
A Theoretical Results

A.1 τ -BALD

Theorem 1. Under the following assumptions:

1. Unconfoundedness (Y0,Y1) ⊥⊥ T | X;

2. Consistency Y | T = Yt;

3. Y1 and Y0, when conditioned on realizations x of the r.v. X and t of the r.v. T, are
independent-normally distributed or joint-normally distributed r.v.s.

4. µ̂ω(x, t) is a consistent estimator of E[Y | T = t,X = x]

the information gain for Ω if we could observe a label for the difference in potential outcomes Y1−Y0

given measured covariates x, treatment t and a dataset of observations Dtrain = {xi, ti, yi}ni=1 is
approximated as

I(Y1 −Y0;Ω | x, t,Dtrain) ≈ Var
ω∼p(Ω|Dtrain)

(µ̂ω(x, 1)− µ̂ω(x, 0)) (10)

Proof.
I(Y1 −Y0;Ω | x,Dtrain) = H(Y1 −Y0 | x,Dtrain) − E

p(Ω|Dtrain)

[
H(Y1 −Y0 | x,ω)

]
(11a)

≈ Var(Y1 −Y0 | x,Dtrain) − E
p(Ω|Dtrain)

[
Var(Y1 −Y0 | x,ω)

]
(11b)

= Var
p(Ω|Dtrain)

(
E[Y1 −Y0 | x,ω]

)
(11c)

= Var
p(Ω|Dtrain)

(µ̂ω(x, 1)− µ̂ω(x, 0)) (11d)

In (11a) we adapt the result of Houlsby et al. [18] and express the information gain as the mutual
information between the observable difference in potential outcomes Y1 −Y0 and the parameters
Ω; given observed covariates x, treatment t, and training data Dtrain = {(xi, ti, yi)}ntrain

i=1 . In (11b)
we apply lemma 1.1 to the r.h.s terms of (11a). We then use the result in Jesson et al. [20] and move
from (11b) to (11c) by application of the law of total variance. Finally, under the consistency and
unconfoundedness assumptions we express the information gain in terms of the identifiable difference
in expected outcomes µ̂ω(x, 1)− µ̂ω(x, 0).

Lemma 1.1. Under the following assumptions:

1. Y1,Y0 are independent-normally distributed or joint-normally distributed r.v.s;

2. With A = Var(Y1−Y0): let |A−1| ≤ 1 and A 6= 0. That is to say, the predictive variance
must be greater than 0 and less than or equal to 2;

H(Y1 −Y0) ≈ Var(Y1 −Y0) (12)

Proof. By assumption 1, Y1 −Y0 is also a normally distributed random variable. By corollary 1.1,

H(Y1 −Y0) =
1

2
+

1

2
log(2πVar(Y1 −Y0)) (13)

So given assumption 2, the first order Taylor polynomial of H(Y1 −Y0) is
1

2
+

1

2
log(2πVar(Y1 −Y0)) ≈ 1

2
+

1

2
(2πVar(Y1 −Y0)− 1)

=
1

2
+ πVar(Y1 −Y0)− 1

2

= πVar(Y1 −Y0)

∝ Var(Y1 −Y0)

(14)
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Corollary 1.1. The entropy of a normally distributed random variable with variance σ2 is 1
2 +

1
2 log(2πσ

2)

A.2 µ-BALD

Theorem 2. Under the following assumptions:

1. Unconfoundedness (Y0,Y1) ⊥⊥ T | X,

2. Consistency Y | T = Yt,

3. Y conditioned on x and t is a normally distributed random variable,

4. µ̂ω(x, t) is a consistent estimator of E[Y | T = t,X = x],

the information gain for Ω when we observe a label for the potential outcome Yt given measured
covariates x, treatment t and a dataset of observations Dtrain = {xi, ti, yi}ni=1 can be approximated
as is

I(Yt;Ω | x, t,Dtrain) ≈
1

2
log

(
Var(Y | x, t,Dtrain)

Eω[Var(Y | x, t,ω)]

)
, (15)

or
I(Yt;Ω | x, t,Dtrain) ≈ Var

ω∼p(Ω|Dtrain)
(µ̂ω(x, t)) . (16)

Equation (15) expresses the information gain as the logarithm of a ratio between predictive and
aleatoric uncertainty in the outcome. Whereas, equation (15) expresses the information gain as a
direct estimate of the epistemic uncertainty.

