Spiking and saturating dendrites differentially
expand single neuron computation capacity.

Romain Cazé Mark Humphries
INSERM U960, Paris Diderot, Paris 7, ENS INSERM U960; University of Manchester
29 rue d’Ulm, 75005 Paris 29 rue d’Ulm, 75005 Paris; UK
romain.caze@ens. fr mark.humphries @manchester.ac.uk

Boris Gutkin
INSERM U960, CNRS, ENS
29 rue d’Ulm, 75005 Paris
boris.gutkin@ens.fr

Abstract

The integration of excitatory inputs in dendrites is non-linear: multiple excita-
tory inputs can produce a local depolarization departing from the arithmetic sum
of each input’s response taken separately. If this depolarization is bigger than
the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the
dendrite is saturating. Decomposing a dendritic tree into independent dendritic
spiking units greatly extends its computational capacity, as the neuron then maps
onto a two layer neural network, enabling it to compute linearly non-separable
Boolean functions (InBFs). How can these InBFs be implemented by dendritic
architectures in practise? And can saturating dendrites equally expand computa-
tional capacity? To address these questions we use a binary neuron model and
Boolean algebra. First, we confirm that spiking dendrites enable a neuron to com-
pute InBFs using an architecture based on the disjunctive normal form (DNF).
Second, we prove that saturating dendrites as well as spiking dendrites enable
a neuron to compute InBFs using an architecture based on the conjunctive nor-
mal form (CNF). Contrary to a DNF-based architecture, in a CNF-based architec-
ture, dendritic unit tunings do not imply the neuron tuning, as has been observed
experimentally. Third, we show that one cannot use a DNF-based architecture
with saturating dendrites. Consequently, we show that an important family of
InBFs implemented with a CNF-architecture can require an exponential number
of saturating dendritic units, whereas the same family implemented with either a
DNF-architecture or a CNF-architecture always require a linear number of spiking
dendritic units. This minimization could explain why a neuron spends energetic
resources to make its dendrites spike.

1 Introduction

Recent progress in voltage clamp techniques has enabled the recording of local membrane voltage in
dendritic branches, and this greatly changed our view of the potential for single neuron computation.
Experiments have shown that when the local dendritic membrane potential reaches a given threshold
a dendritic spike can be elicited [4, 13]. Based on this type of local dendritic non-linearity, it has
been suggested that a CA1 hippocampal pyramidal neuron comprises multiple independent non-
linear spiking units, summating at the soma, and is thus equivalent to a two layer artificial neural
network [12]. This idea is attractive, because this type of feed-forward network can implement any
Boolean function, in particular linearly non-separable Boolean functions (InBFs), and thus radically



extends the computational power of a single neuron. By contrast, a seminal neuron model, the
McCulloch & Pitts unit [10], is restricted to linearly separable Boolean functions.

However attractive this idea, it requires additional investigation. Indeed, spiking dendritic unit may
enable the computation of InBFs using an architecture, suggested in [9], where the dendritic tuning
implies the neuron tuning (see also Proposition 1). This relation between dendritic and neuron tuning
has not been confirmed experimentally; on the contrary it has been shown in vivo that dendritic
tuning does not imply the neuron tuning [6]: calcium imaging in vivo has shown that the local
calcium signal in dendrites can maximally increase for visual inputs whereas that do not trigger
somatic spiking. We resolve this first issue here by showing how one can implement InBFs with
spiking dendritic units, whose tunings do not formally imply the somatic tuning.

