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Abstract

With the increase in available data parallel machine learning has become an in-
creasingly pressing problem. In this paper we present the first parallel stochastic
gradient descent algorithm including a detailed analysis and experimental evi-
dence. Unlike prior work on parallel optimization algorithms [5, 7] our variant
comes with parallel acceleration guarantees and it poses no overly tight latency
constraints, which might only be available in the multicore setting. Our analy-
sis introduces a novel proof technique — contractive mappings to quantify the
speed of convergence of parameter distributions to their asymptotic limits. As a
side effect this answers the question of how quickly stochastic gradient descent
algorithms reach the asymptotically normal regime [1, 8].

1 Introduction

Over the past decade the amount of available data has increased steadily. By now some industrial
scale datasets are approaching Petabytes. Given that the bandwidth of storage and network per
computer has not been able to keep up with the increase in data, the need to design data analysis
algorithms which are able to perform most steps in a distributed fashion without tight constraints
on communication has become ever more pressing. A simple example illustrates the dilemma. At
current disk bandwidth and capacity (2TB at 100MB/s throughput) it takes at least 6 hours to read
the content of a single harddisk. For a decade, the move from batch to online learning algorithms
was able to deal with increasing data set sizes, since it reduced the runtime behavior of inference
algorithms from cubic or quadratic to linear in the sample size. However, whenever we have more
than a single disk of data, it becomes computationally infeasible to process all data by stochastic
gradient descent which is an inherently sequential algorithm, at least if we want the result within a
matter of hours rather than days.

Three recent papers attempted to break this parallelization barrier, each of them with mixed suc-
cess. [5] show that parallelization is easily possible for the multicore setting where we have a tight
coupling of the processing units, thus ensuring extremely low latency between the processors. In
particular, for non-adversarial settings it is possible to obtain algorithms which scale perfectly in
the number of processors, both in the case of bounded gradients and in the strongly convex case.
Unfortunately, these algorithms are not applicable to a MapReduce setting since the latter is fraught
with considerable latency and bandwidth constraints between the computers.

A more MapReduce friendly set of algorithms was proposed by [3, 9]. In a nutshell, they rely on
distributed computation of gradients locally on each computer which holds parts of the data and
subsequent aggregation of gradients to perform a global update step. This algorithm scales linearly
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in the amount of data and log-linearly in the number of computers. That said, the overall cost in
terms of computation and network is very high: it requires many passes through the dataset for
convergence. Moreover, it requires many synchronization sweeps (i.e. MapReduce iterations). In
other words, this algorithm is computationally very wasteful when compared to online algorithms.

[7] attempted to deal with this issue by a rather ingenious strategy: solve the sub-problems exactly on
each processor and in the end average these solutions to obtain a joint solution. The key advantage
of this strategy is that only a single MapReduce pass is required, thus dramatically reducing the
amount of communication. Unfortunately their proposed algorithm has a number of drawbacks:
the theoretical guarantees they are able to obtain imply a significant variance reduction relative
to the single processor solution [7, Theorem 3, equation 13] but no bias reduction whatsoever [7,
Theorem 2, equation 9] relative to a single processor approach. Furthermore, their approach requires
a relatively expensive algorithm (a full batch solver) to run on each processor. A further drawback
of the analysis in [7] is that the convergence guarantees are very much dependent on the degree of
strong convexity as endowed by regularization. However, since regularization tends to decrease with
increasing sample size the guarantees become increasingly loose in practice as we see more data.

We attempt to combine the benefits of a single-average strategy as proposed by [7] with asymptotic
analysis [8] of online learning. Our proposed algorithm is strikingly simple: denote by ci(w) a loss
function indexed by i and with parameter w. Then each processor carries out stochastic gradient
descent on the set of ci(w) with a fixed learning rate η for T steps as described in Algorithm 1.

