
Adaptive Hedge

Tim van Erven
Department of Mathematics

VU University
De Boelelaan 1081a

1081 HV Amsterdam, the Netherlands
tim@timvanerven.nl

Peter Grünwald

Centrum Wiskunde & Informatica (CWI)
Science Park 123, P.O. Box 94079

1090 GB Amsterdam, the Netherlands
pdg@cwi.nl

Wouter M. Koolen
CWI and Department of Computer Science

Royal Holloway, University of London
Egham Hill, Egham, Surrey

TW20 0EX, United Kingdom
wouter@cs.rhul.ac.uk

Steven de Rooij

Centrum Wiskunde & Informatica (CWI)
Science Park 123, P.O. Box 94079

1090 GB Amsterdam, the Netherlands
s.de.rooij@cwi.nl

Abstract

Most methods for decision-theoretic online learning are based on the Hedge algo-
rithm, which takes a parameter called the learning rate. In most previous analyses
the learning rate was carefully tuned to obtain optimal worst-case performance,
leading to suboptimal performance on easy instances, for example when there ex-
ists an action that is significantly better than all others. We propose a new way
of setting the learning rate, which adapts to the difficulty of the learning prob-
lem: in the worst case our procedure still guarantees optimal performance, but on
easy instances it achieves much smaller regret. In particular, our adaptive method
achieves constant regret in a probabilistic setting, when there exists an action that
on average obtains strictly smaller loss than all other actions. We also provide a
simulation study comparing our approach to existing methods.

1 Introduction

Decision-theoretic online learning (DTOL) is a framework to capture learning problems that proceed
in rounds. It was introduced by Freund and Schapire [1] and is closely related to the paradigm of
prediction with expert advice [2, 3, 4]. In DTOL an agent is given access to a fixed set of K actions,
and at the start of each round must make a decision by assigning a probability to every action. Then
all actions incur a loss from the range [0, 1], and the agent’s loss is the expected loss of the actions
under the probability distribution it produced. Losses add up over rounds and the goal for the agent
is to minimize its regret after T rounds, which is the difference in accumulated loss between the
agent and the action that has accumulated the least amount of loss.

The most commonly studied strategy for the agent is called the Hedge algorithm [1, 5]. Its per-
formance crucially depends on a parameter η called the learning rate. Different ways of tuning
the learning rate have been proposed, which all aim to minimize the regret for the worst possi-
ble sequence of losses the actions might incur. If T is known to the agent, then the learning rate
may be tuned to achieve worst-case regret bounded by

√
T ln(K)/2, which is known to be opti-

mal as T and K become large [4]. Nevertheless, by slightly relaxing the problem, one can obtain
better guarantees. Suppose for example that the cumulative loss L∗T of the best action is known
to the agent beforehand. Then, if the learning rate is set appropriately, the regret is bounded by√

2L∗T ln(K) + ln(K) [4], which has the same asymptotics as the previous bound in the worst case

1

(because L∗T ≤ T) but may be much better when L∗T turns out to be small. Similarly, Hazan and
Kale [6] obtain a bound of 8

√
VARmax

T ln(K) + 10 ln(K) for a modification of Hedge if the cumu-
lative empirical variance VARmax

T of the best expert is known. In applications it may be unrealistic to
assume that T or (especially) L∗T or VARmax

T is known beforehand, but at the cost of slightly worse
constants such problems may be circumvented using either the doubling trick (setting a budget on
the unknown quantity and restarting the algorithm with a double budget when the budget is depleted)
[4, 7, 6], or a variable learning rate that is adjusted each round [4, 8].