Moreover, the idea of a neuron implementing a two-layer network is based on spiking dendrites.
Dendritic non-linearities have a variety of shapes, and many neuron types may not have the capacity
to generate dendritic spikes. By contrast, all dendrites can saturate [1, 16, 2]. For instance, gluta-
mate uncaging on cerebellar stellate cell dendrites and simultaneous somatic voltage recording of
these interneurons shows that multiple excitatory inputs on the same dendrite result in a somatic
depolarization smaller than the arithmetic sum of the quantal depolarizations [1]. This type of non-
linearity has been predicted from Rall’s work [7], a model which explains saturation by an increase
in membrane conductance and a decrease in driving force. It is unknown whether local dendritic
saturation can also enhance the general computational capacity of a single neuron in the same way
as local dendritic spiking — but, if so, this would make plausible the implementation of InBFs in
potentially any type of neuron. In the present study we show that saturating dendritic units do also
enable the computation of InBFs (see Proposition 2).

One can wonder why some dendrites support metabolically-expensive spiking if dendritic saturation
is sufficient to compute all Boolean functions. We tackle this issue in the second part of our study.
We show that a family of positive InBFs may require an exponentially growing number of saturat-
ing dendritic units when the number of input variables grow linearly, whereas the same family of
Boolean functions requires a linearly growing number of spiking dendritic units. Consequently den-
dritic spikes may minimize the number of units necessary to implement all Boolean functions. Thus,
as the number of independent units — spiking or saturating — in a dendrite remains an open question
[5], but potentially small [14], it may turn out that certain Boolean functions are only implementable
using spiking dendrites.

2 Definitions

2.1 The binary two stage neuron

We introduce here a neuron model analogous to [12]. Our model is a binary two stage neuron,
where X is a binary input vector of length n and y is a binary variable modelling the neuron output.
First, inputs sum locally within each dendritic unit j given a local weight vector I¥;; then they pass
though a local transfer function F}; accounting for the dendritic non-linear behavior. Second, outputs
of the d dendritic subunits sum at the soma and passes though the somatic transfer function Fy. Fj
is a spiking transfer function whereas I; are either spiking or saturating transfer functions, these
functions are described in the next section and are displayed on Figure 1A. Formally, the output y is
computed with the following equation:
d
y=Fo( > Fy(W;.))

j=1
2.2 Sub-linear and supra-linear transfer functions

A transfer function F' takes as input a local weighted linear sum = and outputs F'(x); this output
depends on the type of transfer function: spiking or saturating, and on a single positive parameter ©

the threshold of the transfer function. The two types of transfer functions are defined as follows:
Definition 1. Spiking transfer function
1 ifz>0
Fana) = {y 02

0 otherwise



Table 1: Two examples of positive Boolean functions of 4 variables

1 o1 01 01 01 01 O 1 0 1 0 1
X2 o o1 1 0 0 1 1 0 0 1 1 0 0 1 1
T3 o 0 0 01 1 1 1 0 0 OOT1 1 11
Ty o 0o 0o o000 00 1T 1 1 1 1 1 11
g(x1,29,23,24) O 0O O 1 0 0O O I O O O I I 1 1 1
h(zy,z0,23,24) |O 0 O O O 1 1 1 O 1 1 1 0 1 1 1
Definition 2. Saturating transfer function
1 ifr>0
Fsa = T
(@) {x/@ otherwise

The difference between a spiking and a saturating transfer function is that F,;(z) = 0 whereas
Fsot(z) = z/0© if x is below O. To formally characterize this difference we define here sub-
linearity and supra-linearity of a transfer function F' on a given interval I. These definitions are
similar to the well-known notions of concavity and convexity:

Definition 3. F is supra-linear on I if and only if F(x1 + x2) > F(x1) + F(x2) for at least one
(xl, .232) er?

F is sub-linear on I if and only if F(z1 + ) < F(21) + F(x2) for at least one (1, x3) € I?

F is strictly sub-linear (resp. supra-linear) on I if it is sub-linear (resp. supra-linear) but not
supra-linear (resp. sub-linear) on I.

Note that these definitions also work when using n-tuples instead of couples on the interval (useful
in Lemma 3).

