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Abstract

It is open how neurons in the brain are able to learn without supervision to discrim-
inate between spatio-temporal firing patterns of presynaptic neurons. We show
that a known unsupervised learning algorithm, Slow Feature Analysis (SFA), is
able to acquire the classification capability of Fisher’s Linear Discriminant (FLD),
a powerful algorithm for supervised learning, if temporally adjacent samples are
likely to be from the same class. We also demonstrate that it enables linear readout
neurons of cortical microcircuits to learn the detection of repeating firing patterns
within a stream of spike trains with the same firing statistics, as well as discrimi-
nation of spoken digits, in an unsupervised manner.

1 Introduction

Since the presence of supervision in biological learning mechanisms is rare, organisms often have
to rely on the ability of these mechanisms to extract statistical regularities from their environment.
Recent neurobiological experiments [1] have suggested that the brain uses some type of slowness
objective to learn the categorization of external objects without a supervisor. Slow Feature Analysis
(SFA) [2] could be a possible mechanism for that. We establish a relationship between the unsu-
pervised SFA learning method and a commonly used method for supervised classification learning:
Fisher’s Linear Discriminant (FLD) [3]. More precisely, we show that SFA approximates the classi-
fication capability of FLD by replacing the supervisor with the simple heuristics that two temporally
adjacent samples in the input time series are likely to be from the same class. Furthermore, we
demonstrate in simulations of a cortical microcircuit model that SFA could also be an important
ingredient in extracting temporally stable information from trajectories of network states and that it
supports the idea of “anytime” computing, i.e., it provides information about the stimulus identity
not only at the end of a trajectory of network states, but already much earlier.

This paper is structured as follows. We start in section 2 with brief recaps of the definitions of
SFA and FLD. We discuss the relationship between these methods for unsupervised and supervised
learning in section 3, and investigate the application of SFA to trajectories in section 4. In section 5
we report results of computer simulations of several SFA readouts of a cortical microcircuit model.
Section 6 concludes with a discussion.

2 Basic Definitions

2.1 Slow Feature Analysis (SFA)

Slow Feature Analysis (SFA) [2] is anunsupervised learning algorithm that extracts the slowest
componentsyi from a multi-dimensional input time seriesx by minimizing the temporal variation
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∆(yi) of the output signalyi, which is defined in [2] as the average of its squared temporal derivative.
Thus the objective is to minimize

min ∆(yi) := 〈ẏi
2〉t. (1)

The notation〈·〉t denotes averaging over time, andẏ is the time derivative ofy. The additional
constraints of zero mean (〈yi〉t = 0) and unit variance (〈y2

i 〉t = 1) avoid the trivial constant so-
lution yi(t) ≡ 0. If multiple slow features are extracted, a third constraint (〈yiyj〉t = 0, ∀j < i)
ensures that they are decorrelated and ordered by decreasing slowness, i.e.,y1 is the slowest feature
extracted,y2 the second slowest feature, and so on. In other words, SFA finds those functionsgi out
of a certain predefined function space that produce the slowest possible outputsyi = gi(x) under
these constraints.

This optimization problem is hard to solve in the general case [4], but if we assume that the time
seriesx has zero mean (〈x〉t = 0) and if we only allow linear functionsy = wT x the problem
simplifies to the objective

min JSFA(w) :=
wT 〈ẋẋT 〉tw

wT 〈xxT 〉tw
. (2)

The matrix〈xxT 〉t is the covariance matrix of the input time series and〈ẋẋT 〉t denotes the covari-
ance matrix of time derivatives (or time differences, for discrete time) of the input time series. The
weight vectorw which minimizes (2) is the solution to the generalized eigenvalue problem

〈ẋẋT 〉tw = λ〈xxT 〉tw (3)
corresponding to thesmallest eigenvalueλ. To make use of a larger function space one typically
considers linear combinationsy = wT z of fixed nonlinear expansionsz = h(x) and performs the
optimization (2) in this high-dimensional space.

2.2 Fisher’s Linear Discriminant (FLD)

Fisher’s Linear Discriminant (FLD) [3], on the other hand, is asupervised learning method, since
it is applied tolabeled training examples〈x, c〉, wherec ∈ {1, . . . , C} is the class to which this
examplex belongs. The goal is to find a weight vectorw so that the ability to predict the class ofx
from the value ofwTx is maximized.

