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Abstract

We consider the problem of recovering an underwater image distorted by
surface waves. A large amount of video data of the distorted image is
acquired. The problem is posed in terms of finding an undistorted im-
age patch at each spatial location. This challenging reconstruction task
can be formulated as a manifold learning problem, such that the center
of the manifold is the image of the undistorted patch. To compute the
center, we present a new technique to estimate global distances on the
manifold. Our technique achieves robustness throughconvex flowcom-
putations and solves the “leakage” problem inherent in recent manifold
embedding techniques.

1 Introduction

Consider the following problem. A pool of water is observed by a stationary video camera
mounted above the pool and looking straight down. There are waves on the surface of the
water and all the camera sees is a series of distorted images of the bottom of the pool,
e.g. Figure 1. The aim is to use these images to recover the undistorted image of the pool
floor – as if the water was perfectly still. Besides obvious applications in ocean optics and
underwater imaging [1], variants of this problem also arise in several other fields, including
astronomy (overcoming atmospheric distortions) and structure-from-motion (learning the
appearance of a deforming object). Most approaches to solve this problem try to model the
distortions explicitly. In order to do this, it is critical not only to have a good parametric
model of the distortion process, but also to be able to reliably extract features from the data
to fit the parameters. As such, this approach is only feasible in well understood, highly
controlled domains. On the opposite side of the spectrum is a very simple method used in
underwater imaging: simply, average the data temporally. Although this method performs
surprisingly well in many situations, it fails when the structure of the target image is too
fine with respect to the amplitude of the wave (Figure 2).

In this paper we propose to look at this difficult problem from a more statistical angle. We
will exploit a very simple observation: if we watch a particular spot on the image plane,
most of the time the picture projected there will be distorted. But once in a while, when
the water just happens to be locally flat at that point, we will be looking straight down
and seeing exactly the right spot on the ground. If we can recognize when this happens
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Figure 1:Fifteen consecutive frames from the video. The experimental setup involved: a transparent
bucket of water, the cover of a vision textbook “Computer Vision/A Modern Approach”.

Figure 2:Ground truth image and reconstruction results using mean and median

and snap the right picture at each spatial location, then recovering the desired ground truth
image would be simply a matter of stitching these correct observations together. In other
words, the question that we will be exploring in this paper is notwhereto look, butwhen!

2 Problem setup

Let us first examine the physical setup of our problem. There is a “ground truth” imageG
on the bottom of the pool. Overhead, a stationary camera pointing downwards is recording
a video streamV . In the absence of any distortionV (x, y, t) = G(x, y) at any timet.
However, the water surface refracts in accordance with Snell’s Law. Let us consider what
the camera is seeing at a particular pointx on the CCD array, as shown in Figure 3(c)
(assume 1D for simplicity). If the normal to the water surface directly underneathx is
pointing straight up, there is no refraction andV (x) = G(x). However, if the normal is
tilted by angleθ1, light will bend by the amountθ2 = θ1 − sin−1 ( 1

1.33
sin θ1), so the

camera pointV (x) will see the light projected fromG(x + dx) on the ground plane. It
is easy to see that the relationship between the tilt of the normal to the surfaceθ1 and the
displacementdx is approximately linear (dx≈ 0.25θ1h using small angle approximation,
whereh is the height of the water). This means that, in 2D, what the camera will be seeing
over time at pointV (x, y, t) are points on the ground plane sampled from a disk centered at
G(x, y) and with radius related to the height of the water and the overall roughness of the
water surface. A similar relationship holds in the inverse direction as well: a pointG(x, y)
will be imaged on a disk centered aroundV (x, y).

What about the distribution of these sample points? According to Cox-Munk Law [2], the
surface normals of rough water are distributed approximately as a Gaussian centered around
the vertical, assuming a large surface area and stationary waves. Our own experiments,
conducted by hand-tracking (Figure 3b), confirm that the distribution, though not exactly
Gaussian, is definitely unimodal and smooth.

Up to now, we only concerned ourselves with infinitesimally small points on the image
or the ground plane. However, in practice, we must have something that we can compute
with. Therefore, we will make an assumption that the surface of the water can be locally
approximated by a planar patch. This means that everything that was true for points is now
true for local image patches (up to a small affine distortion).



3 Tracking via embedding

From the description outlined above, one possible solution emerges. If the distribution of a
particular ground point on the image plane is unimodal, then one could track feature points
in the video sequence over time. Computing their mean positions over the entire video will
give an estimate of their true positions on the ground plane. Unfortunately, tracking over
long periods of time is difficult even under favorable conditions, whereas our data is so fast
(undersampled) and noisy that reliable tracking is out of the question (Figure 3(c)).