Note that whenever © > 0, Fy,; is both supra and sub-linear on I = [0,+o0][ whereas
Fyqt is strictly sub-linear on the same interval.  Fy,; is not supra-linear on [ because
Foat(x1 + 22) < Foqr(x1) + Fsai(x2) for all (zq,22) € I?, by definition of Fj,;. Moreover, Fiq;
is sub-linear on I because Fiy;(a + b) = 1 and F,q(a) + Fiqi(b) = 2 for at least one (a,b) € I*
such thata > © and b > ©. All in all, F,, is strictly sub-linear on 1.

Similarly to Flsqq, Fipr is sub-linear on I because Fypp(a + b) = 1 and Fyp(a) + Fopr(b) = 2
for at least one (a,b) € T 2 such that @ > © and b > ©. Moreover, Fp is supra-linear because
Fopi(c+d) = 1 and Fypi(c) + Fipr(d) = 0 for at least one (¢, d) such that ¢ < © and d < © but
c+d > ©. Allin all, F§, is both sub-linear and supra-linear.

2.3 Boolean Algebra

In order to study the range of possible input-output mappings implementable by a two stage neu-
rons we use Boolean functions, which can efficiently and formally describe all binary input-output
mappings. Let us recall the definition of this extensively studied mathematical object [3, 17]:

Definition 4. A Boolean function of n variables is a function on {0,1}" into {0,1}, where n is a
positive integer.

In Table.1 the truth table for two Boolean functions g and h is presented. These Boolean functions
are fully and uniquely defined by their truth table. Both g and h are positive InBFs (see chapter 9 of
[3] for an extensive study of linear separability); because of its importance we recall the definition
of positive Boolean functions:

Definition 5. Let f be a Boolean function on {0,1}". f is positive if and only if f(X) > f(2)
Y(X, Z) € {0,1}" such that X > Z (meaning that Vi : x; > z;)

We also recall the notion of implication as it is important to observe that a dendritic input-output
function (or funing) may or not imply the neuron’s input-output function:



Definition 6. Let f and g be two Boolean functions.
fimpliesg < f(X)=1 = g(X)=1VX €{0,1}"

As will become clear, we can treat each dendritic unit as computing its own Boolean function on its
inputs: for a unit’s output to imply the whole neuron’s output then means that if a unit outputs a 1,
then the neuron outputs a 1.

In order to describe positive Boolean functions, it is useful to decompose them into positive terms
and positive clauses:

Definition 7. Let XY) be a tuple of k < n positive integers referencing the different variables
present in a term or a clause.

A positive term j is a conjunction of variables written as T;(X) = /\ x;.
i€ X (9)
A positive clause j is a disjunction of variables written as C;(X) = \/ x;.
ie X ()

A term or (resp. clause) is prime if it is not implied by (resp. does not imply) any other term (resp.
clause) in a disjunction (resp. conjunction) of multiple terms (resp. clauses).

These terms and clauses can then define the Disjunctive or Conjunctive Normal Form (DNF or CNF)
expression of a Boolean function f, particularly:

Definition 8. A complete positive DNF is a disjunction of prime positive terms T':

pnE(f) =\ (N @)

T eT  iex ()

Definition 9. A complete positive CNF is a conjunction of prime positive clauses C':

oNE() = N (V=)

C;eC  jex@)

It has been shown that all positive Boolean functions can be expressed as a positive complete DNF
([3] Theorem 1.24); similarly all positive Boolean functions can be expressed as a positive complete
CNF. These complete positive DNF or CNF are the shortest possible DNF or CNF descriptions of
positive Boolean functions. To clarify all these definitions let us introduce a series of examples build
around ¢ and h.