FLD searches for that projection directionw which maximizes the separation between classes while
at the same time minimizing the variance within classes, thereby minimizing the class overlap of the
projected values:

max JFLD(w) :=
wT SBw

wT SWw
. (4)

For C point setsSc, each withNc elements and meansµc, SB is the between-class covariance
matrix given by the separation of the class means,SB =

∑

c Nc(µc −µ)(µc −µ)T , andSW is the
within-class covariance matrix given bySW =

∑

c

∑

x∈Sc
(x − µc)(x − µc)

T . Again, the vector
w optimizing (4) can be viewed as the solution to a generalized eigenvalue problem,

SBw = λSW w, (5)
corresponding to thelargest eigenvalueλ.

3 SFA can acquire the classification capability of FLD

SFA and FLD receive different data types as inputs: unlabeled time series for SFA, in contrast to
labeled single data points for the FLD. Therefore, in order to apply the unsupervised SFA learning
algorithm to the same classification problem as the supervised FLD, we have to convert the labeled
training samples into a time series of unlabeled data points that can serve as an input to the SFA
algorithm1. In the following we investigate the relationship between the weight vectors found by
both methods for a particular way of time series generation.

1A first link between SFA and pattern recognition has been established in [5]. There the optimization is
performed over all possible pattern pairs of the same class. However, it might often be implausible to have
access to such an artificial time series, e.g., from the perspective of a readout neuron that receives input on-the-
fly. We take a different approach and apply the standard SFA algorithm to a time series consisting of randomly
selected patterns of the classification problem, where the class at each time step is switched with a certain
probability.
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We consider a classification problem withC classes, i.e., assume we are given point sets
S1, S2, . . . , SC ⊂ R

n. Let Nc be the number of points inSc and letN =
∑C

c=1
Nc be the total

number of points. In order to create a time seriesxt out of these point sets we define a Markov model
with C statesS = {1, 2, . . . , C}, one for each class, and choose at each time stept = 1, . . . , T a
random point from the class that corresponds to the current state in the Markov model. We define
the transition probability from statei ∈ S to statej ∈ S as

Pij =

{

a ·
Nj

N
if i 6= j,

1 −
∑

k 6=j Pik if i = j,
(6)

with some appropriate constanta > 0. The stationary distribution of this Markov model isπ =
(N1/N, N2/N, . . . , NC/N). We choose the initial distributionp0 = π, i.e., at any timet the
probability that pointxt is chosen from classc is Nc/N .

For this particular way of generating the time series from the original classification problem we can
express the matrices〈xxT 〉t and〈ẋẋT 〉t of the SFA objective (2) in terms of the within-class and
between-class scatter matrices of the FLD (4),SW andSB, in the following way [6]:

〈xxT 〉t =
1

N
SW +

1

N
SB (7)

〈ẋẋT 〉t =
2

N
SW + a ·

2

N
SB (8)

Note that only〈ẋẋT 〉t depends ona, whereas〈xxT 〉t does not.

For smalla we can neglect the effect ofSB on 〈ẋẋT 〉t in (8). In this case the time series consists
mainly of transitions within a class, whereas switching between the two classes is relatively rare.
Therefore the covariance of time derivatives is mostly determined by the within-class scatter of
the two point sets, and both matrices become approximately proportional:〈ẋẋT 〉t ≈ 2/N · SW .
Moreover, if we assume thatSW (and therefore〈ẋẋT 〉t) is positive definite, we can rewrite the SFA
objective (2) as

min JSFA(w) ⇔ max
1

JSFA(w)
⇔ max

wT 〈xxT 〉tw

wT 〈ẋẋT 〉tw

⇔ max
1

2
+

1

2
·
wTSBw

wTSW w
⇔ maxJFLD(w). (9)

That is, the weight vector that optimizes the SFA objective (2) also optimizes the FLD objective
(4). ForC > 2 this equivalence can be seen by recalling the definition of SFA as a generalized
eigenvalue problem (3) and inserting (7) and (8):

