Distributed Delayed Stochastic Optimization

Alekh Agarwal John C. Duchi
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720
{alekh, jduchi}@eecs.berkeley.edu

Abstract

We analyze the convergence of gradient-based optimization algorithms
whose updates depend on delayed stochastic gradient information. The
main application of our results is to the development of distributed mini-
mization algorithms where a master node performs parameter updates while
worker nodes compute stochastic gradients based on local information in
parallel, which may give rise to delays due to asynchrony. Our main contri-
bution is to show that for smooth stochastic problems, the delays are asymp-
totically negligible. In application to distributed optimization, we show
n-node architectures whose optimization error in stochastic problems—in
spite of asynchronous delays—scales asymptotically as O(1/v/nT), which
is known to be optimal even in the absence of delays.

1 Introduction

We focus on stochastic convex optimization problems of the form

miniize f() for f(z) == EplF@:6)] = [FOdP(e) 1)

where X C R? is a closed convex set, P is a probability distribution over Z, and F(-;¢) is
convex for all £ € Z/ so that f is convex. Classical stochastic gradient algorithms [I8] [16]
iteratively update a parameter x(t) € X by sampling £ ~ P, computing g(t) = VF(x(t);§),
and performing the update z(t + 1) = Iy (x(t) — a(t)g(t)), where Iy denotes projection
onto the set X and «(t) € R is a stepsize. In this paper, we analyze asynchronous gradient
methods, where instead of receiving current information g(t), the procedure receives out
of date gradients g(t — 7(t)) = VF(z(t — 7(t)),&), where 7(t) is the (potentially random)
delay at time ¢t. The central contribution of this paper is to develop algorithms that—under
natural assumptions about the functions F in the objective ({l)—achieve asymptotically
optimal convergence rates for stochastic convex optimization in spite of delays.

Our model of delayed gradient information is particularly relevant in distributed optimiza-
tion scenarios, where a master maintains the parameters x while workers compute stochastic
gradients of the objective () using a local subset of the data. Master-worker architectures
are natural for distributed computation, and other researchers have considered models sim-
ilar to those in this paper [12, [10]. By allowing delayed and asynchronous updates, we can
avoid synchronization issues that commonly handicap distributed systems.

Distributed optimization has been studied for several decades, tracing back at least to
seminal work of Bertsekas and Tsitsiklis (|3, 19, 4]) on asynchronous computation and
minimization of smooth functions where the parameter vector is distributed. More recent
work has studied problems in which each processor or node 7 in a network has a local
function f;, and the goal is to minimize the sum f(z) = 137" | fi(z) [12, 13| 17, [7]. Our

work is closest to Nedi¢ et al.’s asynchronous incremental subgradient method [I2], who

Figure 1: Cyclic delayed update architecture. Workers compute gradients in parallel, passing out-
of-date (stochastic) gradients g;(t — 7) = V fi(z(t — 7)) to master. Master responds with current
parameters. Diagram shows parameters and gradients communicated between rounds ¢ and t+n—1.

analyze gradient projection steps taken using out-of-date gradients. See Figure [for an
illustration. Nedi¢ et al. prove that the procedure converges, and a slight extension of their
results shows that the optimization error of the procedure after T iterations is at most
O(+/7/T), T being the delay in gradients. Without delay, a centralized stochastic gradient

algorithm attains convergence rate O(1/ VT). All the approaches mentioned above give
slower convergence than this centralized rate in distributed settings, paying a penalty for
data being split across a network; as Dekel et al. [5] note, one would expect that parallel
computation actually speeds convergence. Langford et al. [I0] also study asynchronous
methods in the setup of stochastic optimization and attempt to remove the penalty for the
delayed procedure under an additional smoothness assumption; however, their paper has a
technical error (see the long version [2] for details). The main contributions of our paper
are (1) to remove the delay penalty for smooth functions and (2) to demonstrate benefits
in convergence rate by leveraging parallel computation even in spite of delays.