Example 1. Let us take XV = (1,2) and X® = (3,4). These tuples define two positive terms
T1(X) = x1 A xg where T1(X) = 1 only when 1 = 1 and x3 = 1 and T1(X) = 0 otherwise;
similarly To(X) = x3 A x4 where To(X ) = 1 only when x3 = 1 and x4 = 1. These tuples can also
define two positive clauses C1(X) = x1 V xo where C1(X) = Las soon as x1 = 1 or zo = 1, and
similarly C2(X) = a3 V x4 where C2(X) = 1 as soon as x3 = 1 or x4 = 1. In the disjunction
of terms Ty V Ty the terms are prime because Ty (X) = 1 is not implied by To(X) = 1 for all X
(and vice-versa). Similarly in the conjunction of clauses Cy N\ Cy the clauses are prime because
C1(X) = 1 does not imply that Co(X) = 1 for all X (and vice-versa). Ty V T is the complete
positive DNF expression of g; alternatively C1 A\ Cs is the complete positive CNF expression of h.
The truth tables of g and h are displayed in Table 1

3 Results

We first prove here that a two stage neuron with a sufficient number of only spiking or only sat-
urating dendritic units can implement all positive Boolean functions, particularly InBFs like g and
h, whereas a classic McCulloch & Pitts unit is restricted to linearly separable Boolean functions.
Moreover, we present two construction architectures for building a two stage neuron implementing
a positive Boolean function based on its complete DNF or CNF expression. Finally we show that
the DNF-based architecture is only possible with spiking dendritic units and not with saturating
dendritic units.



A1 0, A2 0,

A A
§ Spiking EL Saturating
> ]

O o
w,. X w,. X

B Term Clause c

Figure 1: Modeling dendritic spikes, dendritic saturations, and their impact on computation
capacity (A) Two types of transfer functions for a unit 5 with a normalized height to 1 and a variable
threshold © ;. The input is the local weighted sum W;.X and the output is y; (A1) A spiking transfer
function models somatic spikes and dendritic spikes (A2) A saturating transfer function models
dendritic saturations (B) From left to right, a unit implementing the term 7'(X) = z; V x2, and
two units implementing the clause C'(X) = x5 V x4, in circles are synaptic weights and in squares
are threshold and the type of transfer function (spk:spiking, sat:saturating) (C) Two architectures to
implement all positive Boolean functions in a two stage neuron, the d dendritic units correspond
to all terms of a DNF (left) or to all the clauses of a CNF (right), the somatic unit respectively
implements an AND or an OR logic operation

3.1 Computation of positive Boolean functions using non-linear dendritic units

Lemma 1. A two stage neuron with non-negative synaptic weights and increasing transfer functions
necessarily implements positive Boolean functions

Proof. Let f be the Boolean function representing the input-output mapping of a two stage neuron,
and two binary vectors X and Z such that X > Z. We have Vj € {1,2,...,d} non-negative local
weights w; ; > 0, thus for a given dendritic unit j we have:
Wy, 54 > Wy 524
We can sum inequalities for all 7, and F}; are increasing transfer functions thus:
F;(W;.X) > F;(W;.Z).
We can sum the d inequalities corresponding to every dendritic unit, and Fj is an increasing transfer

function thus:
[(X) > f(2).
O

Lemma 2. A term (resp. a clause) can be implemented by a unit with a supra-linear (resp. sub-
linear) transfer function

Proof. We need to provide the parameter sets of a transfer function implementing a term (resp. a
clause) with the constraint that the transfer function is supra-linear (resp. sub-linear). Indeed, a
supra-linear transfer function (like the spiking transfer function) with the parameter set w; = 1 if
i € X9 and w; = 0 otherwise and © = card(X g )) implements the term 7. A sub-linear transfer
function (like the saturating transfer function) with the parameter set w; = 1if7 € X @) and w; = 0
otherwise and © = 1 implements the clause C';. These implementation are illustrated by examples
in Figure 1B O



Lemma 3. A term (resp. a clause) cannot be implemented by a unit with a strictly sub-linear (resp.
supra-linear) transfer function

