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Abstract

We provide a detailed study of the estimation of probability distributions—
discrete and continuous—in a stringent setting in which data is kept private even
from the statistician. We give sharp minimax rates of convergence for estimation
in these locally private settings, exhibiting fundamental trade-offs between pri-
vacy and convergence rate, as well as providing tools to allow movement along
the privacy-statistical efficiency continuum. One of the consequences of our re-
sults is that Warner’s classical work on randomized response is an optimal way to
perform survey sampling while maintaining privacy of the respondents.

1 Introduction

The original motivation for providing privacy in statistical problems, first discussed by Warner [23],
was that “for reasons of modesty, fear of being thought bigoted, or merely a reluctance to confide
secrets to strangers,” respondents to surveys might prefer to be able to answer certain questions
non-truthfully, or at least without the interviewer knowing their true response. With this motivation,
Warner considered the problem of estimating the fractions of the population belonging to certain
strata, which can be viewed as probability estimation within a multinomial model. In this paper, we
revisit Warner’s probability estimation problem, doing so within a theoretical framework that allows
us to characterize optimal estimation under constraints on privacy. We also apply our theoretical
tools to a further probability estimation problem—that of nonparametric density estimation.

In the large body of research on privacy and statistical inference [e.g., 23, 14, 10, 15], a major focus
has been on the problem of reducing disclosure risk: the probability that a member of a dataset
can be identified given released statistics of the dataset. The literature has stopped short, however,
of providing a formal treatment of disclosure risk that would permit decision-theoretic tools to be
used in characterizing trade-offs between the utility of achieving privacy and the utility associated
with an inferential goal. Recently, a formal treatment of disclosure risk known as “differential
privacy” has been proposed and studied in the cryptography, database and theoretical computer
science literatures [11, 1]. Differential privacy has strong semantic privacy guarantees that make it a
good candidate for declaring a statistical procedure or data collection mechanism private, and it has
been the focus of a growing body of recent work [13, 16, 24, 21, 6, 18, 8, 5, 9].

In this paper, we bring together the formal treatment of disclosure risk provided by differential pri-
vacy with the tools of minimax decision theory to provide a theoretical treatment of probability
estimation under privacy constraints. Just as in classical minimax theory, we are able to provide
lower bounds on the convergence rates of any estimator, in our case under a restriction to esti-
mators that guarantee privacy. We complement these results with matching upper bounds that are
achievable using computationally efficient algorithms. We thus bring classical notions of privacy,
as introduced by Warner [23], into contact with differential privacy and statistical decision theory,
obtaining quantitative trade-offs between privacy and statistical efficiency.
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1.1 Setting and contributions

Let us develop some basic formalism before describing our main results. We study procedures that
receive private views Z1, . . . , Zn ∈ Z of an original set of observations, X1, . . . , Xn ∈ X , where
X is the (known) sample space. In our setting, Zi is drawn conditional on Xi via the channel
distribution Qi(Zi | Xi = x); typically we omit the dependence of Qi on i. We focus in this paper
on the non-interactive setting (in information-theoretic terms, on memoryless channels), where Qi
is chosen prior to seeing data; see Duchi et al. [9] for more discussion.

We assume each of these private views Zi is α-differentially private for the original dataXi. To give
a precise definition for this type of privacy, known as “local privacy,” let σ(Z) be the σ-field on Z
over which the channel Q is defined. Then Q provides α-local differential privacy if

sup

{
Q(S | Xi = x)

Q(S | Xi = x′)
| S ∈ σ(Z), and x, x′ ∈ X

}
≤ exp(α). (1)

This formulation of local privacy was first proposed by Evfimievski et al. [13]. The likelihood ratio
bound (1) is attractive for many reasons. It means that any individual providing data guarantees
his or her own privacy—no further processing or mistakes by a collection agency can compromise
one’s data—and the individual has plausible deniability about taking a value x, since any outcome z
is nearly as likely to have come from some other initial value x′. The likelihood ratio also controls
the error rate in tests for the presence of points x in the data [24].