Algorithm 1 SGD({c1, . . . , cm}, T, η, w0)

for t = 1 to T do
Draw j ∈ {1 . . .m} uniformly at random.
wt ← wt−1 − η∂wcj(wt−1).

end for
return wT .

On top of the SGD routine which is carried out on each computer we have a master-routine which
aggregates the solution in the same fashion as [7].

Algorithm 2 ParallelSGD({c1, . . . cm}, T, η, w0, k)

for all i ∈ {1, . . . k} parallel do
vi = SGD({c1, . . . cm}, T, η, w0) on client

end for
Aggregate from all computers v = 1

k

∑k
i=1 vi and return v

The key algorithmic difference to [7] is that the batch solver of the inner loop is replaced by a
stochastic gradient descent algorithm which digests not a fixed fraction of data but rather a random
fixed subset of data. This means that if we process T instances per machine, each processor ends up
seeing T

m of the data which is likely to exceed 1
k .

Algorithm Latency tolerance MapReduce Network IO Scalability
Distributed subgradient [3, 9] moderate yes high linear
Distributed convex solver [7] high yes low unclear
Multicore stochastic gradient [5] low no n.a. linear
This paper high yes low linear

A direct implementation of the algorithms above would place every example on every machine:
however, if T is much less than m, then it is only necessary for a machine to have access to the
data it actually touches. Large scale learning, as defined in [2], is when an algorithm is bounded
by the time available instead of by the amount of data available. Practically speaking, that means
that one can consider the actual data in the real dataset to be a subset of a virtually infinite set,
and drawing with replacement (as the theory here implies) and drawing without replacement on the
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Algorithm 3 SimuParallelSGD(Examples {c1, . . . cm},Learning Rate η,Machines k)
Define T = $m/k%
Randomly partition the examples, giving T examples to each machine.
for all i ∈ {1, . . . k} parallel do

Randomly shuffle the data on machine i.
Initialize wi,0 = 0.
for all t ∈ {1, . . . T}: do

Get the tth example on the ith machine (this machine), ci,t
wi,t ← wi,t−1 − η∂wci(wi,t−1)

end for
end for
Aggregate from all computers v = 1

k

∑k
i=1 wi,t and return v.

infinite data set can both be simulated by shuffling the real data and accessing it sequentially. The
initial distribution and shuffling can be a part of how the data is saved. SimuParallelSGD fits very
well with the large scale learning paradigm as well as the MapReduce framework. Our paper applies
an anytime algorithm via stochastic gradient descent. The algorithm requires no communication
between machines until the end. This is perfectly suited to MapReduce settings. Asymptotically,
the error approaches zero. The amount of time required is independent of the number of examples,
only depending upon the regularization parameter and the desired error at the end.

2 Formalism

In stark contrast to the simplicity of Algorithm 2, its convergence analysis is highly technical. Hence
we limit ourselves to presenting the main results in this extended abstract. Detailed proofs are given
in the appendix. Before delving into details we briefly outline the proof strategy:

• When performing stochastic gradient descent with fixed (and sufficiently small) learning
rate η the distribution of the parameter vector is asymptotically normal [1, 8]. Since all
computers are drawing from the same data distribution they all converge to the same limit.

• Averaging between the parameter vectors of k computers reduces variance by O(k−
1
2 )

similar to the result of [7]. However, it does not reduce bias (this is where [7] falls short).
• To show that the bias due to joint initialization decreases we need to show that the distri-

bution of parameters per machine converges sufficiently quickly to the limit distribution.
• Finally, we also need to show that the mean of the limit distribution for fixed learning rate

is sufficiently close to the risk minimizer. That is, we need to take finite-size learning rate
effects into account relative to the asymptotically normal regime.

