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Abstract

In many applications, good ranking is a highly desirable performance for
a classifier. The criterion commonly used to measure the ranking quality
of a classification algorithm is the area under the ROC curve (AUC). To
report it properly, it is crucial to determine an interval of confidence for
its value. This paper provides confidence intervals for the AUC based
on a statistical and combinatorial analysis using only simple parameters
such as the error rate and the number of positive and negative examples.
The analysis is distribution-independent, it makes no assumption about
the distribution of the scores of negative or positive examples. The results
are of practical use and can be viewed as the equivalent for AUC of the
standard confidence intervals given in the case of the error rate. They
are compared with previous approaches in several standard classification
tasks demonstrating the benefits of our analysis.

1 Motivation

In many machine learning applications, the ranking quality of a classifier is critical. For
example, the ordering of the list of relevant documents returned by a search engine or
a document classification system is essential. The criterion widely used to measure the
ranking quality of a classification algorithm is the area under an ROC curve (AUC). But, to
measure and report the AUC properly, it is crucial to determine an interval of confidence
for its value as it is customary for the error rate and other measures. It is also important to
make the computation of the confidence interval practical by relying only on a small and
simple number of parameters. In the case of the error rate, such intervals are often derived
from just the sample siz&'.

We present an extensive theoretical analysis of the AUC and show that a similar confidence
interval can be derived for its value using only simple parameters such as the erkgitiYate

the number of positive examples, and the number of negative examples= N — m.

Thus, our results extend to AUC the computation of confidence intervals from a small
number of readily available parameters.

Our analysis is distribution-independent in the sense that it makes no assumption about the
distribution of the scores of negative or positive examples. The use of the error rate helps
determine tight confidence intervals. This contrasts with existing approaches presented in
the statistical literature [11, 5, 2] which are based either on weak distribution-independent

assumptions resulting in too loose confidence intervals, or strong distribution-dependent
assumptions leading to tight but unsafe confidence intervals.



We show that our results are of practical use. We also compara tvith previous ap-
proaches in several standard classification tasks demonstrating the benefits of our analysis.
Our results are also useful for testing the statistical significance of the difference of the
AUC values of two classifiers.

The paper is organized as follows. We first introduce the definition of the AUC, its con-
nection with the Wilcoxon-Mann-Whitney statistic (Section 2), and briefly review some
essential aspects of the existing literature related to the computation of confidence intervals
for the AUC. Our computation of the expected value and variance of the AUC for a fixed
error rate requires establishing several combinatorial identities. Section 4 presents some
existing identities and gives the proof of novel ones useful for the computation of the vari-
ance. Section 5 gives the reduced expressions for the expected value and variance of the
AUC for a fixed error rate. These can be efficiently computed and used to determine our
confidence intervals for the AUC (Section 6). Section 7 reports the result of the comparison
of our method with previous approaches, including empirical results for several standard
tasks.

2 Definition and Properties of the AUC

TheReceiver Operating Characteristi¢ROC) curves were originally introduced in signal
detection theory [6] in connection with the study of radio signals, and have been used
since then in many other applications, in particular for medical decision-making. Over the
last few years, they have found increased interest in the machine learning and data mining
communities for model evaluation and selection [14, 13, 7, 12, 16, 3]. The ROC curve for
a binary classification problem plots the true positive rate as a function of the false positive
rate. The points of the curve are obtained by sweeping the classification threshold from the
most positive classification value to the most negative. For a fully random classification,
the ROC curve is a straight line connecting the origi(tpl). Any improvement over
random classification results in an ROC curve at least partially above this straight line. The
AUC is defined as the area under the ROC curve.

Consider a binary classification task with positive examples and negative examples.