We build on results of Dekel et al. [5], who give reductions of stochastic optimization al-
gorithms (e.g. [8, [@]) to show that for smooth objectives f, when n processors compute
stochastic gradients in parallel using a common parameter z it is possible to achieve conver-
gence rate O(1/v/Tn). The rate holds so long as most processors remain synchronized for
most of the time [6]. We show similar results, but we analyze the effects of asynchronous gra-
dient updates where all the nodes in the network can suffer delays, quantifying the impact of
the delays. In application to distributed optimization, we show that under different network
assumptions, we achieve convergence rates ranging from O(min{n3/T, (n/T)?/3} +1/v/Tn)
to O(min{n/T,1/T%3} +1//Tn), which is O(1/v/nT) asymptotically in 7. The time nec-
essary to achieve e-optimal solution to the problem () is asymptotically O(1/ne?), a factor
of n—the size of the network—better than a centralized procedure in spite of delay. Proofs of
our results can be found in the long version of this paper [2].

Notation We denote a general norm by |||, and its associated dual norm |||, is de-
fined as ||z||, := sup,., |, <1 (2, 7). The subdifferential set of a function f at a point z is

of () :={geR?| f(y) > f(z) + (g,y — x) for all y € dom f}. A function f is G-Lipschitz
w.r.t. the norm ||| on X if Vz,y € X, |f(x) — f(y)| < G|lz — y||, and f is L-smooth on X if

. L
IVF(@) = Vi, < Lllz —yll, equivalently, f(y) < f(2)H{Vf(z),y —a)+5 o~ yl®.
A convex function h is ¢-strongly convex with respect to a norm ||| over X if

h(y) > h(z) + {9,y — x) + g |z —y||* forall z,y € X and g € Oh(x). (2)

2 Setup and Algorithms

To build intuition for the algorithms we analyze, we first describe the delay-free algorithm
underlying our approach: the dual averaging algorithm of Nesterov [15] [The dual averaging
algorithm is based on a strongly convex proximal function v (z); we assume without loss
that ¥ (z) > 0 for all z € X and (by scaling) that ¢ is 1-strongly convex.

!Essentially identical results to those we present here also hold for extensions of mirror de-
scent [I4], but we omit these for lack of space.

At time ¢, the algorithm updates a dual vector z(¢) and primal vector z(t) € X using a
subgradient g(t) € OF (x(t);£(t)), where £(t) is drawn i.i.d. according to P:

1

a(t+1)

For the remainder of the paper, we will use the following three essentially standard assump-
tions [8] [9] 20] about the stochastic optimization problem ().

zt+1)=2(t)+gt) and =z(t+1)= argn;(in{ (z(t+1),z) +

v@}.)

Assumption I (Lipschitz Functions). For P-a.e. £, the function F(-;§) is convex. More-
over, for any x € X, and v € OF (x;€), E[||v]’] < G2.

Assumption IT (Smooth Functions). The expected function f has L-Lipschitz continuous
gradient, and for all x € X the variance bound E[||V f(z) — VF(z;€)||°] < 02 holds.

Assumption IIT (Compactness). For all z € X, (z) < R?/2.
Several commonly used functions satisfy the above assumptions, for example:

(i) The logistic loss: F(x;€) = log[l+exp({z,£))]. The objective F satisfies Assumptions[ll
and [so long as ||¢]|, has finite second moment.

(ii) Least squares: F(x;¢) = (a — {x,b))? where ¢ = (a,b) for a € R% and b € R, satisfies
Assumptions [l and [T if X' is compact and |||, has finite fourth moment.

Under Assumption [T, assumptions [l and [l imply finite-sample convergence rates for the
update (@). Define the time averaged vector Z(T) := + Zthl z(t+1). Under Assumption[l
dual averaging satisfies E[f(2(T))] — f(z*) = O(RG/VT) for the stepsize choice a(t) =
R/(Gv/t) [15,20]. The result is sharp to constant factors [I4}[I], but can be further improved
using Assumption [[II Building on work of Juditsky et al. [§] and Lan [9], Dekel et al. [5]
Appendix A] show that the stepsize choice a(t)~! = L + o Rv/t, yields the convergence rate
N . LR? oR
BG)] - 1) =0 (S5 + 72).