Proof.

I(Yt;Ω | x, t,Dtrain) = H(Y | x, t,Dtrain)− E
p(Ω|Dtrain)

[H(Y | x, t,ω)] (17a)

=
1

2
log (2πVar(Y | x, t,Dtrain))− E

p(Ω|Dtrain)

1

2
log (2πVar(Y | ω,x, t))

(17b)

≥ 1

2
log (2πVar(Y | x, t,Dtrain))−

1

2
log

(
2π E

p(Ω|Dtrain)
Var(Y | ω,x, t)

)
(17c)

=
1

2
log

(
Var(Y | x, t,Dtrain)

Eω[Var(Y | x, t,ω)]

)
(17d)

I(Yt;Ω | x, t,Dtrain) = H(Y | x, t,Dtrain)− E
p(Ω|Dtrain)

[H(Y | x, t,ω)] (18a)

≈ Var[Y | x, t,Dtrain]− E
p(Ω|Dtrain)

[Var[Y | x, t,ω]] (18b)

= Var
ω∼p(Ω|Dtrain)

(µ̂ω(x, t)) (18c)

In (18a) we express the information gain as the mutual information between the observed potential
outcome Yt and the parameters Ω; given observed covariates x, treatment t, and training data Dtrain.
By consistency, we can drop the superscript on the potential outcome. In (18b) we approximate
the r.h.s terms of (18a) by application of Lemma 1.1. Finally, we can move from (18b) to (18c) by
application of the law of total variance.

Note that for discrete or categorical Y, it is straightforward to evaluate Equation (18a) directly.
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A.3 ρ-BALD

Theorem 3. Under the following assumptions

1. {µ̂ω(x, t) : t ∈ {0, 1}} are instances of the independent-normally distributed or joint-
normally distributed random variables {µ̂t

Ω = E[Y | Ω,T = t,x] : t ∈ {0, 1}},

2. Varω∼p(Ω|Dtrain)(µ̂ω(x, t
′)) > 0 .

Let τ̂ω(x) be a realization of the random variable τ̂Ω = µ̂1
Ω − µ̂0

Ω. The information gain for τ̂Ω if
we observe the label for the potential outcome Yt given measured covariates x, treatment t and a
dataset of observations Dtrain = {xi, ti, yi}ni=1 is approximately

I(Yt; τ̂Ω | x, t,Dtrain) ≈
Varω(τ̂ω(x))

Varω(µ̂ω(x, t′))
,

=
Varω (µ̂ω(x, t))− 2Covω(µ̂ω(x, t), µ̂ω(x, t

′))

Varω (µ̂ω(x, t′))
+ 1,

(19)

where for binary T = t, t′ = (1− t).

Proof.

I(Yt; τ̂Ω | x, t,D) = H(τ̂Ω | x, t,D)−H(τ̂Ω | Yt,x, t,D) (20a)

= H(τ̂Ω | x, t,D)− E
yt∼p(Yt|x,t,D)

H(τ̂Ω | yt,x, t) (20b)

=
1

2
log(2πVar(τ̂Ω))− E

yt∼p(Yt|x,t,D)

[
1

2
log(2πVar(τ̂Ω | yt))

]
(20c)

≥ 1

2
log(2πVar(τ̂Ω))− 1

2
log(2π E

[
Var(τ̂Ω | yt)

]
) (20d)

=
1

2
log

(
Var(τ̂Ω)

E [Var(τ̂Ω | yt)]

)
, (20e)

and we can further expand the fraction to

Var(τ̂Ω | x, t,D)
E [Var(τ̂Ω | yt)]

=
Var(τ̂Ω | x, t,D)

Varω∼p(Ω|D)(µ̂ω(x, t′))
(20f)

=
Varω∼p(Ω|D)(τ̂ω(x) | t)

Varω(µ̂ω(x, t′))
(20g)

=
Varω(µ̂ω(x, 1)− µ̂ω(x, 0) | t)

