A Linear Time Active Learning Algorithm for Link Classification

Nicolò Cesa-bianchi, Claudio Gentile, Fabio Vitale, Giovanni Zappella

Advances in Neural Information Processing Systems 25 (NIPS 2012)

We present very efficient active learning algorithms for link classification in signed networks. Our algorithms are motivated by a stochastic model in which edge labels are obtained through perturbations of a initial sign assignment consistent with a two-clustering of the nodes. We provide a theoretical analysis within this model, showing that we can achieve an optimal (to whithin a constant factor) number of mistakes on any graph $G = (V,E)$ such that $|E|$ is at least order of $|V|^{3/2}$ by querying at most order of $|V|^{3/2}$ edge labels. More generally, we show an algorithm that achieves optimality to within a factor of order $k$ by querying at most order of $|V| + (|V|/k)^{3/2}$ edge labels. The running time of this algorithm is at most of order $|E| + |V|\log|V|$.