Bounding the regret in terms of L∗T or VARmax
T is based on the idea that worst-case performance is

not the only property of interest: such bounds give essentially the same guarantee in the worst case,
but a much better guarantee in a plausible favourable case (when L∗T or VARmax

T is small). In this
paper, we pursue the same goal for a different favourable case. To illustrate our approach, consider
the following simplistic example with two actions: let 0 < a < b < 1 be such that b− a > 2ε. Then
in odd rounds the first action gets loss a + ε and the second action gets loss b − ε; in even rounds
the actions get losses a− ε and b + ε, respectively. Informally, this seems like a very easy instance
of DTOL, because the cumulative losses of the actions diverge and it is easy to see from the losses
which action is the best one. In fact, the Follow-the-Leader strategy, which puts all probability mass
on the action with smallest cumulative loss, gives a regret of at most 1 in this case — the worst-case
bound O(

√
L∗T ln(K)) is very loose by comparison, and so is O(

√
VARmax

T ln(K)), which is of the
same order

√
T ln(K). On the other hand, for Follow-the-Leader one cannot guarantee sublinear

regret for worst-case instances. (For example, if one out of two actions yields losses 1
2 , 0, 1, 0, 1, . . .

and the other action yields losses 0, 1, 0, 1, 0, . . ., its regret will be at least T/2− 1.) To get the best
of both worlds, we introduce an adaptive version of Hedge, called AdaHedge, that automatically
adapts to the difficulty of the problem by varying the learning rate appropriately. As a result we
obtain constant regret for the simplistic example above and other ‘easy’ instances of DTOL, while
at the same time guaranteeing O(

√
L∗T ln(K)) regret in the worst case.

It remains to characterise what we consider easy problems, which we will do in terms of the prob-
abilities produced by Hedge. As explained below, these may be interpreted as a generalisation of
Bayesian posterior probabilities. We measure the difficulty of the problem in terms of the speed at
which the posterior probability of the best action converges to one. In the previous example, this
happens at an exponential rate, whereas for worst-case instances the posterior probability of the best
action does not converge to one at all.

Outline In the next section we describe a new way of tuning the learning rate, and show that it
yields essentially optimal performance guarantees in the worst case. To construct the AdaHedge
algorithm, we then add the doubling trick to this idea in Section 3, and analyse its worst-case regret.
In Section 4 we show that AdaHedge in fact incurs much smaller regret on easy problems. We
compare AdaHedge to other instances of Hedge by means of a simulation study in Section 5. The
proof of our main technical lemma is postponed to Section 6, and open questions are discussed in
the concluding Section 7. Finally, longer proofs are only available as Additional Material in the full
version at arXiv.org.

2 Tuning the Learning Rate

Setting Let the available actions be indexed by k ∈ {1, . . . ,K}. At the start of each round
t = 1, 2, . . . the agent A is to assign a probability wkt to each action k by producing a vector
wt = (w1

t , . . . , w
K
t) with nonnegative components that sum up to 1. Then every action k incurs

a loss `kt ∈ [0, 1], which we collect in the loss vector `t = (`1t , . . . , `
K
t), and the loss of the agent

is wt · `t =
∑K
k=1 w

k
t `
k
t . After T rounds action k has accumulated loss LkT =

∑T
t=1 `

k
t , and the

agent’s regret is

RA(T) =

T∑
t=1

wt · `t − L∗T ,

where L∗T = min1≤k≤K L
k
T is the cumulative loss of the best action.

2

Hedge The Hedge algorithm chooses the weights wkt+1 proportional to e−ηL
k
t , where η > 0 is

the learning rate. As is well-known, these weights may essentially be interpreted as Bayesian pos-
terior probabilities on actions, relative to a uniform prior and pseudo-likelihoods P kt = e−ηL

k
t =∏t

s=1 e
−η`ks [9, 10, 4]:

wkt+1 =
e−ηL

k
t∑

k′ e
−ηLk′t

=
1
K · P

k
t

Bt
,

where
Bt =

∑
k

1
K · P

k
t =

∑
k

1
K · e

−ηLkt (1)

is a generalisation of the Bayesian marginal likelihood. And like the ordinary marginal likelihood,
Bt factorizes into sequential per-round contributions:

Bt =

t∏
s=1

ws · e−η`s . (2)

We will sometimes write wt(η) and Bt(η) instead of wt and Bt in order to emphasize the depen-
dence of these quantities on η.