In the current paper, we study minimax convergence rates when the data provided satisfies the local
privacy guarantee (1). Our two main results quantify the penalty that must be paid when local
privacy at a level α is provided in multinomial estimation and density estimation problems. At a
high level, our first result implies that for estimation of a d-dimensional multinomial probability
mass function, the effective sample size of any statistical estimation procedure decreases from n to
nα2/d whenever α is a sufficiently small constant. A consequence of our results is that Warner’s
randomized response procedure [23] enjoys optimal sample complexity; it is interesting to note
that even with the recent focus on privacy and statistical inference, the optimal privacy-preserving
strategy for problems such as survey collection has been known for almost 50 years.

Our second main result, on density estimation, exhibits an interesting departure from standard min-
imax estimation results. If the density being estimated has β continuous derivatives, then classical
results on density estimation [e.g., 26, 25, 22] show that the minimax integrated squared error scales

(in the sample size n) as n−2β/(2β+1). In the locally private case, we show that there is a difference

in the polynomial rate of convergence: we obtain a scaling of (α2n)−2β/(2β+2). We give efficiently
implementable algorithms that attain sharp upper bounds as companions to our lower bounds, which
in some cases exhibit the necessity of non-trivial sampling strategies to guarantee privacy.

Notation: Given distributions P and Q defined on a space X , each absolutely continuous with
respect to a measure µ (with densities p and q), the KL-divergence between P and Q is

Dkl (P‖Q) :=

∫

X

dP log
dP

dQ
=

∫

X

p log
p

q
dµ.

Letting σ(X ) denote an appropriate σ-field on X , the total variation distance between P and Q is

‖P −Q‖TV := sup
S∈σ(X )

|P (S)−Q(S)| = 1

2

∫

X

|p(x)− q(x)| dµ(x).

Let X be distributed according to P and Y | X be distributed according to Q(· | X), and let
M =

∫
Q(· | x)dP (x) denote the marginal of Y . The mutual information between X and Y is

I(X;Y ) := EP [Dkl (Q(· | X)‖M(·))] =
∫
Dkl (Q(· | X = x)‖M(·)) dP (x).

A random variable Y has Laplace(α) distribution if its density pY (y) =
α
2 exp (−α|y|). We write

an . bn to denote an = O(bn) and an ≍ bn to denote an = O(bn) and bn = O(an). For a convex
set C ⊂ R

d, we let ΠC denote the orthogonal projection operator onto C.
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2 Background and Problem Formulation

In this section, we provide the necessary background on the minimax framework used throughout
the paper, more details of which can be found in standard sources [e.g., 17, 25, 26, 22]. We also
reference our work [9] paper on statistical inference under differential privacy constraints; we restate
two theorems from the paper [9] to keep our presentation self-contained.

2.1 Minimax framework

Let P denote a class of distributions on the sample space X , and let θ : P → Θ denote a function
defined on P . The range Θ depends on the underlying statistical model; for example, for density
estimation, Θ may consist of the set of probability densities defined on [0, 1]. We let ρ denote the
semi-metric on the space Θ that we use to measure the error of an estimator for θ, and Φ : R+ → R+

be a non-decreasing function with Φ(0) = 0 (for example, Φ(t) = t2).

Recalling that Z is the domain of the private variables Zi, let θ̂ : Zn → Θ denote an arbitrary
estimator for θ. Let Qα denote the set of conditional (or channel) distributions guaranteeing α-local
privacy (1). Looking uniformly over all channels Q ∈ Qα, we define the central object of interest
for this paper, the α-private minimax rate for the family θ(P),

Mn(θ(P),Φ ◦ ρ, α) := inf
θ̂,Q∈Qα

sup
P∈P

EP,Q

[
Φ
(
ρ(θ̂(Z1, . . . , Zn), θ(P ))

)]
. (2)

associated with estimating θ based on (Z1, . . . , Zn). We remark here (see also the discussion in [9])
that the private minimax risk (2) is different from previous work on optimality in differential privacy
(e.g. [2, 16, 8]): prior work focuses on accurate estimation of a sample quantity θ(x1:n) based on
the sample x1:n, while we provide lower bounds on error of the population estimator θ(P ). Lower
bounds on population estimation imply those on sample estimation, so our lower bounds are stronger
than most of those in prior work.