Delayed Optimization Algorithms We now turn to extending the dual averaging (8]
update to the setting in which instead of receiving a current gradient g(t) at time ¢, the
procedure receives a gradient g(t — 7(t)), that is, a stochastic gradient of the objective ()
computed at the point z(t — 7(¢)). Our analysis admits any sequence 7(t) of delays as long
as the mapping ¢ — t — 7(t) is one-to-one, and satisfies E[r(¢)?] < B? < cc.

(4)

We consider the dual averaging algorithm with ¢(¢) replaced by g(t — 7(¢)):

1
@) ©

By combining the techniques Nedi¢ et al. [12] developed with the convergence proofs of dual
averaging [15], it is possible to show that so long as E[7(t)] < B < oo for all ¢, Assumptions|[I]

and [[ITl and the stepsize choice a(t) = G\}/%ﬁ give E[f(2(T))] — f(=*) = O(RGVB/VT). In

the next section we show how to avoid the v/ B penalty.

2t+1)=2(1t)+g(t—7() and z(t+1) = argergl(in{ (z(t+1),x) +

3 Convergence rates for delayed optimization of smooth functions

We now state and discuss the implications of two results for asynchronous stochastic gradient
methods. Our first convergence result is for the update rule ({]), while the second averages
several stochastic subgradients for every update, each with a potentially different delay.

3.1 Simple delayed optimization

Our focus in this section is to remove the v/B penalty for the delayed update rule (5] using
Assumption [[Il which arises for non-smooth optimization because subgradients can vary
drastically even when measured at near points. We show that under the smoothness condi-
tion, the errors from delay become second order: the penalty is asymptotically negligible.

Theorem 1. Let x(t) be defined by the update [@). Define a(t)™r = L + n(t), where
n(t) = nvt or n(t) = VT for all t. The average T(T) = Zthl xz(t+1)/T satisfies

LR? +67GR n 2nR? n o? 4LG2(T +1)%1log T

T vT =~ oWT n*T '
We make a few remarks about the theorem. The log T factor on the last term is not present
when using the fixed stepsize of 7v/T. Furthermore, though we omit it here for lack of space,
the analysis also extends to random delays as long as E[7(t)?] < B?; see the long version [2]
for details. Finally, based on Assumption [T, we can set n = o/R, which makes the rate
asymptotically O(cR/+/T), which is the same as the delay-free case so long as 7 = o(T/%).
The take-home message from Theorem [l is thus that the penalty in convergence rate due

to the delay 7(t) is asymptotically negligible. In the next section, we show the implications
of this result for robust distributed stochastic optimization algorithms.

Ef(@(T)) -Tf(z") <

3.2 Combinations of delays

In some scenarios—including distributed settings similar to those we discuss in the next
section—the procedure has access not to only a single delayed gradient but to several stochas-
tic gradients with different delays. To abstract away the essential parts of this situation, we
assume that the procedure receives n stochastic gradients g1, ..., g, € R%, where each has
a potentially different delay 7(). Let A = (A\;)"_; be (an unspecified) vector in probability
simplex. Then the procedure performs the following updates at time t:

2(t+1) = 2(8) +ZAig¢(tf (1)), x(t+1) = arfgn{ (z(t+1),2) + ﬁ

The next theorem builds on the proof of Theorem [l

Theorem 2. Under Assumptions [HITl, let a(t) = (L +n(t))~! and n(t) = nv/t or n(t) =

/T for all t. The average Z(T) = 23:1 x(t+1)/T for the update sequence (@) satisfies
2LR? + 45" NT())GR >0 NMLG?(7(i) + 1)% log T

= Jl“ +6= 2T

P(x)}. (6)

fE(T)) = f(27)

4aR? 1
v

VT T

We illustrate the consequences of Theorem [2]for distributed optimization in the next section.

2

B[D N[Vt = 7)) = git = @)

4 Distributed Optimization

We now turn to what we see as the main purpose and application of the above results:
developing robust and efficient algorithms for distributed stochastic optimization. Our main
motivations here are machine learning applications where the data is so large that it cannot
fit on a single computer. Examples of the form (IJ) include logistic or linear regression, as
described respectively in Sec.2fl) and (). We consider both stochastic and online/streaming
scenarios for such problems. In the simplest setting, the distribution P in the objective ()
is the empirical distribution over an observed dataset, that is, f(z) = % Zf;l F(x;&;). We
divide the N samples among n workers so that each worker has an N/n-sized subset of data.
In online learning applications, the distribution P is the unknown distribution generating
the data, and each worker receives a stream of independent data points £ ~ P. Worker 4
uses its subset of the data, or its stream, to compute g; € R%, an estimate of the gradient
V[of the global f. We assume that g; is an unbiased estimate of V f(z), which is satisfied,
for example, in the online setting or when each worker computes the gradient g; based on
samples picked at random without replacement from its subset of the data.