The Learning Rate and the Mixability Gap A key quantity in our and previous [4] analyses is
the gap between the per-round loss of the Hedge algorithm and the per-round contribution to the
negative logarithm of the “marginal likelihood” BT , which we call the mixability gap:

δt(η) = wt(η) · `t −
(
− 1

η ln(wt(η) · e−η`t)
)
.

In the setting of prediction with expert advice, the subtracted term coincides with the loss incurred
by the Aggregating Pseudo-Algorithm (APA) which, by allowing the losses of the actions to be
mixed with optimal efficiency, provides an idealised lower bound for the actual loss of any predic-
tion strategy [9]. The mixability gap measures how closely we approach this ideal. As the same
interpretation still holds in the more general DTOL setting of this paper, we can measure the diffi-
culty of the problem, and tune η, in terms of the cumulative mixability gap:

∆T (η) =

T∑
t=1

δt(η) =

T∑
t=1

wt(η) · `t + 1
η lnBT (η).

We proceed to list some basic properties of the mixability gap. First, it is nonnegative and bounded
above by a constant that depends on η:

Lemma 1. For any t and η > 0 we have 0 ≤ δt(η) ≤ η/8.

Proof. The lower bound follows by applying Jensen’s inequality to the concave function ln, the
upper bound from Hoeffding’s bound on the cumulant generating function [4, Lemma A.1].

Further, the cumulative mixability gap ∆T (η) can be related to L∗T via the following upper bound,
proved in the Additional Material:

Lemma 2. For any T and η ∈ (0, 1] we have ∆T (η) ≤ ηL∗T + ln(K)

e− 1
.

This relationship will make it possible to provide worst-case guarantees similar to what is possible
when η is tuned in terms of L∗T . However, for easy instances of DTOL this inequality is very loose,
in which case we can prove substantially better regret bounds. We could now proceed by optimizing
the learning rate η given the rather awkward assumption that ∆T (η) is bounded by a known constant
b for all η, which would be the natural counterpart to an analysis that optimizes η when a bound on
L∗T is known. However, as ∆T (η) varies with η and is unknown a priori anyway, it makes more
sense to turn the analysis on its head and start by fixing η. We can then simply run the Hedge
algorithm until the smallest T such that ∆T (η) exceeds an appropriate budget b(η), which we set to

b(η) =
(

1
η + 1

e−1

)
ln(K). (3)

3

When at some point the budget is depleted, i.e. ∆T (η) ≥ b(η), Lemma 2 implies that

η ≥
√

(e− 1) ln(K)/L∗T , (4)

so that, up to a constant factor, the learning rate used by AdaHedge is at least as large as the learning
rates proportional to

√
ln(K)/L∗T that are used in the literature. On the other hand, it is not too

large, because we can still provide a bound of order O(
√
L∗T ln(K)) on the worst-case regret:

Theorem 3. Suppose the agent runs Hedge with learning rate η ∈ (0, 1], and after T rounds has
just used up the budget (3), i.e. b(η) ≤ ∆T (η) < b(η) + η/8. Then its regret is bounded by

RHedge(η)(T) <
√

4
e−1L

∗
T ln(K) + 1

e−1 ln(K) + 1
8 .

Proof. The cumulative loss of Hedge is bounded by

T∑
t=1

wt · `t = ∆T (η)− 1
η lnBT < b(η) + η/8− 1

η lnBT ≤ 1
e−1 ln(K) + 1

8 + 2
η ln(K) +L∗T , (5)

where we have used the bound BT ≥ 1
K e
−ηL∗T . Plugging in (4) completes the proof.

3 The AdaHedge Algorithm

We now introduce the AdaHedge algorithm by adding the doubling trick to the analysis of the
previous section. The doubling trick divides the rounds in segments i = 1, 2, . . ., and on each
segment restarts Hedge with a different learning rate ηi. For AdaHedge we set η1 = 1 initially, and
scale down the learning rate by a factor of φ > 1 for every new segment, such that ηi = φ1−i. We
monitor ∆t(ηi), measured only on the losses in the i-th segment, and when it exceeds its budget
bi = b(ηi) a new segment is started. The factor φ is a parameter of the algorithm. Theorem 5 below
suggests setting its value to the golden ratio φ = (1 +

√
5)/2 ≈ 1.62 or simply to φ = 2.