However, since we have a lot of data, we can substitute smoothness in time withsmoothness
in similarity – for a given patch we are more likely to find a patch similar to itsomewhere
in time, and will have a better chance to track the transition between them. An alternative
to tracking the patches directly (which amounts to holding the ground patchG(x, y) fixed
and centering the image patchesV (x+dxt, y+dyt) on top of it in each frame), is to fix the
image patchV (x, y) in space and observe the patches fromG(x + dxt, y + dyt) appearing
in this window. We know that this set of patches comes from a disk on the ground plane
centered around patchG(x, y) – our goal. If the disk was small enough compared to the
size of the patch, we could just cluster the patches together, e.g. by using translational
EM [3]. Unfortunately, the disk can be rather large, containing patches with no overlap
at all, thus making only the local similarity comparisons possible. However, notice that
our set of patches lies on a low-dimensional manifold; in fact we know precisely which
manifold – it’s the disk on the ground plane centered atG(x, y)! So, if we could use the
local patch similarities to find an embedding of the patches inV (x, y, t) on this manifold,
the center of the embedding will hold our desired patchG(x, y).

The problem of embedding the patches based on local similarity is related to the recent
work in manifold learning [4, 5]. Basic ingredients of the embedding algorithms are: defin-
ing a distance measure between points, and finding an energy function that optimally places
them in the embedding space. The distance can be defined as all-pairs distance matrix, or
as distance from a particular reference node. In both cases, we want the distance function
to satisfy some constraints to model the underlying physical problem.

The local similarity measure for our problem turned out to be particularly unreliable, so
none of the previous manifold learning techniques were adequate for our purposes. In the
following section we will describe our own, robust method for computing a global distance
function and finding the right embedding and eventually the center of it.
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Figure 3: (a) Snell’s Law (b)-(c) Tracking points of the bottom of the pool: (b) the tracked position
forms a distribution close to a Gaussian, (c): a vertical line of the image shown at different time
instances (horizontal axis). The discontinuity caused by rapid changes makes the tracking infeasible.

4 What is the right distance function?

Let I = {I1, . . . , In} be the set of patches, whereIt = V (x, y, t) and x =
[xmin, xmax], y = [ymin, ymax] are the patch pixel coordinates. Our goal is to find a
centerpatch to represent the setI. To achieve this goal, we need a distance function



d : I × I → IR such thatd(Ii, Ij) < d(Ii, Ik) implies thatIj is more similar toIi thanIk.
Once we have such a measure, the center can be found by computing:

I∗ = arg min
Ii∈I

∑

Ij∈I

d(Ii, Ij) (1)

Unfortunately, the measurable distance functions, such as Normalized Cross Correlation
(NCC) are only local. A common approach is to design a global distance function using
the measurable local distances andtransitivity [6, 4]. This is equivalent to designing a
global distance function of the form:

d(Ii, Ij) =

{

dlocal(Ii, Ij), if dlocal(Ii, Ij) ≤ τ
dtransitive(Ii, Ij), otherwise. (2)

wheredlocal is a local distance function,τ is a user-specified threshold anddtransitive

is a global, transitive distance function which utilizesdlocal. The underlying assumption
here is that the members ofI lie on a constraint space (or manifold)S. Hence, a local
similarity function such asNCC can be used to measure local distances on the manifold.
An important research question in machine learning is to extend the local measurements
into global ones, i.e. to designdtransitive above.

One method for designing such a transitive distance function is to build a graphG = (V,E)
whose vertices correspond to the members ofI. The local distance measure is used to place
edges which connect only very similar members ofI. Afterwards, the length of pairwise
shortest paths are used to estimate the true distances on the manifoldS. For example, this
method forms the basis of the well-known Isomap method [4].

Unfortunately, estimating the distancedtransitive(·, ·) using shortest path computations is
not robust to errors in the local distances – which are very common. Consider a patch that
contains the letter A and another one that contains the letter B. Since they are different
letters, we expect that these patches would be quite distant on the manifoldS. However,
among the A patches there will inevitably be a very blurry A that would look quite similar
to a very blurry B producing an erroneous local distance measurement. When the transitive
global distances are computed using shortest paths, a single erroneous edge will single-
handedly causeall the A patches to be much closer toall the B patches, short-circuiting
the graph and completely distorting all the distances.

Such errors lead to theleakage problemin estimating the global distances of patches. This
problem is illustrated in Figure 4. In this example, our underlying manifoldS is a triangle.
Suppose our local distance function erroneously estimates an edge between the corners of
the triangle as shown in the figure. After the erroneous edge is inserted, the shortest paths
from the top of the triangleleak through this edge. Therefore, the shortest path distances
will fail to reflect the true distance on the manifold.