A standard route for lower bounding the minimax risk (2) is by reducing the estimation problem to
the testing problem of identifying a point θ ∈ Θ from a collection of well-separated points [26, 25].
Given an index set V , the indexed family of distributions {Pν , ν ∈ V} ⊂ P is a 2δ-packing of Θ
if ρ(θ(Pν), θ(Pν′)) ≥ 2δ for all ν 6= ν′ in V . The setup is that of a standard hypothesis testing
problem: nature chooses V ∈ V uniformly at random, then data (X1, . . . , Xn) are drawn i.i.d. from
Pnν , conditioning on V = ν. The problem is to identify the member ν of the packing set V .

In this work we have the additional complication that all the statistician observes are the private sam-
plesZ1, . . . , Zn. To that end, if we letQn(· | x1:n) denote the conditional distribution ofZ1, . . . , Zn
given that X1 = x1, . . . , Xn = xn, we define the marginal channel Mn

ν via the expression

Mn
ν (A) :=

∫
Qn(A | x1, . . . , xn)dPν(x1, . . . , xn) for A ∈ σ(Zn). (3)

Letting ψ : Zn → V denote an arbitrary testing procedure, we have the following minimax bound,
whose two parts are known as Le Cam’s two-point method [26, 22] and Fano’s inequality [25, 7, 22].

Lemma 1 (Minimax risk bound). For the previously described estimation and testing problems,

Mn(θ(P),Φ ◦ ρ,Q) ≥ Φ(δ) inf
ψ

P(ψ(Z1, . . . , Zn) 6= V ), (4)

where the infimum is taken over all testing procedures. For a binary test specified by V = {ν, ν′},

inf
ψ

P (ψ(Z1, . . . , Zn) 6= V ) =
1

2
− 1

2
‖Mn

ν −Mn
ν′‖TV , (5a)

and more generally,

inf
ψ

P(ψ(Z1, . . . , Zn) 6= V ) ≥
[
1− I(Z1, . . . , Zn;V ) + log 2

log |V|

]
. (5b)
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2.2 Information bounds

The main step in proving minimax lower bounds is to control the divergences involved in the lower
bounds (5a) and (5b). We review two results from our work [9] that obtain such bounds as a function
of the amount of privacy provided. The second of the results provides a variational upper bound on
the mutual information I(Z1, . . . , Zn;V ), in that we optimize jointly over subset S ⊂ X . To state
the proposition, we require a bit of notation: for each i ∈ {1, . . . , n}, let Pν,i be the distribution of
Xi conditional on the random packing element V = ν, and let Mn

ν be the marginal distribution (3)

induced by passing Xi through Q. Define the mixture distribution P i =
1
|V|

∑
ν∈V Pν,i, We can

then state a proposition summarizing the results we require from Duchi et al. [9]:

Proposition 1 (Information bounds). For any ν, ν′ ∈ V and α ≥ 0,

Dkl (M
n
ν ‖Mn

ν′) ≤ 4(eα − 1)2
n∑

i=1

‖Pν,i − Pν′,i‖2TV . (6)

Additionally for V chosen uniformly at random from V , we have the variational bound

I(Z1, . . . , Zn;V ) ≤ eα
(eα − e−α)2

|V|

n∑

i=1

sup
S∈σ(X )

∑

ν∈V

(
Pν,i(S)− P (S)

)2
. (7)

By combining Proposition 1 with Lemma 1, it is possible to derive sharp lower bounds on arbitrary
estimation procedures under α-local privacy. In the remainder of the paper, we demonstrate this
combination for probability estimation problems; we provide proofs of all results in [9].

3 Multinomial Estimation under Local Privacy

In this section we return to the classical problem of avoiding answer bias in surveys, the original
motivation for studying local privacy [23].

3.1 Minimax rates of convergence for multinomial estimation

Let ∆d :=
{
θ ∈ R

d | θ ≥ 0,
∑d
j=1 θj = 1

}
denote the probability simplex in R

d. The multinomial

estimation problem is defined as follows. Given a vector θ ∈ ∆d, samples X are drawn i.i.d. from
a multinomial with parameters θ, where Pθ(X = j) = θj for j ∈ {1, . . . , d}, and the goal is to
estimate θ. In one of the earliest evaluations of privacy, Warner [23] studied the Bernoulli variant of
this problem and proposed randomized response: for a given survey question, respondents provide
a truthful answer with probability p > 1/2 and lie with probability 1− p.