The architectural assumptions we make are based off of master/worker topologies, but the
convergence results in Section [3 allow us to give procedures robust to delay and asynchrony.
The architectures build on the naive scheme of having each worker simultaneously com-
pute a stochastic gradient and send it to the master, which takes a gradient step on the

N N

Foe-3)

W) 1) a2, =0, gl =2)

(a) (b)

Figure 2: Master-worker averaging network. (a): parameters stored at different nodes at time .
A node at distance d from master has the parameter (¢t — d). (b): gradients computed at different
nodes. A node at distance d from master computes gradient g(t — d).

Figure 3: Communication of gra-

T dient information toward master
,%,,2(,,41%49;()'[g’_,},i(f,,,,m node at time ¢ from node 1 at dis-
tance d from master. Information
Depth d (et —d)ga(t—d =205t =d =2} gtored at time ¢ by node 7 in brack-
{ / ets to right of node.
gpt—d—1) gs(t—d—1)
Depth d + 1 {a(t—d-1)} {a(t—d-1)}

averaged gradient. While the n gradients are computed in parallel in the naive scheme,
accumulating and averaging n gradients at the master takes Q(n) time, offsetting the gains
of parallelization, and the procedure is non-robust to laggard workers.

Cyclic Delayed Architecture This protocol is the delayed update algorithm mentioned
in the introduction, and it computes n stochastic gradients of f(z) in parallel. Formally,
worker i has parameter 2(t—7) and computes g;(t—7) = VF(x(t—7); &(t)) € R, where &;(2)
is a random variable sampled at worker i from the distribution P. The master maintains
a parameter vector x € X. At time ¢, the master receives g;(t — 7) from some worker i,
computes z(t + 1) and passes it back to worker ¢ only. Other workers do not see z(t + 1)
and continue their gradient computations on stale parameter vectors. In the simplest case,
each node suffers a delay of 7 = n, though our analysis applies to random delays as well.
Recall Fig. [l for a description of the process.

Locally Averaged Delayed Architecture At a high level, the protocol we now describe
combines the delayed updates of the cyclic delayed architecture with averaging techniques
of previous work [I3] [7]. We assume a network G = (V, &), where V is a set of n nodes
(workers) and £ are the edges between the nodes. We select one of the nodes as the master,
which maintains the parameter vector z(t) € X over time.

The algorithm works via a series of multicasting and aggregation steps on a spanning tree
rooted at the master node. In the broadcast phase, the master sends its current parameter
vector z(t) to its immediate neighbors. Simultaneously, every other node broadcasts its
current parameter vector (which, for a depth d node, is z(t — d)) to its children in the
spanning tree. See Fig.2l(a). Every worker computes its local gradient at its new parameter
(see Fig. 2b)). The communication then proceeds from leaves toward the root. The leaf
nodes communicate their gradients to their parents, and the parent takes the gradients of
the leaf nodes from the previous round (received at iteration ¢t — 1) and averages them with
its own gradient, passing this averaged gradient back up the tree. Again simultaneously,
each node takes the averaged gradient vectors of its children from the previous rounds,
averages them with its current gradient vector, and passes the result up the spanning tree.
See Fig. Bl The master node receives an average of delayed gradients from the entire tree,
giving rise to updates of the form (B). We note that this is similar to the MPI all-reduce
operation, except our implementation is non-blocking since we average delayed gradients
with different delays at different nodes.