5 Solving the leakage problem

Recall that our goal is to find the center of our data set as defined in Equation 1. Note that,
in order to compute the center we do not need all pairwise distances. All we need is the
quantitydI(Ii) =

∑

Ij∈I
d(Ii, Ij) for all Ii.

The leakage problem occurs when we compute the valuesdI(Ii) using the shortest path
metric. In this case, even a single erroneous edge may reduce the shortest paths from many
different patches toIi – changing the value ofdI(Ii) drastically. Intuitively, in order to
prevent the leakage problem we must prevent edges from getting involved in many shortest
path computations to the same node (i.e. leaking edges). We can formalize this notion by
casting the computation as a network flow problem.



Let G = (V,E) be our graph representation such that for each patchIi ∈ I, there is a
vertexvi ∈ V . The edge setE is built as follows: there is an edge(vi, vj) if dlocal(Ii, Ij)
is less than a threshold. Theweightof the edge(vi, vj) is equal todlocal(Ii, Ij).

To compute the valuedI(Ii), we build a flow network whose vertex set is alsoV . All
vertices inV −{vi} are sources, pushing unit flow into the network. The vertexvi is a sink
with infinite capacity. The arcs of the flow network are chosen using the edge setE. For
each edge(vj , vk) ∈ E we add the arcsvj → vk andvk → vj . Both arcs have infinite
capacity and the cost of pushing one unit of flow on either arc is equal to the weight of
(vj , vk), as shown in Figure 4 left (top and bottom). It can easily be seen that the minimum
cost flow in this network is equal todI(Ii). Let us call this network which is used to
computedI(Ii) asNW (Ii).

The crucial factor in designing such a flow network is choosing the rightcostandcapacity.
Computing the minimum cost flow onNW (Ii) not only gives usdI(Ii) but also allows us
to compute how many times an edge is involved in the distance computation: the amount of
flow through an edge is exactly the number of times that edge is used for the shortest path
computations. This is illustrated in Figure 4 (box A) whered1 units of cost is charged for
each unit of flow through the edge(u,w). Therefore, if we prevent too much flow going
through an edge, we can prevent the leakage problem.
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Figure 4:The leakage problem.Left: Equivalence of shortest path leakage and uncapacitated flow
leakage problem.Bottom-middle: After the erroneous edge is inserted, the shortest paths from the
top of the triangle to vertexv go through this edge.Boxes A-C:Alternatives for charging a unit of
flow between nodesu andw. The horizontal axis of the plots is the amount of flow and the vertical
axis is the cost.Box A: Linear flow. The cost of a unit of flow isd1 Box B: Convex flow. Multiple
edges are introduced between two nodes, with fixed capacity, and convexly increasing costs. The cost
of a unit of flow increases fromd1 to d2 and then tod3 as the amount of flow fromu to w increases.
Box C: Linear flow with capacity. The cost isd1 until a capacity ofc1 is achieved and becomes
infinite afterwards.

One might think that the leakage problem can simply be avoided by imposing capacity
constraints on the arcs of the flow network (Figure 4, box C). Unfortunately, this is not
very easy. Observe that in the minimum cost flow solution of the networkNW (Ii), the
amount of flow on the arcs will increase as the arcs get closer toIi. Therefore, when we are
setting up the networkNW (Ii), we must adaptively increase the capacities of arcs “closer”
to the sinkvi – otherwise, there will be no feasible solution. As the structure of the graph
G gets complicated, specifying this notion of closeness becomes a subtle issue. Further,
the structure of the underlying spaceS could be such that some arcs inG must indeed



carry a lot of flow. Therefore imposing capacities on the arcs requires understanding the
underlying structure of the graphG as well as the spaceS – which is in fact the problem
we are trying to solve!

Our proposed solution to the leakage problem uses the notion of aconvex flow. We do not
impose a capacity on the arcs. Instead, we impose a convex cost function on the arcs such
that the cost of pushing unit flow on arca increases as the total amount of flow througha
increases. See Figure 4, box B.