Algorithm 1 AdaHedge(φ) . Requires φ > 1
η← φ
for t = 1, 2, . . . do

if t = 1 or ∆ ≥ b then
. Start a new segment
η← η/φ; b← (1

e−1 + 1
η) ln(K)

∆← 0; w = (w1, . . . , wK)← (1
K , . . . ,

1
K)

end if
. Make a decision
Output probabilities w for round t
Actions receive losses `t
. Prepare for the next round
∆←∆ + w · `t + 1

η ln(w · e−η`t)
w← (w1 · e−η`1t , . . . , wK · e−η`Kt)/(w · e−η`t)

end for
end

The regret of AdaHedge is determined by the number of segments it creates: the fewer segments
there are, the smaller the regret.
Lemma 4. Suppose that after T rounds, the AdaHedge algorithm has started m new segments.
Then its regret is bounded by

RAdaHedge(T) < 2 ln(K)
(φm − 1

φ− 1

)
+m

(
1
e−1 ln(K) + 1

8

)
.

Proof. The regret per segment is bounded as in (5). Summing over all m segments, and plugging in∑m
i=1 1/ηi =

∑m−1
i=0 φi = (φm − 1)/(φ− 1) gives the required inequality.

4

Using (4), one can obtain an upper bound on the number of segments that leads to the following
guarantee for AdaHedge:
Theorem 5. Suppose the agent runs AdaHedge for T rounds. Then its regret is bounded by

RAdaHedge(T) ≤ φ
√
φ2 − 1

φ− 1

√
4
e−1L

∗
T ln(K) +O

(
ln(L∗T + 2) ln(K)

)
,

For details see the proof in the Additional Material. The value for φ that minimizes the leading
factor is the golden ratio φ = (1 +

√
5)/2, for which φ

√
φ2 − 1/(φ− 1) ≈ 3.33, but simply taking

φ = 2 leads to a very similar factor of φ
√
φ2 − 1/(φ− 1) ≈ 3.46.

4 Easy Instances

While the previous sections reassure us that AdaHedge performs well for the worst possible se-
quence of losses, we are also interested in its behaviour when the losses are not maximally an-
tagonistic. We will characterise such sequences in terms of convergence of the Hedge posterior
probability of the best action:

w∗t (η) = max
1≤k≤K

wkt (η).

(Recall that wkt is proportional to e−ηL
k
t−1 , so w∗t corresponds to the posterior probability of the

action with smallest cumulative loss.) Technically, this is expressed by the following refinement of
Lemma 1, which is proved in Section 6.
Lemma 6. For any t and η ∈ (0, 1] we have δt(η) ≤ (e− 2)η

(
1− w∗t (η)

)
.

This lemma, which may be of independent interest, is a variation on Hoeffding’s bound on the
cumulant generating function. While Lemma 1 leads to a bound on ∆T (η) that grows linearly
in T , Lemma 6 shows that ∆T (η) may grow much slower. In fact, if the posterior probabilities w∗t
converge to 1 sufficiently quickly, then ∆T (η) is bounded, as shown by the following lemma. Recall
that L∗T = min1≤k≤K L

k
T .

Lemma 7. Let α and β be positive constants, and let τ ∈ Z+. Suppose that for t = τ, τ + 1, . . . , T
there exists a single action k∗ that achieves minimal cumulative loss Lk

∗

t = L∗t , and for k 6= k∗ the
cumulative losses diverge as Lkt − L∗t ≥ αtβ . Then for all η > 0

T∑
t=τ

(
1− w∗t+1(η)

)
≤ CK η−1/β ,

where CK = (K − 1)α−1/βΓ(1 + 1
β) is a constant that does not depend on η, τ or T .

The lemma is proved in the Additional Material. Together with Lemmas 1 and 6, it gives an upper
bound on ∆T (η), which may be used to bound the number of segments started by AdaHedge. This
leads to the following result, whose proof is also delegated to the Additional Material.