〈ẋẋT 〉tW = 〈xxT 〉tWΛ

SBW = SWW
[

2Λ−1 − E
]

, (10)

whereW = (w1, . . . ,wn) is the matrix of generalized eigenvectors andΛ = diag(λ1, . . . , λn) is
the diagonal matrix of generalized eigenvalues. The last line of (10) is just the formulation of FLD as
a generalized eigenvalue problem (5). More precisely, the eigenvectors of the SFA problem are also
eigenvectors of the FLD problem. Note that the eigenvalues correspond byλFLD

i = 2/λSFA
i − 1,

which means the order of eigenvalues is reversed (λSFA
i > 0). Thus, the subspace spanned by the

slowest features is the same that optimizes separability in terms of Fisher’s Discriminant, and the
slowest feature is the weight vector which achieves maximal separation.

Figure 1A demonstrates this relationship on a sample two-class problem in two dimensions for the
special case ofN1 = N2 = N/2. In this case at each time the class is switched with probability
p = a/2 or is left unchanged with probability1 − p. We interpret the weight vectors found by
both methods as normal vectors of hyperplanes in the input space, which we place simply onto
the mean valueµ of all training data points (i.e., the hyperplanes are defined aswT x = θ with
θ = wT

µ). One sees that the weight vector found by the application of SFA to the training time
seriesxt generated withp = 0.2 is approximately equal to the weight vector resulting from FLD on
the initial sets of training points. This demonstrates that SFA has extracted the class of the points as
the slowest varying feature by finding a direction that separates both classes.
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Figure 1: Relationship between SFA and FLD for a two-class problem in 2D. (A) Sample point
sets with 250 points for each class. The dashed line indicates a hyperplane corresponding to the
weight vectorwFLD resulting from the application of FLD to the two-class problem. The black
solid line shows a hyperplane for the weight vectorwSFA resulting from SFA applied to the time
series generated from these training points as described in the text (T = 5000, p = 0.2). The
dotted line displays an additional SFA hyperplane resulting from a time series generated withp =
0.45. All hyperplanes are placed onto the mean value of all training points. (B) Dependence of
the error between the weight vectors found by FLD and SFA on the switching probabilityp. This
error is defined as the average angle between the weight vectors obtained on 100 randomly chosen
classification problems. Error bars denote the standard error of the mean.

Figure 1B quantifies the deviation of the weight vector resulting from the application of SFA to the
time series from the one found by FLD on the original points. We use the average angle between both
weight vectors as an error measure. It can be seen that ifp is low, i.e., transitions between classes
are rare compared to transitions within a class, the angle between the vectors is small and SFA
approximates FLD very well. The angle increases moderately with increasingp; even with higher
values ofp (up to 0.45) the approximation is reasonable and a good classification by the slowest
feature can be achieved (see dotted hyperplane in Figure 1A). As soon asp reaches a value of about
0.5, the error grows almost immediately to the maximal value of90◦. For p = 0.5 (a = 1) points
are chosen independently of their class, making the matrices〈ẋẋT 〉t and〈xxT 〉t proportional. This
means that every possible vectorw is a solution to the generalized eigenvalue problem (3), resulting
in an average angle of about45◦.

4 Application to trajectories of training examples

In the previous section we have shown that SFA approximates the classification capability of FLD
if the probability is low that two successive points in the input time series to SFA are from different
classes. Apart from this temporal structure induced by the class information, however, these samples
are chosen independently at each time step. In this section we investigate how the SFA objective
changes when the input time series consists of a sequence oftrajectories of samples instead of
individual points only.

First, we consider a time seriesxt consisting of multiple repetitions of a fixed predefined trajectory
t̃, which is embedded into noise input consisting of a random number of points drawn from the
same distribution as the trajectory points, but independently at each time step. It is easy to show
[6] that for such a time series the SFA objective (2) reduces to finding the eigenvector of the matrix
Σ̃t corresponding to the largest eigenvalue.Σ̃t is the covariance matrix of the trajectoryt̃ with t̃
delayed by one time step, i.e., it measures the temporal covariances (hence the indext) of t̃ with time
lag 1. Since the transitions between two successive points of the trajectoryt̃ occur much more often
in the time seriesxt than transitions between any other possible pair of points, SFA has to respond
as smoothly as possible (i.e., maximize the temporal correlations) duringt̃ in order to produce the
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slowest possible output. This means that SFA is able to detectrepetitions of̃t by responding during
such instances with a distinctive shape.