In our setting, we assume the statistician sees α-locally private (1) random variables Zi for the cor-
responding samplesXi from the multinomial. In this case, we have the following result, which char-

acterizes the minimax rate of estimation of a multinomial in both mean-squared error E[‖θ̂ − θ‖22]
and absolute error E[‖θ̂ − θ‖1]; the latter may be more relevant for probability estimation problems.

Theorem 1. There exist universal constants 0 < cℓ ≤ cu < 5 such that for all α ∈ [0, 1], the
minimax rate for multinomial estimation satisfies the bounds

cℓmin

{
1,

1√
nα2

,
d

nα2

}
≤ Mn

(
∆d, ‖·‖22 , α

)
≤ cumin

{
1,

d

nα2

}
, (8)

and

cℓmin

{
1,

d√
nα2

}
≤ Mn (∆d, ‖·‖1 , α) ≤ cumin

{
1,

d√
nα2

}
. (9)

Theorem 1 shows that providing local privacy can sometimes be quite detrimental to the quality
of statistical estimators. Indeed, let us compare this rate to the classical rate in which there is no
privacy. Then estimating θ via proportions (i.e., maximum likelihood), we have

E

[
‖θ̂ − θ‖22

]
=

d∑

j=1

E

[
(θ̂j − θj)

2
]
=

1

n

d∑

j=1

θj(1− θj) ≤
1

n

(
1− 1

d

)
<

1

n
.

By inequality (8), for suitably large sample sizes n, the effect of providing differential privacy at a
level α causes a reduction in the effective sample size of n 7→ nα2/d.
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3.2 Optimal mechanisms: attainability for multinomial estimation

An interesting consequence of the lower bound in (8) is the following fact that we now demonstrate:
Warner’s classical randomized response mechanism [23] (with minor modification) achieves the
optimal convergence rate. There are also other relatively simple estimation strategies that achieve
convergence rate d/nα2; the perturbation approach Dwork et al. [11] propose, where Laplace(α)
noise is added to each coordinate of a multinomial sample, is one such strategy. Nonetheless, the
ease of use and explainability of randomized response, coupled with our optimality results, pro-
vide support for randomized response as a preferred method for private estimation of population
probabilities.

We now prove that randomized response attains the optimal rate of convergence. There is a bijection
between multinomial samples x ∈ {1, . . . , d} and the d standard basis vectors e1, . . . , ed ∈ R

d,
so we abuse notation and represent samples x as either when designing estimation strategies. In
randomized response, we construct the private vector Z ∈ {0, 1}d from a multinomial observation
x ∈ {e1, . . . , ed} by sampling d coordinates independently via the procedure

[Z]j =

{
xj with probability

exp(α/2)
1+exp(α/2)

1− xj with probability 1
1+exp(α/2) .

(10)

We claim that this channel (10) is α-differentially private: indeed, note that for any x, x′ ∈ ∆d and
any vector z ∈ {0, 1}d we have

Q(Z = z | x)
Q(Z = z | x′) = exp

(α
2
(‖z − x‖1 − ‖z − x′‖1)

)
∈ [exp(−α), exp(α)] ,

where we used the triangle inequality to assert that | ‖z − x‖1 − ‖z − x′‖1 | ≤ ‖x− x′‖1 ≤ 2. We
can compute the expected value and variance of the random variables Z; indeed, by definition (10)

E[Z | x] = eα/2

1 + eα/2
x+

1

1 + eα/2
(1− x) =

eα/2 − 1

eα/2 + 1
x+

1

1 + eα/2
1.

Since the Z are Bernoulli, we obtain the variance bound E[‖Z − E[Z]‖22] < d/4+1 < d. Recalling
the definition of the projection Π∆d

onto the simplex, we arrive at the natural estimator

θ̂part :=
1

n

n∑

i=1

(
Zi − 1/(1 + eα/2)

) eα/2 + 1

eα/2 − 1
and θ̂ := Π∆d

(
θ̂part

)
. (11)

The projection of θ̂part onto the probability simplex can be done in time linear in the dimension d
of the problem [3], so the estimator (11) is efficiently computable. Since projections only decrease

distance, vectors in the simplex are at most distance
√
2 apart, and Eθ[θ̂part] = θ, we find

E

[
‖θ̂ − θ‖22

]
≤ min

{
2,E

[
‖θ̂part − θ‖22

]}
≤ min

{
2,
d

n

(
eα/2 + 1

eα/2 − 1

)2 }
. min

{
1,

d

nα2

}
.