4.1 Convergence rates for delayed distributed minimization

We turn now to corollaries of the results from the previous sections that show even asyn-
chronous distributed procedures achieve asymptotically faster rates (over centralized proce-
dures). The key is that workers can pipeline updates by computing asynchronously and in
parallel, so each worker can compute a low variance estimate of the gradient V f(z). We
ignore the constants L, G, R, and o, which are not dependent on the characteristics of
the network. We also assume that each worker i uses m independent samples &;(j) ~ P,
j=1,...,m, to compute the stochastic gradient as g;(t) = L Z;"Zl VF(x(t);&(j)). Using
the cyclic protocol as in Fig. [[l, Theorem [l gives the following result.

Corollary 1. Let ¢(z) = %Hx”%, assume the conditions in Theorem [, and assume that
each worker uses m samples & ~ P to compute the gradient it communicates to the master.
Then with the choice n(t) = max{r?/3T~1/3 /T /m} the update [3) satisfies

) - s =0 min { T T 1),

Proof Noting that o® = E[|Vf(x) — g,(t)|2] = E[|Vf(z) - VF(x:)[2)/m = O(1/m)
when workers use m independent stochastic gradient samples, the corollary is immediate. [

As in Theorem [I the corollary generalizes to random delays as long as E72(¢) < B? < oo,
with 7 replaced by B in the result. So long as B = o(T1/4), the first term in the bound is
asymptotically negligible, and we achieve a convergence rate of O(1/v/Tn) when m = O(n).

The cyclic delayed architecture has the drawback that information from a worker can take
7 = O(n) time to reach the master. While the algorithm is robust to delay, the downside
of the architecture is that the essentially 72m or 72/3 term in the bounds above can be
quite large. To address the large n drawback, we turn our attention to the locally averaged
architecture described by Figs. 2 and Bl where delays can be smaller since they depend
only on the height of a spanning tree in the network. As a result of the communication
procedure, the master receives a convex combination of the stochastic gradients evaluated at
each worker 4. Specifically, the master receives gradients of the form gy (t) = >0 Nigi(t —
7(2)) for some X in the simplex, where 7(¢) is the delay of worker i, which puts us in
the setting of Theorem We now make the reasonable assumption that the gradient
errors Vf(z(t)) — gi(t) are uncorrelated across the nodes in the network® In statistical
applications, for example, each worker may own independent data or receive streaming data
from independent sources. We also set ¢(z) = 3 ||;10||§7 and observe

DAV Fa(t =)~ it~ 7| = 3 ME VSt~ 7))~ ilt ~).

This gives the following corollary to Theorem

Corollary 2. Set A\; = + for all i, (z) = %Hx”%, and n(t) = ovV/T/R\/n. Let 7 and 72
denote the average of the delays 7(i) and 7(i)?. Under the conditions of Theorem[3,

LR? 7GR uﬁ3%&5+ Ra>

E

T + T + o?T VTn

Asymptotically, E[f(Z(T))] — f(z*) = O(1/v/Tn). In this architecture, the delay 7 is
bounded by the graph diameter D. Furthermore, we can use a slightly different stepsize set-
ting as in Corollary [l to get an improved rate of O(min{(D/T)?/?,nD?/T} +1/V/Tn). Tt is
also possible—but outside the scope of this extended abstract—to give fast(er) convergence
rates dependent on communication costs (details can be found in the long version [2]).

E[f@(T)) - f(z*)] = O (

4.2 Running-time comparisons

We now explicitly study the running times of the centralized stochastic gradient algo-
rithm (@), the cyclic delayed protocol with the update (@), and the locally averaged ar-
chitecture with the update (@). To make comparisons more cleanly, we avoid constants,

2Similar results continue to hold under weak correlation.

Centralized (3] Ef(Z) — f(z*) =0 %
n?/3 n3 1
Cyetic @ | 5@ - 1) =0 (min (7.) + =)

2/3 2
Local @ | Ef(@) - f(z") = O <min @2 e) 4 \/7117)

Table 1: Upper bounds on optimization error after 7" units of time. See text for details.

assuming that the bound 2 on E |V f(z) — VF(x;€)” is 1, and that sampling £ ~ P and
evaluating VF(z;£) requires unit time. It is also clear that if we receive m uncorrelated
samples of ¢, the variance E||V f(z) — L >t VF(z;&)|I3 < L.