Proof. We prove this lemma for a term, the proof is similar for a clause. Let T); be the term defined
by X, with card(X(j)) > 2. First, for all input vectors X such that z; = 1 with i € X ) and
xp2; = 0 then T;(X) = 0 implying that F(W.X) = F(w;z;) = 0. One can sum all these elements
to obtain the following equality Z F(w;z;) = 0. Second, for all input vectors X such that

ieX (@
x; = 1foralli € XU) then T;(X) = 1 implying that F( Z wmz) = 1. Putting the two pieces
i€ X (j)
together we obtain:
F( Z wixi> > Z F(wm)
i€ X (F) i€ X ()

This inequality shows that the tuple of points (w;x;|i € X (7 )) defining a term must have F' supra-
linear; therefore, by Definition 2, F' cannot be both strictly sub-linear and implement a term. O

Using these Lemmas we show the possible and impossible implementation architectures of positive
Boolean functions in two-layer neuron models using either spiking or saturating dendritic units.

Proposition 1. A two stage neuron with non-negative synaptic weights and a sufficient number of
dendpritic units with spiking transfer functions can implement only and all positive Boolean functions
based on their positive complete DNF

Proof. A two stage neuron can only compute positive Boolean functions (Lemma 1). All positive
Boolean functions can be expressed as a positive complete DNF; because a spiking dendritic unit
has a supra-linear transfer function it can implement all possible terms (Lemma 2). Therefore a two
stage neuron model without inhibition can implement only and all positive Boolean functions with
as many dendritic units as there are terms in the functions’ positive complete DNF. This architecture
is represented on Figure 1C (left). O

Informally, this simply means that a dendrite is a pattern detector: if a pattern is present in the
input then the dendritic unit elicits a dendritic spike. This architecture has been repeatedly invoked
by theoreticians [8] and experimentalists ([9] in supplementary material) to suggest that dendritic
spikes increase a neuron’s computational capacity. With this architecture, however, the dendritic
transfer function, if it is viewed as a Boolean function, formally implies the neuron’s input-output
mapping. This has not been confirmed experimentally yet.

Proposition 2. A two stage neuron with non-negative synaptic weights and a sufficient number of
dendritic units with spiking or saturating transfer functions can implement only and all positive
Boolean functions based on their positive complete CNF

Proof. A two stage neuron can only compute positive Boolean functions (Lemma 1). All positive
Boolean functions can be expressed as a positive complete CNF; because a spiking or a saturat-
ing dendritic unit has a sub-linear transfer function they both can implement all possible clauses
(Lemma 2). Therefore a two stage neuron model without inhibition can implement only and all pos-
itive Boolean functions with as many dendritic units as there are clauses in the functions’ positive
complete CNF. This architecture is represented on Figure 1C (right). [

To our knowledge, this implementation architecture has not yet been proposed in the neuroscience
literature. It shows that saturations can increase the computational power of a neuron as much as
dendritic spikes. It also shows that another implementation architecture is possible using spiking
dendritic units. Using this architecture, the dendritic units’ transfer functions do not imply the
somatic output. This independence of dendritic and somatic response to inputs has been observed in
Layer 2/3 neurons [6].

Proposition 3. A two stage neuron with non-negative synaptic weights and only dendritic units with
saturating transfer functions cannot implement a positive Boolean function based on its complete
DNF



Proof. The transfer function of a saturating dendritic unit is strictly sub-linear, therefore this unit
cannot implement a term (Lemma 3). O

This result suggests that spiking dendritic units are more flexible than saturating dendritic units;
they allow the computation of Boolean functions through either DNF or CNF-based architectures
(illustrated in Figure 2), whereas saturating units are restricted to CNF-based architectures.

3.2 Implementation of a family of positive InBFs using either spiking or saturating dendrites

Figure 2: Implementation of two linearly non-separable Boolean functions using CNF-based or
DNF-based architectures. Four parameter sets of two-stage neuron models: in circles are synaptic
weights and in squares are threshold and the unit type (spk:spiking, sat:saturating). These parameter
sets implement (A1/A2) g or (B1/B2) h, two InBFs depicted in Table 1 using: (A1/B1) a DNF-
based architecture and spiking dendritic units only; (A2/B2) a CNF-based architecture and saturating
dendritic units only.