A similar argument shows that randomized response is minimax optimal for the ℓ1-loss as well.

4 Density Estimation under Local Privacy

In this section, we turn to studying a nonparametric statistical problem in which the effects of local
differential privacy turn out to be somewhat more severe. We show that for the problem of density
estimation, instead of just multiplicative loss in the effective sample size as in the previous section,
imposing local differential privacy leads to a different convergence rate.

In more detail, we consider estimation of probability densities f : R → R+,
∫
f(x)dx = 1 and

f ≥ 0, defined on the real line, focusing on a standard family of densities of varying smoothness [e.g.
22]. Throughout this section, we let β ∈ N denote a fixed positive integer. Roughly, we consider
densities that have bounded βth derivative, and we study density estimation using the squared L2-

norm ‖f‖22 :=
∫
f2(x)dx as our metric; in formal terms, we impose these constraints in terms of

Sobolev classes (e.g. [22, 12]). Let the countable collection of functions {ϕj}∞j=1 be an orthonormal

basis for L2([0, 1]). Then any function f ∈ L2([0, 1]) can be expanded as a sum
∑∞
j=1 θjϕj in

terms of the basis coefficients θj :=
∫
f(x)ϕj(x)dx, where {θj}∞j=1 ∈ ℓ2(N). The Sobolev space

Fβ [C] is obtained by enforcing a particular decay rate on the coefficients θ:
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Definition 1 (Elliptical Sobolev space). For a given orthonormal basis {ϕj} of L2([0, 1]), smooth-
ness parameter β > 1/2 and radius C, the function class Fβ [C] is given by

Fβ [C] :=
{
f ∈ L2([0, 1]) | f =

∞∑

j=1

θjϕj such that

∞∑

j=1

j2βϕ2
j ≤ C2

}
.

If we choose the trigonometric basis as our orthonormal basis, then membership in the class Fβ [C]
corresponds to certain smoothness constraints on the derivatives of f . More precisely, for j ∈ N,
consider the orthonormal basis for L2([0, 1]) of trigonometric functions:

ϕ0(t) = 1, ϕ2j(t) =
√
2 cos(2πjt), ϕ2j+1(t) =

√
2 sin(2πjt). (12)

Now consider a β-times almost everywhere differentiable function f for which |f (β)(x)| ≤ C for

almost every x ∈ [0, 1] satisfying f (k)(0) = f (k)(1) for k ≤ β − 1. Uniformly for such f , there is
a universal constant c such that that f ∈ Fβ [cC] [22, Lemma A.3]. Thus, Definition 1 (essentially)
captures densities that have Lipschitz-continuous (β − 1)th derivative. In the sequel, we write Fβ
when the bound C in Fβ [C] is O(1). It is well known [26, 25, 22] that the minimax risk for non-
private estimation of densities in the class Fβ scales as

Mn

(
Fβ , ‖·‖22 ,∞

)
≍ n−

2β
2β+1 . (13)

Our main result is to demonstrate that the classical rate (13) is no longer attainable when we require
α-local differential privacy. In Sections 4.2 and 4.3, we show how to achieve the (new) optimal rate
using histogram and orthogonal series estimators.

4.1 Lower bounds on density estimation

We begin by giving our main lower bound on the minimax rate of estimation of densities when are
kept differentially private, providing the proof in the longer paper [9].

Theorem 2. Consider the class of densities Fβ defined using the trigonometric basis (12). For some
α ∈ [0, 1], suppose Zi are α-locally private (1) for the samples Xi ∈ [0, 1]. There exists a constant
cβ > 0, dependent only on β, such that

Mn

(
Fβ , ‖·‖22 , α

)
≥ cβ

(
nα2

)− 2β
2β+2 . (14)

In comparison with the classical minimax rate (13), the lower bound (14) involves a different poly-
nomial exponent: privacy reduces the exponent from 2β/(2β + 1) to 2β/(2β + 2). For example,

for Lipschitz densities we have β = 1, and the rate degrades from n−2/3 to n−1/2.