Let s(m) denote the round in which AdaHedge starts its m-th segment, and let Lkr (m) =
Lks(m)+r−1 − L

k
s(m)−1 denote the cumulative loss of action k in that segment.

Lemma 8. Let α > 0 and β > 1/2 be constants, and let CK be as in Lemma 7. Suppose there
exists a segment m∗ ∈ Z+ started by AdaHedge, such that τ := b8 ln(K)φ(m

∗−1)(2−1/β) − 8(e −
2)CK + 1c ≥ 1 and for some action k∗ the cumulative losses in segment m∗ diverge as

Lkr (m∗)− Lk
∗

r (m∗) ≥ αrβ for all r ≥ τ and k 6= k∗. (6)

Then AdaHedge starts at most m∗ segments, and hence by Lemma 4 its regret is bounded by a
constant:

RAdaHedge(T) = O(1).

In the simplistic example from the introduction, we may take α = b− a− 2ε and β = 1, such that
(6) is satisfied for any τ ≥ 1. Taking m∗ large enough to ensure that τ ≥ 1, we find that AdaHedge
never starts more than m∗ = 1 + dlogφ(e−2

α ln(2) + 1
8 ln(2))e segments. Let us also give an example of

a probabilistic setting in which Lemma 8 applies:

5

Theorem 9. Let α > 0 and δ ∈ (0, 1] be constants, and let k∗ be a fixed action. Suppose the loss
vectors `t are independent random variables such that the expected differences in loss satisfy

min
k 6=k∗

E[`kt − `k
∗

t] ≥ 2α for all t ∈ Z+. (7)

Then, with probability at least 1− δ, AdaHedge starts at most

m∗ = 1 +
⌈

logφ

((K − 1)(e− 2)

α ln(K)
+

ln
(
2K/(α2δ)

)
4α2 ln(K)

+
1

8 ln(K)

)⌉
(8)

segments and consequently its regret is bounded by a constant:

RAdaHedge(T) = O
(
K + log(1/δ)

)
.

This shows that the probabilistic setting of the theorem is much easier than the worst case, for which
only a bound on the regret of order O(

√
T ln(K)) is possible, and that AdaHedge automatically

adapts to this easier setting. The proof of Theorem 9 is in the Additional Material. It verifies that the
conditions of Lemma 8 hold with sufficient probability for β = 1, and α and m∗ as in the theorem.

5 Experiments

We compare AdaHedge to other hedging algorithms in two experiments involving simulated losses.

5.1 Hedging Algorithms

Follow-the-Leader. This algorithm is included because it is simple and very effective if the losses
are not antagonistic, although as mentioned in the introduction its regret is linear in the worst case.

Hedge with fixed learning rate. We also include Hedge with a fixed learning rate

η =
√

2 ln(K)/L∗T , (9)

which achieves the regret bound
√

2 ln(K)L∗T + ln(K)1. Since η is a function of L∗T , the agent
needs to use post-hoc knowledge to use this strategy.

Hedge with doubling trick. The common way to apply the doubling trick to L∗T is to set a budget on
L∗T and multiply it by some constant φ′ at the start of each new segment, after which η is optimized
for the new budget [4, 7]. Instead, we proceed the other way around and with each new segment
first divide η by φ = 2 and then calculate the new budget such that (9) holds when ∆t(η) reaches
the budget. This way we keep the same invariant (η is never larger than the right-hand side of (9),
with equality when the budget is depleted), and the frequency of doubling remains logarithmic in
L∗T with a constant determined by φ, so both approaches are equally valid. However, controlling the
sequence of values of η allows for easier comparison to AdaHedge.

AdaHedge (Algorithm 1). Like in the previous algorithm, we set φ = 2. Because of how we set up
the doubling, both algorithms now use the same sequence of learning rates 1, 1/2, 1/4, . . . ; the only
difference is when they decide to start a new segment.

Hedge with variable learning rate. Rather than using the doubling trick, this algorithm, described
in [8], changes the learning rate each round as a function of L∗t . This way there is no need to relearn
the weights of the actions in each block, which leads to a better worst-case bound and potentially
better performance in practice. Its behaviour on easy problems, as we are currently interested in, has
not been studied.

