Most machine learning researchers perform quantitative experiments to estimate generalization error and compare algorithm performances. In order to draw statistically convincing conclusions, it is important to esti- mate the uncertainty of such estimates. This paper studies the estimation of uncertainty around the K-fold cross-validation estimator. The main theorem shows that there exists no universal unbiased estimator of the variance of K-fold cross-validation. An analysis based on the eigende- composition of the covariance matrix of errors helps to better understand the nature of the problem and shows that naive estimators may grossly underestimate variance, as con£rmed by numerical experiments.