Next, we consider a classification problem given byC sets of trajectories,T1, T2, . . . , TC ⊂ (Rn)T̃ ,
i.e., the elements of each setTc are sequences of̃T n-dimensional points. We generate a time
series according to the same Markov model as described in the previous section, except that we
do not choose individual points at each time step, rather we generate a sequence of trajectories.
For this time series we can express the matrices〈xxT 〉t and〈ẋẋT 〉t in terms of the within-class
and between-class scatter of the individual points of the trajectories inTc, analogously to (7) and
(8) [6]. While the expression for〈xxT 〉t is unchanged the temporal correlations induced by the
use of trajectories however have an effect on the covariance of temporal differences〈ẋẋT 〉t. First,
this matrix additionally depends on the temporal covarianceΣ̃t with time lag 1 of all available
trajectories in all setsTc. Second, the effective switching probability is reduced by a factor of1/T̃ .
Whenever a trajectory is selected,T̃ points from the same class are presented in succession.

This means that even for a small switching probability2 the objective of SFA cannot be solely re-
duced to the FLD objective, but rather that there is a trade-off between the tendency to separate
trajectories of different classes (as explained by the relation betweenSB andSW ) and the tendency
to produce smooth responses during individual trajectories (determined by the temporal covariance
matrix Σ̃t):

min JSFA(w) =
wT 〈ẋẋT 〉tw

wT 〈xxT 〉tw
≈

1

N
·

wT SWw

wT 〈xxT 〉tw
− p̃ ·

wT Σ̃tw

wT 〈xxT 〉tw
, (11)

whereN is here the total number of points in all trajectories andp̃ is the fraction of transitions
between two successive points of the time series that belong to the same trajectory. The weight vec-
tor w which minimizes the first term in (11) is equal to the weight vector found by the application
of FLD to the classification problem of the individual trajectory points (note thatSB enters (11)
through〈xxT 〉t, cf. eq. (9)). The weight vector which maximizes the second term is the one which
produces the slowest possible response during individual trajectories. If the separation between the
trajectory classes is large compared to the temporal correlations (i.e., the first term in (11) dominates
for the resultingw) the slowest feature will be similar to the weight vector found by FLD on the
corresponding classification problem. On the other hand, as the temporal correlations of the trajec-
tories increase, i.e., the trajectories themselves become smoother, the slowest feature will tend to
favor exploiting this temporal structure of the trajectories over the separation of different classes (in
this case, (11) is dominated by the second term for the resultingw).

5 Application to linear readouts of a cortical microcircuit model

In the following we discuss several computer simulations of a cortical microcircuit of spiking neu-
rons that demonstrate the theoretical arguments given in the previous section. We trained a number
of linear SFA readouts3 on a sequence of trajectories of network states, each of which is defined
by the low-pass filtered spike trains of the neurons in the circuit. Such recurrent circuits typically
provide a temporal integration of the input stream and project it nonlinearly into a high-dimensional
space [7], thereby boosting the expressive power of the subsequent linear SFA readouts. Note, how-
ever, that the optimization (2) implicitly performs an additional whitening of the circuit response. As
a model for a cortical microcircuit model we use the laminar circuit from [8] consisting of 560 spik-
ing neurons organized into layers 2/3, 4, and 5, with layer-specific connection probabilities obtained
from experimental data [9, 10].

In the first experiment we investigated the ability of SFA to detect a repeating firing pattern within
noise input of the same firing statistics. We recorded circuit trajectories in response to 200 repetitions
of a fixed spike pattern which are embedded into a continuous Poisson input stream of the same rate.
We then trained linear SFA readouts on this sequence of circuit trajectories (we used an exponential

2In fact, for sufficiently long trajectories the SFA objective becomes effectively independent of the switching
probability.