2.1 Loss and Contractions

In this paper we consider estimation with convex loss functions ci : #2 → [0,∞). While our
analysis extends to other Hilbert Spaces such as RKHSs we limit ourselves to this class of functions
for convenience. For instance, in the case of regularized risk minimization we have

ci(w) =
λ

2
‖w‖2 + L(xi, yi, w · xi) (1)

where L is a convex function in w·xi, such as 1
2 (y

i−w·xi)2 for regression or log[1+exp(−yiw·xi)]
for binary classification. The goal is to find an approximate minimizer of the overall risk

c(w) =
1

m

m∑

i=1

ci(w). (2)

To deal with stochastic gradient descent we need tools for quantifying distributions over w.

Lipschitz continuity: A function f : X → R is Lipschitz continuous with constant L with respect
to a distance d if |f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ X.

3



Hölder continuity: A function f is Hölder continous with constant L and exponent α if |f(x) −
f(y)| ≤ Ldα(x, y) for all x, y ∈ X.

Lipschitz seminorm: [10] introduce a seminorm. With minor modification we use

‖f‖Lip := inf {l where |f(x)− f(y)| ≤ ld(x, y) for all x, y ∈ X} . (3)

That is, ‖f‖Lip is the smallest constant for which Lipschitz continuity holds.
Hölder seminorm: Extending the Lipschitz norm for α ≥ 1:

‖f‖Lipα
:= inf {l where |f(x)− f(y)| ≤ ldα(x, y) for all x, y ∈ X} . (4)

Contraction: For a metric space (M,d), f : M → M is a contraction mapping if ‖f‖Lip < 1.

In the following we assume that ‖L(x, y, y′)‖Lip ≤ G as a function of y′ for all occurring data
(x, y) ∈ X× Y and for all values of w within a suitably chosen (often compact) domain.

Theorem 1 (Banach’s Fixed Point Theorem) If (M,d) is a non-empty complete metric space,
then any contraction mapping f on (M,d) has a unique fixed point x∗ = f(x∗).

Corollary 2 The sequence xt = f(xt−1) converges linearly with d(x∗, xt) ≤ ‖f‖tLip d(x0, x∗).

Our strategy is to show that the stochastic gradient descent mapping

w ← φi(w) := w − η∇ci(w) (5)

is a contraction, where i is selected uniformly at random from {1, . . .m}. This would allow us
to demonstrate exponentially fast convergence. Note that since the algorithm selects i at random,
different runs with the same initial settings can produce different results. A key tool is the following:

Lemma 3 Let c∗ ≥
∥∥∂ŷL(xi, yi, ŷ)

∥∥
Lip

be a Lipschitz bound on the loss gradient. Then if η ≤
(
∥∥xi

∥∥2 c∗ + λ)−1 the update rule (5) is a contraction mapping in #2 with Lipschitz constant 1− ηλ.

We prove this in Appendix B. If we choose η “low enough”, gradient descent uniformly becomes a
contraction. We define

η∗ := min
i

(∥∥xi
∥∥2 c∗ + λ

)−1
. (6)

2.2 Contraction for Distributions

For fixed learning rate η stochastic gradient descent is a Markov process with state vector w. While
there is considerable research regarding the asymptotic properties of this process [1, 8], not much is
known regarding the number of iterations required until the asymptotic regime is assumed. We now
address the latter by extending the notion of contractions from mappings of points to mappings of
distributions. For this we introduce the Monge-Kantorovich-Wasserstein earth mover’s distance.

Definition 4 (Wasserstein metric) For a Radon space (M,d) let P (M,d) be the set of all distri-
butions over the space. The Wasserstein distance between two distributions X,Y ∈ P (M,d) is

Wz(X,Y ) =

[
inf

γ∈Γ(X,Y )

∫

x,y
dz(x, y)dγ(x, y)

] 1
z

(7)

where Γ(X,Y ) is the set of probability distributions on (M,d)× (M,d) with marginals X and Y .