The Boolean functions g and h form a family of Boolean functions we call feature binding problems
in reference to [8]. In this section we show how this family can be implemented using either a DNF-
based or CNF-based architecture. For some Boolean functions, the DNF and CNF grow at different
rates as a function of the number of variables [3, 11]. This is the case when g and h are defined for
n input variables.

Example 2. Let’s define g by the complete positive DNF expression ¢ :
d(g(x1, 21, oy Ty 2n)) i= 2121 VX222V -+ V T2y

The same function g has a unique complete positive CNF expression, let’s call it 1. The clauses of
1 are exactly those elementary disjunctions of n variables that involve one variable out of each of
the pairs {1, 21},{x2, 22}, .., {Tn, 2n }. Thus 1 has 2" clauses.

Example 3. Let’s define h by the complete positive CNF expression 1):
Y(h(x1, 21,y Ty 2n)) = (1 V 21) (22 V 22) .. (0 V 25)

The same function h has a unique complete positive DNF expression; let’s call it ¢. The terms of ¢
are exactly those elementary conjunctions of n variables that involve one variable out of each of the
pairs {x1, z21},{x2, 22}, .. ., {Tn, 2n }. Thus ¢ has 2™ terms.

Table 2 shows the number of necessary units for g and h depending on the chosen architecture. From
Propositions 1 and 2, it is immediately clear that spiking dendritic units always give access to the



Table 2: Number of necessary units

Boolean function \ # of terms in DNF  # of clauses in CNF
g n 2n
h 2" n

minimal possible two-stage neuron implementation. A neuron with spiking dendritic units can thus
implement g with n units using DNF-based and h with n units using CNF-based architectures; but
saturating units, restricted to CNF-based architectures, can only implement A with 2™ units.

4 Discussion

The main result of our study is that dendritic saturations can play a computational role that is as im-
portant as dendritic spikes: saturating dendritic units enable a neuron to compute InBFs (as shown in
Proposition 2). The same Proposition shows that a neuron can compute InBFs decomposed accord-
ing to the CNF using spiking dendritic units; with this architecture, dendritic tuning does not imply
the somatic tuning to inputs. Moreover, we demonstrated that an important family of InBFs formed
by g and h can be implemented in a two stage neuron using either spiking or saturating dendritic
units. We also showed that InBFs cannot be implemented in a two stage neuron using a DNF-based
architecture with only dendritic saturating units (Proposition 3).

These results nicely separate the implications of saturating and spiking dendritic units in single neu-
ron computation. On the one hand, spiking dendritic units are a more flexible basis for computation,
as they can be employed in two different implementation architectures (Proposition 1 and 2) where
dendritic tunings — the dendritic unit transfer functions — can imply or not the tuning of the whole
neuron. The latter may explain why dendrites can have a tuning different from the whole neuron as
has been observed in Layer 2/3 pyramidal cells of the visual cortex [6]. On the other hand, saturating
dendritic units can enhance single neuron computation through implementing all positive Boolean
functions (Proposition 3), while reducing the energetic costs associated with the active ion channels
required for dendritic spikes [4, 13].

For an infinite number of dendritic units, saturating and spiking units lead to the same increase
in computation capacity; for a finite number of dendritic units our results suggests that spiking
dendritic units could have advantages over saturating dendritic units. In the second part of our study
we showed that a family of InBFs can be described by an expression containing an exponential
or a linear number of elements. Namely, the InBFs defined by g or h can be implemented with
a linear number of spiking dendritic units whereas for g a neuronal implementation using only
saturations requires an exponential number of saturating dendritic units. Consequently, spiking
dendritic units may allow the minimization of dendritic units necessary to implement this family of
Boolean functions.