Interestingly, no estimator based on Laplace (or exponential) perturbation of the samples Xi them-
selves can attain the rate of convergence (14). In their study of the deconvolution problem, Carroll
and Hall [4] show that if samples Xi are perturbed by additive noise W , where the characteris-
tic function φW of the additive noise has tails behaving as |φW (t)| = O(|t|−a) for some a > 0,
then no estimator can deconvolve the samples X +W and attain a rate of convergence better than

n−2β/(2β+2a+1). Since the Laplace distribution’s characteristic function has tails decaying as t−2,
no estimator based on perturbing the samples directly can attain a rate of convergence better than

n−2β/(2β+5). If the lower bound (14) is attainable, we must then study privacy mechanisms that are
not simply based on direct perturbation of the samples {Xi}ni=1.

4.2 Achievability by histogram estimators

We now turn to the mean-squared errors achieved by specific practical schemes, beginning with the
special case of Lipschitz density functions (β = 1), for which it suffices to consider a private version
of a classical histogram estimate. For a fixed positive integer k ∈ N, let {Xj}kj=1 denote the partition

of X = [0, 1] into the intervals

Xj = [(j − 1)/k, j/k) for j = 1, 2, . . . , k − 1, and Xk = [(k − 1)/k, 1].
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Any histogram estimate of the density based on these k bins can be specified by a vector θ ∈ k∆k,
where we recall ∆k ⊂ R

k
+ is the probability simplex. Any such vector defines a density estimate via

the sum fθ :=
∑k
j=1 θj1Xj

, where 1E denotes the characteristic (indicator) function of the set E.

Let us now describe a mechanism that guarantees α-local differential privacy. Given a data set
{X1, . . . , Xn} of samples from the distribution f , consider the vectors

Zi := ek(Xi) +Wi, for i = 1, 2, . . . , n, (15)

where ek(Xi) ∈ ∆k is a k-vector with the jth entry equal to one if Xi ∈ Xj , and zeroes in all
other entries, and Wi is a random vector with i.i.d. Laplace(α/2) entries. The variables {Zi}ni=1
so-defined are α-locally differentially private for {Xi}ni=1.

Using these private variables, we then form the density estimate f̂ := fθ̂ =
∑k
j=1 θ̂j1Xj

based on

θ̂ := Πk

(
k

n

n∑

i=1

Zi

)
, (16)

where Πk denotes the Euclidean projection operator onto the set k∆k. By construction, we have

f̂ ≥ 0 and
∫ 1

0
f̂(x)dx = 1, so f̂ is a valid density estimate.

Proposition 2. Consider the estimate f̂ based on k = (nα2)1/4 bins in the histogram. For any
1-Lipschitz density f : [0, 1] → R+, we have

Ef

[∥∥f̂ − f
∥∥2
2

]
≤ 5(α2n)−

1
2 +

√
αn−3/4. (17)

For any fixed α > 0, the first term in the bound (17) dominates, and the O((α2n)−
1
2 ) rate matches

the minimax lower bound (14) in the case β = 1: the privatized histogram estimator is minimax-
optimal for Lipschitz densities. This result provides the private analog of the classical result that
histogram estimators are minimax-optimal (in the non-private setting) for Lipschitz densities.

4.3 Achievability by orthogonal projection estimators

For higher degrees of smoothness (β > 1), histogram estimators no longer achieve optimal rates in
the classical setting [20]. Accordingly, we turn to estimators based on orthogonal series and show
that even under local privacy, they achieve the lower bound (14) for all orders of smoothness β ≥ 1.

Recall the elliptical Sobolev space (Definition 1), in which a function f is represented as f =∑∞
j=1 θjϕj , where θj =

∫
f(x)ϕj(x)dx. This representation underlies the classical method of or-

thonormal series estimation: given a data set, {X1, X2, . . . , Xn}, drawn i.i.d. according to a density
f ∈ L2([0, 1]), we first compute the empirical basis coefficients

θ̂j =
1

n

n∑

i=1

ϕj(Xi) and then set f̂ =
k∑

j=1

θ̂jϕj , (18)

where the value k ∈ N is chosen either a priori based on known properties of the estimation problem
or adaptively, for example, using cross-validation [12, 22].