Let C be a fixed classifier that outputs a strictly ordered list for these examples. Let
x1, ..., T, be the output of”' on the positive examples and, .. ., y,, its output on the
negative examples and denote ly the indicator function of a seX. Then, the AUC, A,
associated t¢’ is given by:
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which is the value of th&Vilcoxon-Mann-Whitney statist[@¢0]. Thus, the AUC is closely
related to the ranking quality of the classification. It can be viewed as a measure based on
pairwise comparisons between classifications of the two classes. It is an estimate of the
probability P,,, that the classifier ranks a randomly chosen positive example higher than
a negative example. With a perfect ranking, all positive examples are ranked higher than
the negative ones andl = 1. Any deviation from this ranking decreases the AUC, and the
expected AUC value for a random ranking is 0.5.

A:

3 Overview of Related Work

This section briefly describes some previous distribution-dependent approaches presented
in the statistical literature to derive confidence intervals for the AUC and compares them
to our method. The starting point for these analyses is a formula giving the variance of the
AUC, A, for a fixed distribution of the scord3,, of the positive examples arid, of the
negative examples [10, 1]:

A1 = A) + (m = 1)(Pray — A%) + (n = 1)(Payy — A%)

)
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whereP ., is the probability that the classifier ranks two randomly chosen positive exam-
ples higher than a negative one, dPyg,, the probability that it ranks two randomly chosen
negative examples lower than a positive one. To compute the variance exactly using Equa-
tion 2, the distribution®, andP, must be known.

Hanley and McNeil [10] argue in favor of exponential distributions, loosely claiming that
this upper-bounds the variance of normal distributions with various means and ratios of

variances. They show that for exponential distributiths, = ;2; and P, = 1{%.
The resulting confidence intervals are of course relatively tight, but their validity is ques-
tionable since they are based on a strong assumption about the distributions of the positive

and negative scores that may not hold in many cases.

An alternative considered by several authors to the exact computation of the variance is to
determine instead the maximum of the variance over all possible continuous distributions
with the same expected value of the AUC. For all such distributions, one can &rd

n and compute the expected AUC and its variance. The maximum variance is denoted by
o2 . andis given by [5, 2]

. AQ-4) _ 1 -

min{m,n} ~ 4min{m,n}

max

Unfortunately, this often yields loose confidence intervals of limited practical use.

Our approach for computing the mean and variance of the AUC is distribution-independent
and inspired by the machine learning literature where analyses typically center on the error
rate. We require only that the error rate be measured and compute the mean and variance of
the AUC over all distribution®,, andP,, that maintain the same error rate. Our approach

is in line with that of [5, 2] but it crucially avoids considering the maximum of the vari-
ance. We show that it is possible to compute directly the mean and variance of the AUC
assigning equal weight to all the possible distributions. Of course, one could argue that not
all distributionsP, andP,, are equally probable, but since these distributions are highly
problem-dependent, we find it risky to make any general assumption on the distributions
and thereby limit the validity of our results. Our approach is further justified empirically
by the experiments reported in the last section.

4 Combinatorial Analysis

The analysis of the statistical properties of the AUC given a fixed error rate requires various
combinatorial calculations. This section describes several of the combinatorial identities
that are used in our computation of the confidence intervals. Foral, let X, (k, m, n)

be defined by:
k
M\ (M’
Xq(k,ﬂl,ﬂ)—zxq(x)(x/) (4)
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whereM =m — (k— ) +xz, M' =n+ (k — x) — z, andz’ = k — z. In previous work,
we derived the following two identities which we used to compute the expected value of
the AUC [4]:

Xo(k,m,n):i(n+m+1) X1 (k,m,n) :Xk: (km)(m”)+k<n+m+1)

x 2 T
x=0

=0

To simplify the expression of the variance of the AUC, we need to comfiut&, m,n).

Proposition 1 Letk, m, n be non-negative integers such that min{m,n}, then:

k
Xo(k,m,n) = ZPg(k,m,n,x) (m+n—|—1> (5)

X
z=0



where P, is the following 4th-degree polynomial (k, m,n,z) = (k — z)/12(—223 +
222(2m — n + 2k — 4) + 2(—3m? + 3nm + 3m — 5km — 2k% + 2 + k + nk + 6n) +
(3(k — 1)m? — 3nm(k — 1) + 6km + 5m + k*m + 8n + 8 — Ink + 3k + k? + k%n)).