5.2 Generating the Losses

In both experiments we choose losses in {0, 1}. The experiments are set up as follows.

1Cesa-Bianchi and Lugosi use η = ln(1 +
√

2 lnK/L∗
T) [4], but the same bound can be obtained for the

simplified expression we use.

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Number of Rounds

R
e
g
re

t

Hedge (doubling)
Hedge (fixed learning rate)
Hedge (variable learning rate)
AdaHedge
Follow the leader

(a) I.I.D. losses

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

20

Number of Rounds

R
e
g
re

t

Hedge (doubling)
Hedge (fixed learning rate)
Hedge (variable learning rate)
AdaHedge
Follow the leader

(b) Correlated losses

Figure 1: Simulation results

I.I.D. losses. In the first experiment, all T = 10 000 losses for all K = 4 actions are independent,
with distribution depending only on the action: the probabilities of incurring loss 1 are 0.35, 0.4,
0.45 and 0.5, respectively. The results are then averaged over 50 repetitions of the experiment.

Correlated losses. In the second experiment, the T = 10 000 loss vectors are still independent,
but no longer identically distributed. In addition there are dependencies within the loss vectors `t,
between the losses for the K = 2 available actions: each round is hard with probability 0.3, and
easy otherwise. If round t is hard, then action 1 yields loss 1 with probability 1− 0.01/t and action
2 yields loss 1 with probability 1−0.02/t. If the round is easy, then the probabilities are flipped and
the actions yield loss 0 with the same probabilities. The results are averaged over 200 repetitions.

5.3 Discussion and Results

Figure 1 shows the results of the experiments above. We plot the regret (averaged over repetitions
of the experiment) as a function of the number of rounds, for each of the considered algorithms.

I.I.D. Losses. In the first considered regime, the accumulated losses for each action diverge lin-
early with high probability, so that the regret of Follow-the-Leader is bounded. Based on Theorem 9
we expect AdaHedge to incur bounded regret also; this is confirmed in Figure 1(a). Hedge with a
fixed learning rate shows much larger regret. This happens because the learning rate, while it op-
timizes the worst-case bound, is much too small for this easy regime. In fact, if we would include
more rounds, the learning rate would be set to an even smaller value, clearly showing the need to
determine the learning rate adaptively. The doubling trick provides one way to adapt the learning
rate; indeed, we observe that the regret of Hedge with the doubling trick is initially smaller than the
regret of Hedge with fixed learning rate. However, unlike AdaHedge, the algorithm never detects
that its current value of η is working well; instead it keeps exhausting its budget, which leads to a
sequence of clearly visible bumps in its regret. Finally, it appears that the Hedge algorithm with
variable learning rate also achieves bounded regret. This is surprising, as the existing theory for
this algorithm only considers its worst-case behaviour, and the algorithm was not designed to do
specifically well in easy regimes.

Correlated Losses. In the second simulation we investigate the case where the mean cumulative
loss of two actions is extremely close — within O(log t) of one another. If the losses of the actions
where independent, such a small difference would be dwarfed by random fluctuations in the cumula-
tive losses, which would be of orderO(

√
t). Thus the two actions can only be distinguished because

we have made their losses dependent. Depending on the application, this may actually be a more nat-
ural scenario than complete independence as in the first simulation; for example, we can think of the
losses as mistakes of two binary classifiers, say, two naive Bayes classifiers with different smooth-
ing parameters. In such a scenario, losses will be dependent, and the difference in cumulative loss
will be much smaller than O(

√
t). In the previous experiment, the posterior weights of the actions

7

converged relatively quickly for a large range of learning rates, so that the exact value of the learning
rate was most important at the start (e.g., from 3000 rounds onward Hedge with fixed learning rate
does not incur much additional regret any more). In this second setting, using a high learning rate
remains important throughout. This explains why in this case Hedge with variable learning rate can
no longer keep up with Follow-the-Leader. The results for AdaHedge are also interesting: although
Theorem 9 does not apply in this case, we may still hope that ∆t(η) grows slowly enough that the
algorithm does not start too many segments. This turns out to be the case: over the 200 repetitions
of the experiment, AdaHedge started only 2.265 segments on average, which explains its excellent
performance in this simulation.