Now we state our assumptions on the relative times used by each algorithm. Let T be
the number of units of time allocated to each algorithm, and let the centralized, cyclic
delayed and locally averaged delayed algorithms complete Tient, Teycle and Tyist iterations,
respectively, in time T'. It is clear that Teeny = T. We assume that the distributed methods
use Meycle and Majs; samples of & ~ P to compute stochastic gradients. For concreteness, we
assume that communication is of the same order as computing the gradient of one sample
VF(z;€). In the cyclic setup of Sec. Bl it is reasonable to assume that mcyce = 2(n)
to avoid idling of workers. For mcycie = §2(n), the master requires m%le units of time to

receive one gradient update, so %Tcyde =T. In the local communication framework, if

each node uses mgis; samples to compute a gradient, the master receives a gradient every

maist units of time, and hence mgistTaiss = 1. We summarize our assumptions by saying
that in T units of time, each algorithm performs the following number of iterations:

Tcent = T, Tcycle = ﬂ) and Tdist = T .

Mecycle Mdist

Combining with the bound () and Corollaries [l and [2] we get the results in Table [l

Asymptotically in the number of units of time T, both the cyclic and locally communicating
stochastic optimization schemes have the same convergence rate. Comparing the lower
order terms, since D < n for any network, the locally averaged algorithm always guarantees
better performance than the cyclic algorithm. For specific graph topologies, however, we
can quantify the time improvements (assuming we are in the n2/3/T2/3 regime):

(7)

e n-node cycle or path: D = n so that both methods have the same convergence rate.

e /n-by-y/n grid: D = \/n, so the distributed method has a factor of n?/3/n'/3 =
1

n'/3 improvement over the cyclic architecture.

e Balanced trees and expander graphs: D = O(logn), so the distributed method has
a factor—ignoring logarithmic terms—of n?/3 improvement over cyclic.

5 Numerical Results

Though this paper focuses mostly on the theoretical analysis of delayed stochastic methods,
it is important to understand their practical aspects. To that end, we use the cyclic delayed
method (B) to solve a somewhat large logistic regression problem:

N
1
minimize f(x) = N Zlog(l + exp(—b; (a;,x))) subject to |lz|, < R. (8)
x

i=1
We use the Reuters RCV1 dataset [I1], which consists of N ~ 800000 news articles, each la-
beled with a combination of the four labels economics, government, commerce, and medicine.
In the above example, the vectors a; € {0,1}¢, d ~ 10°, are feature vectors representing the
words in each article, and the labels b; are 1 if the article is about government, —1 otherwise.

We simulate the cyclic delayed optimization algorithm (Bl for the problem (R)) for several
choices of the number of workers n and the number of samples m computed at each worker.
We summarize the results in Figure @l We fix an e (in this case, € = .05), then measure the

1000

Time to € accuracy

Time to e accuracy

B T 4 5 6 8 012 1518 2n T P s 4 5 %
Number of workers Number of workers

(a) (b)

Figure 4: Estimated time to compute e-accurate solution to the objective ([B) as a function of
the number of workers n. See text for details. Plot (a): convergence time assuming the cost of
communication to the master and gradient computation are same. Plot (b): convergence time
assuming the cost of communication to the master is 16 times that of gradient computation.

8 10 12

time it takes the stochastic algorithm (Bl to output an Z such that f(Z) < inf.cx f(z) + €.
We perform each experiment ten times. The two plots differ in the amount of time C
required to communicate the parameters 2 between the master and the workers (relative to
the amount of time to compute the gradient on one sample in the objective (8)). For the
left plot in Fig. B(a), we assume that C' = 1, while in Fig. f[(b), we assume that C' = 16.

For Fig. Ml(a), each worker uses m = n samples to compute a stochastic gradient for the
objective (). The plotted results show the delayed update (B]) enjoys speedup (the ratio of
time to e-accuracy for an n-node system versus the centralized procedure) nearly linear in
the number n of worker machines until n > 15 or so. Since we use the stepsize choice 1(t) o
\/t/n, which yields the predicted convergence rate given by Corollary [l the n?m/T ~ n3/T
term in the convergence rate presumably becomes non-negligible for larger n. This expands
on earlier experimental work with a similar method [10], which experimentally demonstrated
linear speedup for small values of n, but did not investigate larger network sizes.

