our
BLEU scores using multi-bleu.pl1 on the tokenized predictions and ground truth. This way
of evaluating the BELU score is consistent with [5] and [2], and reproduces the 33.3 score of [29].
However, if we evaluate the state of the art system of [9] (whose predictions can be downloaded
from statmt.org\matrix) in this manner, we get 37.0, which is greater than the 35.8 reported
by statmt.org\matrix.

The results are presented in tables 1 and 2. Our best results are obtained with an ensemble of
LSTMs that differ in their random initializations and in the random order of minibatches. While the
decoded translations of the LSTM ensemble do not beat the state of the art, it is the first time that
a pure neural translation system outperforms a phrase-based SMT baseline on a large MT task by

1There several variants of the BLEU score, and each variant is defined with a perl script.

5

Method test BLEU score (ntst14)

Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17

Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00

Ensemble of 2 reversed LSTMs, beam size 12 33.27

Ensemble of 5 reversed LSTMs, beam size 2 34.50

Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)

Baseline System [29] 33.30

Cho et al. [5] 34.54

State of the art [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61

Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is within 0.5
BLEU points of the previous state of the art by rescoring the 1000-best list of the baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card

She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Type Sentence

Our model Ulrich UNK , membre du conseil d’ administration du constructeur automobile Audi ,
affirme qu’ il s’ agit d’ une pratique courante depuis des années pour que les téléphones
portables puissent être collectés avant les réunions du conseil d’ administration afin qu’ ils
ne soient pas utilisés comme appareils d’ écoute à distance .

Truth Ulrich Hackenberg , membre du conseil d’ administration du constructeur automobile Audi ,
déclare que la collecte des téléphones portables avant les réunions du conseil , afin qu’ ils
ne puissent pas être utilisés comme appareils d’ écoute à distance , est une pratique courante
depuis des années .

Our model “ Les téléphones cellulaires , qui sont vraiment une question , non seulement parce qu’ ils
pourraient potentiellement causer des interférences avec les appareils de navigation , mais
nous savons , selon la FCC , qu’ ils pourraient interférer avec les tours de téléphone cellulaire
lorsqu’ ils sont dans l’ air ” , dit UNK .

Truth “ Les téléphones portables sont véritablement un problème , non seulement parce qu’ ils
pourraient éventuellement créer des interférences avec les instruments de navigation , mais
parce que nous savons , d’ après la FCC , qu’ ils pourraient perturber les antennes-relais de
téléphonie mobile s’ ils sont utilisés à bord ” , a déclaré Rosenker .

Our model Avec la crémation , il y a un “ sentiment de violence contre le corps d’ un être cher ” ,
qui sera “ réduit à une pile de cendres ” en très peu de temps au lieu d’ un processus de
décomposition “ qui accompagnera les étapes du deuil ” .

Truth Il y a , avec la crémation , “ une violence faite au corps aimé ” ,
qui va être “ réduit à un tas de cendres ” en très peu de temps , et non après un processus de
décomposition , qui “ accompagnerait les phases du deuil ” .

Table 3: A few examples of long translations produced by the LSTM alongside the ground truth
translations. The reader can verify that the translations are sensible using Google translate.

4 7 8 12 17 22 28 35 79

test sentences sorted by their length

20

25

30

35

40

B
L
E
U

 s
c
o
re

LSTM (34.8)

baseline (33.3)

0 500 1000 1500 2000 2500 3000 3500

test sentences sorted by average word frequency rank

20

25

30

35

40

B
L
E
U

 s
c
o
re

LSTM (34.8)

baseline (33.3)

Figure 3: The left plot shows the performance of our system as a function of sentence length, where the
x-axis corresponds to the test sentences sorted by their length and is marked by the actual sequence lengths.
There is no degradation on sentences with less than 35 words, there is only a minor degradation on the longest
sentences. The right plot shows the LSTM’s performance on sentences with progressively more rare words,
where the x-axis corresponds to the test sentences sorted by their “average word frequency rank”.

replacement of an active voice with a passive voice. The two-dimensional projections are obtained
using PCA.

4 Related work

There is a large body of work on applications of neural networks to machine translation. So far,
the simplest and most effective way of applying an RNN-Language Model (RNNLM) [23] or a

7

Feedforward Neural Network Language Model (NNLM) [3] to an MT task is by rescoring the n-
best lists of a strong MT baseline [22], which reliably improves translation quality.

More recently, researchers have begun to look into ways of including information about the source
language into the NNLM. Examples of this work include Auli et al. [1], who combine an NNLM
with a topic model of the input sentence, which improves rescoring performance. Devlin et al. [8]
followed a similar approach, but they incorporated their NNLM into the decoder of an MT system
and used the decoder’s alignment information to provide the NNLM with the most useful words in
the input sentence. Their approach was highly successful and it achieved large improvements over
their baseline.