Proof. The proof of the proposition is left to a longer version of this paper. O

5 Expectation and Variance of the AUC

This section presents the expression of the expectation and variance of the AUC for a fixed
error ratek /N assuming that all classifications or rankings witarrors are equiprobable.

For a given classification, there may beg) < x < k, false positive examples. Since the
number of errors is fixed, there até= k — z false negative examples. The expressign
discussed in the previous section representsjittemoment ofx over all classifications

with exactlyk errors. In previous work, we gave the exact expression of the expectation of
the AUC for a fixed number of errois

Proposition 2 ([4]) Assume that a binary classification task with positive examples
and n negative examples is given. Then, the expected value of the AJGver all
classifications wittk errors is given by:

BA 1 (n—m>2<m+n+1>< ko Zi:é(m:%))

m+n dmn m+n Zf;:o (m+”+1

x

Note that the two sums in this expression cannot be further simplified since they are known
not to admit a closed form [9]. We also gave the expression of the variance of the AUC in
terms of the functior¥' defined for allY” by:

S, ()Y
s ()

The following proposition reproduces that result:

F(Y) =

(6)

Proposition 3 ([4]) Assume that a binary classification task with positive examples

andn negative examples is given. Then, the variance of the AUtver all classifica-
z | k—a z | k—=z

tions with & errors is given by:o2(A) = F((1 — =55m)2) — F((1 — 25m))2 4

F( mx2+n(k71)2+(m(m+l)xtgn(;:;)(kfz))72z(k7x)(m+n+1) )

Because of the products of binomial terms, the computation of the variance using this
expression is inefficient even for relatively small valuesrofindn. This expression can
however be reduced using the identities presented in the previous section which leads to
significantly more efficient computations that we have been using in all our experiments.

Corollary 1 ([4]) Assume that a binary classification task withpositive examples and

negative examples is given. Then, the variance of the Al®er all classifications with
i . +n+1)(m+ +n—1)T((m+n—2)Z,—(2m—n+3k—10)Z

k errors is given by (A) = {mintbimtn)(min )7(2(7’:2”’; )Z4=(2m—n )25) |

(m4n+1)(m+n)T(m>—nm+3km—5m+2k>—nk+12—9k) Z» N (m+n+1)%(m—n)*Z3 N

( 1017 %0 48m?2n? 16m2n2
m-+n—+ 121 L
72m2n2 + 144mgn2 with:
sk (e :

x=0

Qo= (m+n+ 1Tk + ((=3n% + 3mn +3m + 1)T — 12(3mn +m +n) — 8)k + (—3m? +
Tm+10n 4+ 3nm 4+ 10)T — 4(3mn+m+n+ 1)

Q1 = Tk + 3(m — 1)TK® + (=30 + 3mn — 3m + 8)T — 6(6mn +m + n))k + (=3m? +
7(m +mn) + 3mn)T — 2(6mn + m + n)



Proof. The expression of the variance given in Proposition 3 requires the computation
of X,(k,m,n), ¢ = 0,1,2. Using the identities giving the expressionsXaf and X; and
Proposition 1, which provides the expressiokaf o2 (A) can be reduced to the expression
given by the corollary. [

6 Theory and Analysis

Our estimate of the confidence interval for the AUC is based on a simple and natural as-
sumption. The main idea for its computation is the following. Assume that a confidence
interval E = [eq, e2] is given for the error rate of a classifi€rover a samples, with the
confidence level — e. This interval may have have been derived from a binomial model of
C, which is a standard assumption for determining a confidence interval for the error rate,
or from any other model used to compute that interval. For a given erroe raté”, or
equivalently for a given number of misclassifications, we can use the expectation and vari-
ance computed in the previous section and Chebyshev’s inequality to predict a confidence
interval A, for the AUC at the confidence levél— €. Since our equiprobable model for

the classifications is independent of the model used to compute the interval of confidence
for the error rate, we can udé and A., e € F, to compute a confidence interval of the
AUC at the level(1 — €)(1 — €).