6 Proof of Lemma 6

Our main technical tool is Lemma 6. Its proof requires the following intermediate result:

Lemma 10. For any η > 0 and any time t, the function f(`t) = ln
(
wt · e−η`t

)
is convex.

This may be proved by observing that f is the convex conjugate of the Kullback-Leibler divergence.
An alternative proof based on log-convexity is provided in the Additional Material.

Proof of Lemma 6. We need to bound δt = wt(η) · `t + 1
η ln(wt(η) · e−η`t), which is a convex

function of `t by Lemma 10. As a consequence, its maximum is achieved when `t lies on the
boundary of its domain, such that the losses `kt are either 0 or 1 for all k, and in the remainder of the
proof we will assume (without loss of generality) that this is the case. Now let αt = wt · `t be the
posterior probability of the actions with loss 1. Then

δt = αt +
1

η
ln
(
(1− αt) + αte

−η) = αt +
1

η
ln
(
1 + αt(e

−η − 1)
)
.

Using lnx ≤ x− 1 and e−η ≤ 1− η + 1
2η

2, we get δt ≤ 1
2αtη, which is tight for αt near 0. For αt

near 1, rewrite

δt = αt − 1 +
1

η
ln(eη(1− αt) + αt)

and use lnx ≤ x − 1 and eη ≤ 1 + η + (e − 2)η2 for η ≤ 1 to obtain δt ≤ (e − 2)(1 − αt)η.
Combining the bounds, we find

δt ≤ (e− 2)ηmin{αt, 1− αt}.
Now, let k∗ be an action such that w∗t = wk

∗

t . Then `k
∗

t = 0 implies αt ≤ 1 − w∗t . On the other
hand, if `k

∗

t = 1, then αt ≥ w∗t so 1−αt ≤ 1−w∗t . Hence, in both cases min{αt, 1−αt} ≤ 1−w∗t ,
which completes the proof.

7 Conclusion and Future Work

We have presented a new algorithm, AdaHedge, that adapts to the difficulty of the DTOL learning
problem. This difficulty was characterised in terms of convergence of the posterior probability of the
best action. For hard instances of DTOL, for which the posterior does not converge, it was shown
that the regret of AdaHedge is of the optimal order O(

√
L∗T ln(K)); for easy instances, for which

the posterior converges sufficiently fast, the regret was bounded by a constant. This behaviour was
confirmed in a simulation study, where the algorithm outperformed existing versions of Hedge.

A surprising observation in the experiments was the good performance of Hedge with a variable
learning rate on some easy instances. It would be interesting to obtain matching theoretical guar-
antees, like those presented here for AdaHedge. A starting point might be to consider how fast the
posterior probability of the best action converges to one, and plug that into Lemma 6.

Acknowledgments

The authors would like to thank Wojciech Kotłowski for useful discussions. This work was sup-
ported in part by the IST Programme of the European Community, under the PASCAL2 Network
of Excellence, IST-2007-216886, and by NWO Rubicon grant 680-50-1010. This publication only
reflects the authors’ views.

8

References

[1] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[2] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and Com-
putation, 108(2):212–261, 1994.

[3] V. Vovk. A game of prediction with expert advice. Journal of Computer and System Sciences,
56(2):153–173, 1998.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press,
2006.

[5] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29:79–103, 1999.

[6] E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation
in costs. In Proceedings of the 21st Annual Conference on Learning Theory (COLT), pages
57–67, 2008.

[7] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth.
How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

[8] P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algo-
rithms. Journal of Computer and System Sciences, 64:48–75, 2002.

[9] V. Vovk. Competitive on-line statistics. International Statistical Review, 69(2):213–248, 2001.
[10] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individual sequences

under general loss functions. IEEE Transactions on Information Theory, 44(5):1906–1925,
1998.

[11] A. N. Shiryaev. Probability. Springer-Verlag, 1996.

9