In Fig. @(b), we study the effects of more costly communication by assuming that com-
munication is C' = 16 times more expensive than gradient computation. As argued in the
long version [2], we set the number of samples each worker computes to m = Cn = 16n
and correspondingly reduce the damping stepsize 7(t) « 4/t/(Cn). In the regime of more
expensive communication—as our theoretical results predict—small numbers of workers still
enjoy significant speedups over a centralized method, but eventually the cost of communi-
cation and delays mitigate some of the benefits of parallelization. The alternate choice of
stepsize n(t) = n?/3T—1/3 gives qualitatively similar performance.

6 Conclusion and Discussion

In this paper, we have studied delayed dual averaging algorithms for stochastic optimiza-
tion, showing applications of our results to distributed optimization. We showed that for
smooth problems, we can preserve the performance benefits of parallelization over central-
ized stochastic optimization even when we relax synchronization requirements. Specifically,
we presented methods that take advantage of distributed computational resources and are
robust to node failures, communication latency, and node slowdowns. In addition, though
we omit these results for brevity, it is possible to extend all of our expected convergence
results to guarantees with high-probability.

Acknowledgments

AA was supported by a Microsoft Research Fellowship and NSF grant CCF-1115788, and
JCD was supported by the NDSEG Program and Google. We are very grateful to Ofer
Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao for communicating of their proof
of the bound). We would also like to thank Yoram Singer and Dimitri Bertsekas for
reading a draft of this manuscript and giving useful feedback and references.

References

[1]

[18]
[19]

[20]

A. Agarwal, P. Bartlett, P. Ravikumar, and M. Wainwright. Information-theoretic
lower bounds on the oracle complexity of convex optimization. In Advances in Neural
Information Processing Systems 23, 2009.

A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. URL
http://arxiv.org/abs/1104.5525, 2011.

D. P. Bertsekas. Distributed asynchronous computation of fixed points. Mathematical
Programmang, 27:107-120, 1983.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., 1989.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online
prediction using mini-batches. URL http://arxiv.org/abs/1012.1367, 2010.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Robust distributed online
prediction. URL http://arxiv.org/abs/1012.1370, 2010.

J. Duchi, A. Agarwal, and M. Wainwright. Dual averaging for distributed optimization:
convergence analysis and network scaling. IFEE Transactions on Automatic Control,
to appear, 2011.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with the
stochastic mirror-prox algorithm. URL http://arxiv.org/abs/0809.0815, 2008.

G. Lan. An optimal method for stochastic composite optimization. Math-
ematical Programming Series A, 2010. Online first, to appear. URL
http://www.ise.ufl.edu/glan/papers/OPT_SA4.pdf.

J. Langford, A. Smola, and M. Zinkevich. Slow learners are fast. In Advances in Neural
Information Processing Systems 22, pages 2331-2339, 2009.

D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361-397, 2004.

A. Nedi¢, D.P. Bertsekas, and V.S. Borkar. Distributed asynchronous incremental
subgradient methods. In D. Butnariu, Y. Censor, and S. Reich, editors, Inherently
Parallel Algorithms in Feasibility and Optimization and their Applications, volume 8 of
Studies in Computational Mathematics, pages 381-407. Elsevier, 2001.

A. Nedi¢ and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54:48-61, 2009.

A. Nemirovski and D. Yudin. Problem Complezity and Method Efficiency in Optimiza-
tion. Wiley, New York, 1983.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming A, 120(1):261-283, 2009.
B. T. Polyak. Introduction to optimization. Optimization Software, Inc., 1987.

S.S. Ram, A. Nedié¢, and V. V. Veeravalli. Distributed stochastic subgradient projection
algorithms for convex optimization. Journal of Optimization Theory and Applications,
147(3):516-545, 2010.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400-407, 1951.

J. Tsitsiklis. Problems in decentralized decision making and computation. PhD thesis,
Massachusetts Institute of Technology, 1984.

L. Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. Journal of Machine Learning Research, 11:2543-2596, 2010.

http://arxiv.org/abs/1104.5525
http://arxiv.org/abs/1012.1367
http://arxiv.org/abs/1012.1370
http://arxiv.org/abs/0809.0815