Theorem 1 Let C be a binary classifier and let be a data sample of siz& with m
positive examples andnegative examplesy = m + n. LetE = [e1, e5] be a confidence
interval for the error rate ofC' over S at the confidence levdl — ¢. Then, for anye’,
0 < ¢ < 1, we can compute a confidence interval for the AUC value of the clasSifégr
the confidence levél — €)(1 — ¢’) that depends only of €/, m, n, and the intervalF.

Proof. Letk; =Ne; andky; = Ney be the number of errors associated to the error rates
e1 andeq, and letlx be the intervall i = [kq, k2]. For a fixedk € Ik, by Propositions

2 and Corollary 1, we can compute the exact value of the expectfidg] and variance
o2(Ay,) of the AUC A4. Using Chebyshev’s inequality, for ayc Ix and anye;, > 0,

p (Ak — E[4] = %) < e (7

whereE[A;] ando(Ay) are the expressions given in Propositions 2 and Corollary 1, which
depend only otk, m, andn. Leta; andas be defined by:

o1 = poin { LA - Lf_jj)} s = e { L] + Lg‘)} ®)

a1 andas only depend ol (i.e., one; andes), and onk, m, andn. Let I, be the
confidence interval defined by = [, o] and lete, = ¢ for all k € Ix. Using the
fact that the confidence interval is independent of our equiprobability model for fixed-k
AUC values and the Bayes' rule:

P(Acly) = Y PAcls|K=FkPK=k) 9)
kER,
> Y PAels|K=FkP(K=k) (10)
kelk
> (1-€¢)) PE=k>(1-¢)(1—¢ (12)
kelk

where we used the property of Eq. 7 and the definitions of the intefyabnd 4. Thus,

14 constitutes a confidence interval for the AUC valueCbht the confidence levéll —
e)(l—¢€). L

In practice, the confidence intervalis often determined as a result of the assumption that
C follows a binomial law. This leads to the following theorem.
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Figure 1:Comparison of the standard deviations for three different methods witht (a)n = 500;

(b) m = 400 andn = 200. The curves are obtained by computing the expected AUC and its standard
deviations for different values of the error rate using the maximum-variance approach (Eq. 3), our
distribution-independent method, and the distribution-dependent approach of Hanley [10].

Theorem 2 Let C be a binary classifier, les' be a data sample of siz€ with m positive
examples and negative examplegy = m + n, and letk, be the number of misclassifica-
tions ofC' on S. Assume thaf’ follows a binomial law, then, for anyg 0 < e < 1, we can
compute a confidence interval of the AUC value of the clasgifiat the confidence level
1 — e that depends only of kg, m, andn.

Proof.  Assume thatC follows a binomial law with coefficienp. Then, Chebyshev’s

inequality yields:

pl-p) _ 1
Nn2 = 4Nn?

] forms a confidence interval for the

12)

P(|C - E[C]| =) <

ko 1
Thus, B = [§ — 2,/(1- \/ﬁ)N’ Nt 2,/(1—vVI_)N
error rate ofC' at the confidence leve)/1 — e. By Theorem 1, we can compute for the
AUC value a confidence interval atthe leyeél (1 -1 —¢€))(1—(1—+v1—¢€)) =1—¢
depending only om, m, n, and the interval, i.e., ko, N = m + n, ande. Ll
For largeN, we can use the normal approximation of the binomial law to determine a finer
interval E. Indeed, for largeV,

P(|C - E[C]| = n) < 2®(2VNn) (13)
C 1-T—< —1 pm
with ®(u) = [ &2 g, Thus, B =[5 — & ) e T s the

confldence mterval for the error rate at the confidence lgiel e.

For simplicity, in the proof of Theorem 2, was chosen to be a constant & ¢’) but, in
general, it can be another function/ofeading to tighter confidence intervals. The results
presented in the next section were obtained with= ag exp((k — kg)?/2a?), whereag
anda, are constants selected so that the inequality 11 be verified.