This metric has two very important properties: it is complete and a contraction in (M,d) induces a
contraction in (P (M,d),Wz). Given a mapping φ : M → M , we can construct p : P (M,d) →
P (M,d) by applying φ pointwise to M . Let X ∈ P (M,d) and let X ′ := p(X). Denote for any
measurable event E its pre-image by φ−1(E). Then we have that X ′(E) = X(φ−1(E)).
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Lemma 5 Given a metric space (M,d) and a contraction mapping φ on (M,d) with constant c, p
is a contraction mapping on (P (M,d),Wz) with constant c.

This is proven in Appendix C. This shows that any single mapping is a contraction. However, since
we draw ci at random we need to show that a mixture of such mappings is a contraction, too. Here
the fact that we operate on distributions comes handy since the mixture of mappings on distribution
is a mapping on distributions.

Lemma 6 Given a Radon space (M,d), if p1 . . .pk are contraction mappings with constants
c1 . . . ck with respect to Wz , and

∑
i ai = 1 where ai ≥ 0, then p =

∑k
i=1 aipi is a contrac-

tion mapping with a constant of no more than [
∑

i ai(ci)
z]

1
z .

Corollary 7 If for all i, ci ≤ c, then p is a contraction mapping with a constant of no more than c.

This is proven in Appendix C. We apply this to SGD as follows: Define p∗ = 1
m

∑m
i=1 p

i to be the
stochastic operation in one step. Denote by D0

η the initial parameter distribution from which w0 is
drawn and by Dt

η the parameter distribution after t steps, which is obtained via Dt
η = p∗(Dt−1

η ).
Then the following holds:

Theorem 8 For any z ∈ N, if η ≤ η∗, then p∗ is a contraction mapping on (M,Wz) with contrac-
tion rate (1− ηλ). Moreover, there exists a unique fixed point D∗

η such that p∗(D∗
η) = D∗

η . Finally,
if w0 = 0 with probability 1, then Wz(D0

η, D
∗
η) =

G
λ , and Wz(DT

η , D
∗
η) ≤ G

λ (1− ηλ)T .

This is proven in Appendix F. The contraction rate (1 − ηλ) can be proven by applying Lemma 3,
Lemma 5, and Corollary 6. As we show later, wt ≤ G/λ with probability 1, so Prw∈D∗

η
[d(0, w) ≤

G/λ] = 1, and since w0 = 0, this implies Wz(D0
η, D

∗
η) = G/λ. From this, Corollary 2 establishes

Wz(DT
η , D

∗
η) ≤ G

λ (1− ηλ)T .

This means that for a suitable choice of η we achieve exponentially fast convergence in T to some
stationary distribution D∗

η . Note that this distribution need not be centered at the risk minimizer
of c(w). What the result does, though, is establish a guarantee that each computer carrying out
Algorithm 1 will converge rapidly to the same distribution over w, which will allow us to obtain
good bounds if we can bound the ’bias’ and ’variance’ of D∗

η .

2.3 Guarantees for the Stationary Distribution

At this point, we know there exists a stationary distribution, and our algorithms are converging to
that distribution exponentially fast. However, unlike in traditional gradient descent, the stationary
distribution is not necessarily just the optimal point. In particular, the harder parts of understanding
this algorithm involve understanding the properties of the stationary distribution. First, we show that
the mean of the stationary distribution has low error. Therefore, if we ran for a really long time and
averaged over many samples, the error would be low.

Theorem 9 c(Ew∈D∗
η
[w])−minw∈Rn c(w) ≤ 2ηG2.

Proven in Appendix G using techniques from regret minimization. Secondly, we show that the
squared distance from the optimal point, and therefore the variance, is low.

Theorem 10 The average squared distance of D∗
η from the optimal point is bounded by:

Ew∈D∗
η
[(w − w∗)2] ≤ 4ηG2

(2− ηλ)λ
.