This can be achieved by transforming the networkNW (Ii) to a new networkNW ′(Ii).
The transformation is achieved by applying the following operation on each arc in
NW (Ii): Let a be an arc fromu to w in NW (Ii). In NW ′(Ii), we replacea by k
arcsa1, . . . , ak. The costs of these arcs are chosen to be uniformly increasing so that
cost(a1) < cost(a2) < . . . < cost(ak). The capacity of arcak is infinite. The weights
and capacities of the other arcs are chosen to reflect the steepness of the desired convexity
(Figure 4, box B). The network shown in the figure yields the following function for the
cost of pushingx units of flow through the arc:

cost(x) =

{

d1x, if 0 ≤ x ≤ c1

d1c1 + d2(x − c1), if c1 ≤ x ≤ c2

d1c1 + d2(c2 − c1) + d3(x − c1 − c2), if c2 ≤ x
(3)

The advantage of this convex flow computation is twofold. It does not require putting
thresholds on the arcs a-priori. It is always feasible to have as much flow on a single arc as
required. However, the minimum cost flow will avoid the leakage problem because it will
be costly to use an erroneous edge to carry the flow from many different patches.

5.1 Fixing the leakage in Isomap

As noted earlier, the Isomap method [4] uses the shortest path measurements to estimate
a distance matrixM . Afterwards,M is used to find an embedding of the manifoldS via
MDS.

As expected, this method also suffers from the leakage problem as demonstrated in Fig-
ure 5. The top-left image in Figure 5 shows our ground truth. In the middle row, we
present an embedding of these graphs computed using Isomap which uses the shortest path
length as the global distance measure. As illustrated in these figures, even though isomap
does a good job in embedding the ground truth when there are no errors, the embedding
(or manifold) collapses after we insert the erroneous edges. In contrast, when we use the
convex-flow based technique to estimate the distances, we recover the true embedding –
even in the presence of erroneous edges (Figure 5 bottom row).

6 Results

In our experiments we used800 image frames to reconstruct the ground truth image. We
fixed 30 × 30 size patches in each frame at the same location (see top of Figure 7 for two
sets of examples), and for every location we found the center. The middle row of Figure
7 shows embeddings of the patches computed using the distance derived from the convex
flow. The transition path and the morphing from selected patches (A,B,C) to the center
patch (F) is shown at the bottom.

The embedding plot on the left is considered an easier case, with a Gaussian-like embed-
ding (the graph is denser close to the center) and smooth transitions between the patches in
a transition path. The plot to the right shows a more difficult example, when the embedding
has no longer a Gaussian shape, but rather a triangular one. Also note that the transitions
can have jumps connecting non-similar patches which are distant in the embedding space.
The two extremes of the triangle represent the blurry patches, which are so numerous and
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Figure 5: Top row: Ground truth. After sampling points from a triangular disk, a kNN graph is
constructed to provide a local measure for the embedding (left). Additional erroneous edgesAC
andCB are added to perturb the local measure (middle, right).Middle row: Isomap embedding.
Isomap recovers the manifold for the error-free cases (left). However, all-pairs shortest path can
“leak” throughAC andCB, resulting a significant change in the embedding.Bottom row: Convex
flow embedding. Convex flow penalized too many paths going through the same edge – correcting
the leakage problem. The resulting embedding is more resistant to perturbations in the kNN graph.

very similar to each other, so that they are no longer treated as noise or outliers. This
results in ‘folding in’ the embedding and thus, moving estimated the center towards the
blurry patches. To solve this problem, we introduced additional two centers, which ideally
would represent the blurry patches, allowing the third center to move to the ground truth.

Once we have found the centers for all patches we stitched them together to form the
complete reconstructed image. In case of three centers, we use overlapping patches and
dynamic programming to determine the best stitching. Figure 6 shows the reconstruction

Figure 6:Comparison of reconstruction results of different methods using the first 800 frames,top:
patches stitched together which are closest to mean (left) and median (right),bottom: our results
using a single (left) and three (right) centers

result of our algorithm compared to simple methods of taking the mean/median of the
patches and finding the closest patch to them. The bottom row shows our result for a single
and for three center patches. The better performance of the latter suggests that the two new
centers relieve the correct center from the blurry patches.

For a graph withn vertices andm edges, the minimum cost flow computation takes
O(m log n(m + n log n)) time, therefore finding the centerI∗ of one set of patches can be
done inO(mn log n(m + n log n)) time. Our flow computation is based on the min-cost
max-flow implementation by Goldberg [7]. The convex function used in our experiments
was as described in Equation 3 with parametersd1 = 1, c1 = 1, d2 = 5, c2 = 9, d3 = 50.
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7 Conclusion

In this paper, we studied the problem of recovering an underwater image from a video
sequence. Because of the surface waves, the sequence consists of distorted versions of
the image to be recovered. The novelty of our work is in the formulation of the recon-
struction problem as a manifold embedding problem. Our contribution also includes a new
technique, based onconvex flows, to recover global distances on the manifold in a robust
fashion. This technique solves the leakage problem inherent in recent embedding methods.
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