7 Experiments and Comparisons

The analysis in the previous section provides a principled method for computing a confi-
dence interval of the AUC value of a class@rat the confidence levédl — ¢ that depends

only onk,n andm. As already discussed, other expressions found in the statistical liter-
ature lead to either too loose or unsafely narrow confidence intervals based on question-
able assumptions on the probability functidds andP,, [10, 15]. Figure 1 shows a
comparison of the standard deviations obtained using the maximum-approach (Eq. 3), the
distribution-dependent expression from [10], and our distribution-independent method for



NAME m+n n AUC k Tindep ona Odep O'max

pima 368 0.63 0.70 0.24 0.0297 0.0440 0.0269 0.0392
yeast 700 0.67 0.63 0.26 0.0277 0.0330 0.0215 0.0317
credit 303 0.54 087 0.13 0.0176 0.0309 0.0202 0.0281

internet-ads 1159 0.17 0.85 0.05 0.0177 0.0161 0.0176 0.0253
page-blocks 2473 0.10 0.84 0.03 0.0164 0.0088 0.0161 0.0234
ionosphere 201 037 0.85 0.13 0.0271 0.0463 0.0306 0.0417

Table 1:Accuracy and AUC values for AdaBoost [8] and estimated standard deviations for several
datasets from the UC Irvine repositorgindep is a distribution-independent standard deviation ob-
tained using our method (Theorem 2} is given by Eq. (2) with the values of, P,,, andP .,
derived from data.oqep is the distribution-dependent standard deviation of Hanley [10], which is
based on assumptions that may not always haldy is defined by Eq. (3). All results were obtained

on a randomly selected test set of sizet n.

various error rates. For, = n = 500, our distribution-independent method consistently
leads to tighter confidence intervals (Fig. 1 (a)). It also leads to tighter confidence inter-
vals for AUC values more tharY5 for the uneven distributiom: = 400 andn = 200

(Fig. 1 (b)). For lower AUC values, the distribution-dependent approach produces tighter
intervals, but its underlying assumptions may not hold.

A different comparison was made using several datasets available from the UC Irvine repos-
itory (Table 1). The table shows that our estimates of the standard deviatigr$ ée in
general close to or tighter than the distribution-dependent standard devigfjohHanley

[10]. This is despite we do not make any assumption about the distributions of positive
and negative examples. In contrast, Hanley's method is based on specific assumptions
about these distributions. Plots of the actual ranking distribution demonstrate that these
assumptions are often violated however. Thus, the relatively good performance of Han-
ley’'s approach on several data sets can be viewed as fortuitous and is not general. Our
distribution-independent method provides tight confidence intervals, in some cases tighter
than those derived from 4, in particular because it exploits the information provided by

the error rate. Our analysis can also be used to determine if the AUC values produced by
two classifiers are statistically significant by checking if the AUC value of one falls within
the confidence interval of the other.

8 Conclusion

We presented principled techniques for computing useful confidence intervals for the AUC
from simple parameters: the error rate, and the negative and positive sample sizes. We
demonstrated the practicality of these confidence intervals by comparing them to previous
approaches in several tasks. We also derived the exact expression of the variance of the
AUC for a fixedk, which can be of interest in other analyses related to the AUC.

The Wilcoxon-Mann-Whitney statistic is a general measure of the quality of a ranking that
is an estimate of the probability that the classifier ranks a randomly chosen positive ex-
ample higher than a negative example. One could argue that accuracy at the top or the
bottom of the ranking is of higher importance. This, however, contrarily to some belief,

is already captured to a certain degree by the definition of the Wilcoxon-Mann-Whitney
statistic which penalizesiore errors at the top or the bottom of the ranking. It is how-
ever an interesting research problem to determine how to incorporate this bias in a stricter
way in the form of a score-specific weight in the ranking measure, a weighted Wilcoxon-
Mann-Whitney statistic, or how to compute the corresponding expected value and standard
deviation in a general way and design machine learning algorithms to optimize such a mea-



sure. A preliminary analysis suggests, however, that treutalon of the expectation and

the variance are likely to be extremely complex in that case. Finally, it could also be in-
teresting but difficult to adapt our results to the distribution-dependent case and compare
them to those of [10].
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