In other words, the squared distance is bounded by O(ηG2/λ).
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Proven in Appendix I using techniques from reinforcement learning. In what follows, if x ∈ M ,
Y ∈ P (M,d), we define Wz(x, Y ) to be the Wz distance between Y and a distribution with a
probability of 1 at x. Throughout the appendix, we develop tools to show that the distribution
over the output vector of the algorithm is “near” µD∗

η
, the mean of the stationary distribution. In

particular, if DT,k
η is the distribution over the final vector of ParallelSGD after T iterations on each

of k machines with a learning rate η, then W2(µD∗
η
, DT,k

η ) =
√
Ex∈DT,k

η
[(x− µD∗

η
)2] becomes

small. Then, we need to connect the error of the mean of the stationary distribution to a distribution
that is near to this mean.

Theorem 11 Given a cost function c such that ‖c‖L and ‖∇c‖L are bounded, a distribution D such
that σD and is bounded, then, for any v:

Ew∈D[c(w)]−min
w

c(w)

≤ (W2(v,D))
√

2 ‖∇c‖L (c(v)−min
w

c(w)) +
‖∇c‖L

2
(W2(v,D))2 + (c(v)−min

w
c(w)). (8)

This is proven in Appendix K. The proof is related to the Kantorovich-Rubinstein theorem, and
bounds on the Lipschitz of c near v based on c(v) −minw c(w). At this point, we are ready to get
the main theorem:

Theorem 12 If η ≤ η∗ and T = ln k−(ln η+lnλ)
2ηλ :

Ew∈DT,k
η

[c(w)]−min
w

c(w) ≤8ηG2

√
kλ

√
‖∇c‖L +

8ηG2 ‖∇c‖L
kλ

+ (2ηG2). (9)

This is proven in Appendix K.

2.4 Discussion of the Bound

The guarantee obtained in (9) appears rather unusual insofar as it does not have an explicit depen-
dency on the sample size. This is to be expected since we obtained a bound in terms of risk min-
imization of the given corpus rather than a learning bound. Instead the runtime required depends
only on the accuracy of the solution itself.

In comparison to [2], we look at the number of iterations to reach ρ for SGD in Table 2. Ignoring
the effect of the dimensions (such as ν and d), setting these parameters to 1, and assuming that the
conditioning number κ = 1

λ , and ρ = η. In terms of our bound, we assume G = 1 and ‖∇c‖L = 1.
In order to make our error order η, we must set k = 1

λ . So, the Bottou paper claims a bound of νκ2

ρ

iterations, which we interpret as 1
ηλ2 . Modulo logarithmic factors, we require 1

λ machines to run 1
ηλ

time, which is the same order of computation, but a dramatic speedup of a factor of 1
λ in wall clock

time.

Another important aspect of the algorithm is that it can be arbitrarily precise. By halving η and
roughly doubling T , you can halve the error. Also, the bound captures how much paralllelization
can help. If k >

‖∇c‖L
λ , then the last term ηG2 will start to dominate.

3 Experiments

Data: We performed experiments on a proprietary dataset drawn from a major email system with
labels y ∈ ±1 and binary, sparse features. The dataset contains 3, 189, 235 time-stamped instances
out of which the last 68, 1015 instances are used to form the test set, leaving 2, 508, 220 training
points. We used hashing to compress the features into a 218 dimensional space. In total, the dataset
contained 785, 751, 531 features after hashing, which means that each instance has about 313 fea-
tures on average. Thus, the average sparsity of each data point is 0.0012. All instance have been
normalized to unit length for the experiments.
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Figure 1: Relative training error with λ = 1e−3: Huber loss (left) and squared error (right)

Approach: In order to evaluate the parallelization ability of the proposed algorithm, we followed
the following procedure: For each configuration (see below), we trained up to 100 models, each on
an independent, random permutation of the full training data. During training, the model is stored on
disk after k = 10, 000 ∗ 2i updates. We then averaged the models obtained for each i and evaluated
the resulting model. That way, we obtained the performance for the algorithm after each machine
has seen k samples. This approach is geared towards the estimation of the parallelization ability of
our optimization algorithm and its application to machine learning equally. This is in contrast to
the evaluation approach taken in [7] which focussed solely on the machine learning aspect without
studying the performance of the optimization approach.

