Online Robust Reinforcement Learning with Model Uncertainty

Part of Advances in Neural Information Processing Systems 34 pre-proceedings (NeurIPS 2021)

Paper Supplemental

Bibtek download is not available in the pre-proceeding


Yue Wang, Shaofeng Zou


Robust reinforcement learning (RL) is to find a policy that optimizes the worst-case performance over an uncertainty set of MDPs. In this paper, we focus on model-free robust RL, where the uncertainty set is defined to be centering at a misspecified MDP that generates samples, and is assumed to be unknown. We develop a sample-based approach to estimate the unknown uncertainty set, and design robust Q-learning algorithm (tabular case) and robust TDC algorithm (function approximation setting), which can be implemented in an online and incremental fashion. For the robust Q-learning algorithm, we prove that it converges to the optimal robust Q function, and for the robust TDC algorithm, we prove that it converges asymptotically to some stationary points. Unlike the results in [Roy et al., 2017], our algorithms do not need any additional conditions on the discount factor to guarantee the convergence. We further characterize the finite-time error bounds of the two algorithms, and show that both the robust Q-learning and robust TDC algorithms converge as fast as their vanilla counterparts (within a constant factor). Our numerical experiments further demonstrate the robustness of our algorithms. Our approach can be readily extended to robustify many other algorithms, e.g., TD, SARSA, and other GTD algorithms.