Our work is closely related to Kalchbrenner and Blunsom [18], who were the first to map the input
sentence into a vector and then back to a sentence, although they map sentences to vectors using
convolutional neural networks, which lose the ordering of the words. Similarly to this work, Cho et
al. [5] used an LSTM-like RNN architecture to map sentences into vectors and back, although their
primary focus was on integrating their neural network into an SMT system. Bahdanau et al. [2] also
attempted direct translations with a neural network that used an attention mechanism to overcome
the poor performance on long sentences experienced by Cho et al. [5] and achieved encouraging
results. Likewise, Pouget-Abadie et al. [26] attempted to address the memory problem of Cho et
al. [5] by translating pieces of the source sentence in way that produces smooth translations, which
is similar to a phrase-based approach. We suspect that they could achieve similar improvements by
simply training their networks on reversed source sentences.

End-to-end training is also the focus of Hermann et al. [12], whose model represents the inputs and
outputs by feedforward networks, and map them to similar points in space. However, their approach
cannot generate translations directly: to get a translation, they need to do a look up for closest vector
in the pre-computed database of sentences, or to rescore a sentence.

5 Conclusion

In this work, we showed that a large deep LSTM with a limited vocabulary can outperform a stan-
dard SMT-based system whose vocabulary is unlimited on a large-scale MT task. The success of
our simple LSTM-based approach on MT suggests that it should do well on many other sequence
learning problems, provided they have enough training data.

We were surprised by the extent of the improvement obtained by reversing the words in the source
sentences. We conclude that it is important to find a problem encoding that has the greatest number
of short term dependencies, as they make the learning problem much simpler. In particular, while
we were unable to train a standard RNN on the non-reversed translation problem (shown in fig. 1),
we believe that a standard RNN should be easily trainable when the source sentences are reversed
(although we did not verify it experimentally).

We were also surprised by the ability of the LSTM to correctly translate very long sentences. We
were initially convinced that the LSTM would fail on long sentences due to its limited memory,
and other researchers reported poor performance on long sentences with a model similar to ours
[5, 2, 26]. And yet, LSTMs trained on the reversed dataset had little difficulty translating long
sentences.

Most importantly, we demonstrated that a simple, straightforward and a relatively unoptimized ap-
proach can outperform a mature SMT system, so further work will likely lead to even greater trans-
lation accuracies. These results suggest that our approach will likely do well on other challenging
sequence to sequence problems.

6 Acknowledgments

We thank Samy Bengio, Jeff Dean, Matthieu Devin, Geoffrey Hinton, Nal Kalchbrenner, Thang Luong, Wolf-
gang Macherey, Rajat Monga, Vincent Vanhoucke, Peng Xu, Wojciech Zaremba, and the Google Brain team
for useful comments and discussions.

8

References

[1] M. Auli, M. Galley, C. Quirk, and G. Zweig. Joint language and translation modeling with recurrent
neural networks. In EMNLP, 2013.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. In Journal of
Machine Learning Research, pages 1137–1155, 2003.

[4] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[5] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase represen-
tations using RNN encoder-decoder for statistical machine translation. In Arxiv preprint arXiv:1406.1078,
2014.

[6] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
In CVPR, 2012.

[7] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural networks for large
vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing - Special
Issue on Deep Learning for Speech and Language Processing, 2012.

[8] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul. Fast and robust neural network
joint models for statistical machine translation. In ACL, 2014.

[9] Nadir Durrani, Barry Haddow, Philipp Koehn, and Kenneth Heafield. Edinburgh’s phrase-based machine
translation systems for wmt-14. In WMT, 2014.

[10] A. Graves. Generating sequences with recurrent neural networks. In Arxiv preprint arXiv:1308.0850,
2013.

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In ICML, 2006.

[12] K. M. Hermann and P. Blunsom. Multilingual distributed representations without word alignment. In
ICLR, 2014.

[13] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition. IEEE
Signal Processing Magazine, 2012.

[14] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Master’s thesis, Institut fur Infor-
matik, Technische Universitat, Munchen, 1991.

[15] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies, 2001.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 1997.

[17] S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. 1997.

[18] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In EMNLP, 2013.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In NIPS, 2012.

[20] Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, and A.Y. Ng. Building
high-level features using large scale unsupervised learning. In ICML, 2012.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 1998.

[22] T. Mikolov. Statistical Language Models based on Neural Networks. PhD thesis, Brno University of
Technology, 2012.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent neural network based
language model. In INTERSPEECH, pages 1045–1048, 2010.

[24] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. BLEU: a method for automatic evaluation of machine
translation. In ACL, 2002.

[25] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. arXiv
preprint arXiv:1211.5063, 2012.

[26] J. Pouget-Abadie, D. Bahdanau, B. van Merrienboer, K. Cho, and Y. Bengio. Overcoming the
curse of sentence length for neural machine translation using automatic segmentation. arXiv preprint
arXiv:1409.1257, 2014.

[27] A. Razborov. On small depth threshold circuits. In Proc. 3rd Scandinavian Workshop on Algorithm
Theory, 1992.

[28] D. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.
Nature, 323(6088):533–536, 1986.

[29] H. Schwenk. University le mans. http://www-lium.univ-lemans.fr/˜schwenk/cslm_

joint_paper/, 2014. [Online; accessed 03-September-2014].

[30] M. Sundermeyer, R. Schluter, and H. Ney. LSTM neural networks for language modeling. In INTER-
SPEECH, 2010.

[31] P. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of IEEE, 1990.

9