Evaluation measures: We report both the normalized root mean squared error (RMSE) on the test
set and the normalized value of the objective function during training. We normalize the RMSE
such that 1.0 is the RMSE obtained by training a model in one single, sequential pass over the data.
The objective function values are normalized in much the same way such that the objective function
value of a single, full sequential pass over the data reaches the value 1.0.

Configurations: We studied both the Huber and the squared error loss. While the latter does not
satisfy all the assumptions of our proofs (its gradient is unbounded), it is included due to its popu-
larity. We choose to evaluate using two different regularization constants, λ = 1e−3 and λ = 1e−6

in order to estimate the performance characteristics both on smooth, “easy” problems (1e−3) and on
high-variance, “hard” problems (1e−6). In all experiments, we fixed the learning rate to η = 1e−3.

3.1 Results and Discussion

Optimization: Figure 1 shows the relative objective function values for training using 1, 10 and
100 machines with λ = 1e−3. In terms of wall clock time, the models obtained on 100 machines
clearly outperform the ones obtained on 10 machines, which in turn outperform the model trained
on a single machine. There is no significant difference in behavior between the squared error and
the Huber loss in these experiments, despite the fact that the squared error is effectively unbounded.
Thus, the parallelization works in the sense that many machines obtain a better objective function
value after each machine has seen k instances. Additionally, the results also show that data-local
parallelized training is feasible and beneficial with the proposed algorithm in practice. Note that
the parallel training needs slightly more machine time to obtain the same objective function value,
which is to be expected. Also unsurprising, yet noteworthy, is the trade-off between the number of
machines and the quality of the solution: The solution obtained by 10 machines is much more of an
improvement over using one machine than using 100 machines is over 10.

Predictive Performance: Figure 2 shows the relative test RMSE for 1, 10 and 100 machines with
λ = 1e−3. As expected, the results are very similar to the objective function comparison: The
parallel training decreases wall clock time at the price of slightly higher machine time. Again, the
gain in performance between 1 and 10 machines is much higher than the one between 10 and 100.
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Figure 2: Relative Test-RMSE with λ = 1e−3: Huber loss (left) and squared error (right)

Figure 3: Relative train-error using Huber loss: λ = 1e−3 (left), λ = 1e−6 (right)

Performance using different λ: The last experiment is conducted to study the effect of the regu-
larization constant λ on the parallelization ability: Figure 3 shows the objective function plot using
the Huber loss and λ = 1e−3 and λ = 1e−6. The lower regularization constant leads to more
variance in the problem which in turn should increase the benefit of the averaging algorithm. The
plots exhibit exactly this characteristic: For λ = 1e−6, the loss for 10 and 100 machines not only
drops faster, but the final solution for both beats the solution found by a single pass, adding further
empirical evidence for the behaviour predicted by our theory.

4 Conclusion

In this paper, we propose a novel data-parallel stochastic gradient descent algorithm that enjoys a
number of key properties that make it highly suitable for parallel, large-scale machine learning: It
imposes very little I/O overhead: Training data is accessed locally and only the model is communi-
cated at the very end. This also means that the algorithm is indifferent to I/O latency. These aspects
make the algorithm an ideal candidate for a MapReduce implementation. Thereby, it inherits the lat-
ter’s superb data locality and fault tolerance properties. Our analysis of the algorithm’s performance
is based on a novel technique that uses contraction theory to quantify finite-sample convergence
rate of stochastic gradient descent. We show worst-case bounds that are comparable to stochastic
gradient descent in terms of wall clock time, and vastly faster in terms of overall time. Lastly, our
experiments on a large-scale real world dataset show that the parallelization reduces the wall-clock
time needed to obtain a set solution quality. Unsurprisingly, we also see diminishing marginal util-
ity of adding more machines. Finally, solving problems with more variance (smaller regularization
constant) benefits more from the parallelization.
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