3We interpret the linear combination defined by each slow feature as the weight vector of a hypothetical
linear readout.
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Figure 2: Detecting embedded spike patterns. (A) From top to bottom: sample stimulus sequence,
response spike trains of the network, and slowest features. The stimulus consists of 10 channels
and is defined by repetitions of a fixed spike pattern (dark gray) which are embedded into random
Poisson input of the same rate. The pattern has a length of250ms and is made up by Poisson spike
trains of rate20Hz. The period between two repetitions is drawn uniformly between100ms and
500ms. The response spike trains of the laminar circuit of [8] are shown separated into layers 2/3, 4,
and 5. The numbers of neurons in the layers are indicated on the left, but only the response of every
12th neuron is plotted. Shown are the 5 slowest features,y1 to y5, for the network response shown
above. The dashed lines indicate values of 0. (B) Phase plots of low-pass filtered versions (leaky
integration,τ = 100ms) of individual slow features in response to a test sequence of 50 embedded
patterns plotted against each other (black: traces during the pattern, gray: during random Poisson
input).

filter with τ = 30ms and a sample time of1ms). The period of Poisson input in between two such
patterns was randomly chosen.

At first glance there is no clear difference in Figure 2A between the raw SFA responses during
periods of pattern presentations and during phases of noise input due to the same firing statistics.
However, we found that on average the slow feature responses during noise input are zero, whereas
a characteristic response remains during pattern presentations. This effect is predicted by the the-
oretical arguments in section 4. It can be seen in phase plots of traces that are obtained by a leaky
integration of the slowest features in response to a test sequence of 50 embedded patterns (see Figure
2B) that the slow features span a subspace where the response during pattern presentations can be
nicely separated from the response during noise input. That is, by simple threshold operations on the
low-pass filtered versions of the slowest features one can in principle detect the presence of patterns
within the continuous input stream. Furthermore, this extracted information is not only available
after a pattern has been presented, but already during the presentation of the pattern, which supports
the idea of “anytime” computing.

In the second experiment we tested whether SFA is able to discriminate two classes of trajectories
as described in section 4. We performed a speech recognition task using the dataset considered orig-
inally in [11] and later in the context of biological circuits in [7, 12, 13]. This isolated spoken digits
dataset consists of the audio signals recorded from 5 speakers pronouncing the digits “zero”, “one”,
..., “nine” in ten different utterances (trials) each. We preprocessed the raw audio files with a model
of the cochlea [14] and converted the resulting analog cochleagrams into 20 spike trains (using the
algorithm in [15]) that serve as input to our microcircuit model (see Figure 3A). We tried to dis-

6



Figure 3: SFA applied to digit recognition of a single speaker. (A) From top to bottom: cochlea-
grams, input spike trains, response spike trains of the network, and traces of different linear readouts.
Each cochleagram has 86 channels with analog values between 0 and 1 (white, near 1; black, near
0). Stimulus spike trains are shown for two different utterances of the given digit (black and gray,
the black spike times correspond to the cochleagram shown above). The response spike trains of
the laminar circuit from [8] are shown separated into layers 2/3, 4, and 5. The number of neurons
in each layer is indicated on the left, but only the response of every 12th neuron is plotted. The
responses to the two stimulus spike trains in the panel above are shown superimposed with the cor-
responding color. Each readout trace corresponds to a weighted sum (Σ) of network states of the
black responses in the panel above. The trace of the slowest feature (“SF1”, seeB) is compared to
traces of readouts trained by FLD and SVM with linear kernel to discriminate at any time between
the network states of the two classes. All weight vectors are normalized to length 1. The dotted line
denotes the threshold of the respective linear classifier. (B) Response of the 5 slowest featuresy1 to
y5 of the previously learned SFA in response to trajectories of the three test utterances of each class
not used for training (black, digit “one”; gray, digit “two”). The slowness indexη = T/2π

√

∆(y)
[2] is calculated from these output signals. The angleα denotes the deviation of the projection di-
rection of the respective feature from the direction found by FLD. The thick curves in the shaded
area display the mean SFA responses over all three test trajectories for each class. (C) Phase plots
of individual slow features plotted against each other (thin lines: individual responses, thick lines:
mean response over all test trajectories).