The Boolean functions g and h formalize feature binding problems [8] which are important and
challenging computations (see [15] for review). Some single neuron solutions to feature binding
problems have been proposed in [8], but restricted to DNF-based architectures; our results thus
generalize and extend this study by proposing alternative CNF-based solutions. Moreover, we show
that this alternative architecture enables the solution of an important family of binding problems
with a linear number of spiking dendritic unit. Thus we have proposed more efficient solutions to a
family of challenging computations.

Because of their elegance and simplicity stemming from Boolean algebra, we believe our results
are applicable to more complex situations. They can be extended to continuous transfer functions,
which are more biologically plausible; in this case the notion of sub-linearity and supra-linearity
are replaced by concavity and convexity. Moreover, all the parameters used here for proofs and
examples are integer-valued but the same proofs and examples are easily extendable to continuous
steady-state rate models where parameters are real-valued. In conclusion, our results have a solid
formal basis, moreover, they both explain recent experimental findings and suggest a new way to
implement Boolean functions using saturating as well as spiking dendritic units.



References

[1] T. Abrahamsson, L. Cathala, K. Matsui, R. Shigemoto, and D.A. DiGregorio. Thin Dendrites
of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term
Plasticity. Neuron, 73(6):1159-1172, March 2012.

[2] S. Cash and R. Yuste. Linear summation of excitatory inputs by CAl pyramidal neurons.
Neuron, 22(2):383-394, February 1999.

[3] Y. Crama and P.L. Hammer. Boolean Functions: Theory, Algorithms, and Applications (Ency-
clopedia of Mathematics and its Applications). Cambridge University Press, 2011.

[4] S. Gasparini, M. Migliore, and J.C. Magee. On the initiation and propagation of dendritic
spikes in CA1 pyramidal neurons. The Journal of Neuroscience, 24(49):11046-11056, De-
cember 2004.

[5] M. Hausser and B.W. Mel. Dendrites: bug or feature? Current Opinion in Neurobiology,
13(3):372-383, June 2003.

[6] H. Jia, N.L. Rochefort, X. Chen, and A. Konnerth. Dendritic organization of sensory input to
cortical neurons in vivo. Nature, 464(7293):1307-1312, 2010.

[7] C. Koch. Biophysics of computation : information processing in single neurons. Oxford
University Press, New York, 1999.

[8] R. Legenstein and W. Maass. Branch-Specific Plasticity Enables Self-Organization of Non-
linear Computation in Single Neurons. Journal of Neuroscience, 31(30):10787-10802, July
2011.

[9] A.Losonczy, J.K. Makara, and J.C. Magee. Compartmentalized dendritic plasticity and input
feature storage in neurons. Nature, 452(7186):436-441, March 2008.

[10] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of mathematical biology, 52(1-2):99-115; discussion 73-97, January 1943.

[11] P.B. Miltersen, J. Radhakrishnan, and I. Wegener. On converting CNF to DNF. Theoretical
computer science, 347:325-335, November 2005.

[12] P. Poirazi, T. Brannon, and B.W. Mel. Pyramidal neuron as two-layer neural network. Neuron,
37(6):989-999, March 2003.

[13] A. Polsky, B.W. Mel, and J. Schiller. Computational subunits in thin dendrites of pyramidal
cells. Nature Neuroscience, 7(6):621-627, June 2004.

[14] M.W.H. H Remme, M. Lengyel, and B.S. Gutkin. Democracy-independence trade-off in os-
cillating dendrites and its implications for grid cells. Neuron, 66(3):429-37, May 2010.

[15] A.L. Roskies. The Binding Problem. Neuron, 24:7-9, 1999.

[16] K. Vervaeke, A. Lorincz, Z. Nusser, and R.A. Silver. Gap Junctions Compensate for Sublinear
Dendritic Integration in an Inhibitory Network. Science, 335(6076):1624—1628, March 2012.

[17] 1. Wegener. Complexity of Boolean Functions. Wiley-Teubner, 1987.



