An important issue in applying SVMs to speech recognition is the ability to classify variable length sequences. This paper presents extensions to a standard scheme for handling this variable length data, the Fisher score. A more useful mapping is introduced based on the likelihood-ratio. The score-space defined by this mapping avoids some limitations of the Fisher score. Class-conditional gen(cid:173) erative models are directly incorporated into the definition of the score-space. The mapping, and appropriate normalisation schemes, are evaluated on a speaker-independent isolated letter task where the new mapping outperforms both the Fisher score and HMMs trained to maximise likelihood.