criminate between trajectories in response to inputs corresponding to utterances of digits “one” and
“two”, of a single speaker. We kept three utterances of each digit for testing and generated from the
remaining training samples a sequence of 100 input samples, recorded for each sample the response
of the circuit, and concatenated the resulting trajectories in time. Note that here we did not switch
the classes of two successive trajectories with a certain probability because, as explained in the pre-
vious section, for long trajectories the SFA response is independent of this switching probability.
Rather, we trained linear SFA readouts on a completely random trajectory sequence.
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Figure 3B shows the 5 slowest features,y1 to y5, ordered by decreasing slowness in response to the
trajectories corresponding to the three remaining test utterances for each class, digit “one” and digit
“two”. In this example, already the slowest featurey1 extracts the class of the input patterns almost
perfectly: it responds with positive values for trajectories in response to utterances of digit “two”
and with negative values for utterances of digit “one”. This property of the extracted features, to
respond differently for different stimulus classes, is called theWhat-information [2]. The second
slowest featurey2, on the other hand, responds with shapes whose sign is independent of the pattern
identity. One can say that, in principle,y2 encodes simply the presence of and the location within a
response. This is a typical example of a representation ofWhere-information [2], i.e., the “pattern
location” regardless of the identity of the pattern. The other slow featuresy3 to y5 do not extract ei-
therWhat- or Where-information explicitly, but rather a mixed version of both. As a measure for the
discriminative capability of a specific SFA response, i.e., its quality as a possible classifier, we mea-
sured the angle between the projection direction corresponding to this slow feature and the direction
of the FLD. It can be seen in Figure 3B that the slowest featurey1 is closest to the FLD. Hence,
according to (11), this constitutes an example where the separation between classes dominates, but
is already significantly influenced by the temporal correlations of the circuit trajectories.

Figure 3C shows phase plots of these slow features shown in Figure 3B plotted against each other.
In the three plots involving featurey1 it can be seen that the directions of the response vector (i.e.,
the vector composed of the slow feature values at a particular point in time) cluster at class-specific
angles, which is characteristic forWhat-information. On the other hand, these phase plots tend to
form loops in phase space (instead of just straight lines from the origin), where each point on this
loop corresponds to a position within the trajectory. This is a typical property ofWhere-information.
Similar responses have been theoretically predicted in [4] and found in simulations of a hierarchical
(nonlinear) SFA network trained with a sequence of one-dimensional trajectories [2].

This experiment demonstrates that SFA extracts information about the spoken digit in an unsuper-
vised manner by projecting the circuit trajectories onto a subspace where they are nicely separable
so that they can easily be classified by later processing stages. Moreover, this information is pro-
vided not only at the end of a specific trajectory, but is made available already much earlier. After
sufficient training, the slowest featurey1 in Figure 3B responds with positive or negative values in-
dicating the stimulus class almost during the whole duration of of the network trajectory. This again
supports the idea of “anytime” computing. It can be seen in the bottom panel of Figure 3A that the
slowest feature, which is obtained in an unsupervised manner, achieves a good separation between
the two test trajectories, comparable to the supervised methods of FLD and Support Vector Machine
(SVM) [16] with linear kernel.

6 Discussion

The results of our paper show that Slow Feature Analysis is in fact a very powerful tool, which is
able to approximate the classification capability that results from supervised classification learning.
Its elegant formulation as a generalized eigenvalue problem has allowed us to establish a relation-
ship to the supervised method of Fisher’s Linear Discriminant (FLD). A more detailed discussion of
this relationship, including complete derivations, can be found in [6]. If temporal contiguous points
in the time series are likely to belong to the same class, SFA is able to extract the class as a slowly
varying feature in an unsupervised manner. This ability is of particular interest in the context of
biologically realistic neural circuits because it could enable readout neurons to extract from the tra-
jectories of network states information about the stimulus – without any “teacher”, whose existence
is highly dubious in the brain. We have shown in computer simulations of a cortical microcircuit
model that linear readouts trained with SFA are able to detect specific spike patterns within a stream
of spike trains with the same firing statistics and to discriminate between different spoken digits.
Moreover, SFA provides in these tasks an “anytime” classification capability.
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