In the setting of local privacy, we consider a mechanism that, instead of releasing the vector of coef-
ficients

(
ϕ1(Xi), . . . , ϕk(Xi)

)
for each data point, employs a random vector Zi = (Zi,1, . . . , Zi,k)

with the property that E[Zi,j | Xi] = ϕj(Xi) for each j = 1, 2, . . . , k. We assume the basis func-
tions are uniformly bounded; i.e., there exists a constant B0 = supj supx |ϕj(x)| < ∞. For a fixed
number B strictly larger than B0 (to be specified momentarily), consider the following scheme:

Sampling strategy Given a vector τ ∈ [−B0, B0]
k, construct τ̃ ∈ {−B0, B0}k with coordinates τ̃j

sampled independently from {−B0, B0} with probabilities 1
2 −

τj
2B0

and 1
2 +

τj
2B0

. Sample

T from a Bernoulli(eα/(eα + 1)) distribution. Then choose Z ∈ {−B,B}k via

Z ∼
{

Uniform on
{
z ∈ {−B,B}k : 〈z, τ̃〉 > 0

}
if T = 1

Uniform on
{
z ∈ {−B,B}k : 〈z, τ̃〉 ≤ 0

}
if T = 0.

(19)
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By inspection, Z is α-differentially private for any initial vector in the box [−B0, B0]
k, and more-

over, the samples (19) are efficiently computable (for example by rejection sampling). Starting from
the vector τ ∈ R

k, τj = ϕj(Xi), in the above sampling strategy we have

E[[Z]j | X = x] = ck
B

B0

√
k

(
eα

eα + 1
− 1

eα + 1

)
ϕj(x) = ck

B

B0

√
k

eα − 1

eα + 1
ϕj(x), (20)

for a constant ck that may depend on k but is O(1) and bounded away from 0. Consequently, to

attain the unbiasedness condition E[[Zi]j | Xi] = ϕj(Xi), it suffices to take B = O(B0

√
k/α).

The full sampling and inferential scheme are as follows: (i) given a data point Xi, construct the
vector τ = [ϕj(Xi)]

k
j=1; (ii) sample Zi according to strategy (19) using τ and the bound B =

B0

√
k(eα + 1)/ck(e

α − 1). (The constant ck is as in the expression (20).) Using the estimator

f̂ :=
1

n

n∑

i=1

k∑

j=1

Zi,jϕj , (21)

we obtain the following proposition.

Proposition 3. Let {ϕj} be a B0-bounded orthonormal basis for L2([0, 1]). There exists a constant

c (depending only on C and B0) such that the estimator (21) with k = (nα2)1/(2β+2) satisfies

sup
f∈Fβ[C]

Ef

[
‖f − f̂‖22

]
≤ c

(
nα2

)− 2β
2β+2 .

Propositions 2 and 3 make clear that the minimax lower bound (14) is sharp, as claimed.

Before concluding our exposition, we make a few remarks on other potential density estimators. Our
orthogonal-series estimator (21) (and sampling scheme (20)), while similar in spirit to that proposed
by Wasserman and Zhou [24, Sec. 6], is different in that it is locally private and requires a differ-
ent noise strategy to obtain both α-local privacy and optimal convergence rate. Lei [19] considers
private M -estimators based on first performing a histogram density estimate, then using this to con-
struct a second estimator; his estimator is not locally private, and the resulting M -estimators have
sub-optimal convergence rates. Finally, we remark that density estimators that are based on orthogo-

nal series and Laplace perturbation are sub-optimal: they can achieve (at best) rates of (nα2)−
2β

2β+3 ,
which is polynomially worse than the sharp result provided by Proposition 3. It appears that appro-
priately chosen noise mechanisms are crucial for obtaining optimal results.

5 Discussion

We have linked minimax analysis from statistical decision theory with differential privacy, bringing
some of their respective foundational principles into close contact. In this paper particularly, we
showed how to apply our divergence bounds to obtain sharp bounds on the convergence rate for cer-
tain nonparametric problems in addition to standard finite-dimensional settings. By providing sharp
convergence rates for many standard statistical inference procedures under local differential privacy,
we have developed and explored some tools that may be used to better understand privacy-preserving
statistical inference and estimation procedures. We have identified a fundamental continuum along
which privacy may be traded for utility in the form of accurate statistical estimates, providing a
way to adjust statistical procedures to meet the privacy or utility needs of the statistician and the
population being sampled. Formally identifying this trade-off in other statistical problems should
allow us to better understand the costs and benefits of privacy; we believe we have laid some of the
groundwork to do so.
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