Varω(µ̂ω(x, t′))
(20h)

=
Varω(µ̂ω(x, t)− µ̂ω(x, t

′))

Varω(µ̂ω(x, t′))
(20i)

=
Varω(µ̂ω(x, t)) + Varω(µ̂ω(x, t

′))− 2Covω(µ̂ω(x, t), µ̂ω(x, t
′))

Varω(µ̂ω(x, t′))
(20j)

=
Varω(µ̂ω(x, t))− 2Covω(µ̂ω(x, t), µ̂ω(x, t

′))

Varω(µ̂ω(x, t′))
+ 1, (20k)

where (20a) by definition of mutual information; (20a)-(20b) from the result of Houlsby et al. [18];
(20b)-(20c) by Assumption 1. and Corollary 1.1; (20c)-(20d) by Jensen’s inequality; (20d)-(20e)
by the logarithmic quotient identity; (20f) by Lemma 3.1; (20f)-(20g) by definition of the variance.
(20g)-(20h) by definition of τ̂ω; (20h)-(20i) by symmetry of the variance of the difference of two
random variables; (20i)-(20j) by the definition of the variance of the difference of two random
variables; and (20j)-(20k) by cancelling terms.
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Lemma 3.1. Under the following assumptions

1. Consistency Y | T = Yt;

2. Unconfoundedness (Y0,Y1) ⊥⊥ T | X;

E
yt∼p(Yt|x,t,D)

[
Var(τ̂Ω | yt)

]
≈ E

yt∼p(Yt|x,t,D)

[
Var

ω∼p(Ω|Dtrain)
(µ̂ω(x, t

′))

]
, (21)

where for binary T = t, t′ = (1− t).

Proof.

Eyt∼p(Yt|x,t,D)

[
Var(τ̂Ω | yt)

]
= E
p(yt)

[
E
p(ω)

[(
τ̂ω − E

p(ω)

[
τ̂ω | yt

])2

| yt
]]

, (22a)

= E
p(yt)

[
E
p(ω)

[(
E[Y1 −Y0 | x,ω]− E

p(ω)

[
E[Y1 −Y0 | x,ω] | yt

])2

| yt
]]

, (22b)

= E
p(yt)

[
E
p(ω)

[(
E[Y1 | x,ω]− E[Y0 | x,ω]− E

p(ω)

[
E[Y1 | x,ω] | yt

]
+ E
p(ω)

[
E[Y0 | x,ω] | yt

])2

| yt
]]

,

(22c)

= E
p(yt)

[
E
p(ω)

[((
E[Y1 | x,ω]− E

p(ω)

[
E[Y1 | x,ω] | yt

])
−
(
E[Y0 | x,ω]− E

p(ω)

[
E[Y0 | x,ω] | yt

]))2

| yt
]]

,

(22d)

= E
p(yt)

[
E
p(ω)

[((
E[Yt | x,ω]− E

p(ω)

[
E[Yt | x,ω] | yt

])
−
(
E[Yt′ | x,ω]− E

p(ω)

[
E[Yt′ | x,ω] | yt

]))2

| yt
]]

,

(22e)

= E
p(yt)

 E
p(ω|yt)

(( E
p(yt|x,ω)

[yt]− E
p(ω|yt)

[
E

p(yt|x,ω)
[yt]

])
−

(
E

p(yt′ |x,ω)

[yt
′
]− E

p(ω|yt)

[
E

p(yt′ |x,ω)

[yt
′
]

]))2
 ,

(22f)

= E
p(yt)

 E
p(ω|yt)



(

E
p(yt|x,ω)

[yt]− E
p(ω|yt)

[
E

p(yt|x,ω)
[yt]

])
︸ ︷︷ ︸

≈ 0

−

(
E

p(yt′ |x,ω)

[yt
′
]− E

p(ω)

[
E

p(yt′ |x,ω)

[yt
′
]

])
2
 ,

(22g)

≈ E
p(yt)

 E
p(ω|yt)

( E
p(yt′ |x,ω)

[yt
′
]− E

p(ω)

[
E

p(yt′ |x,ω)

[yt
′
]

])2
 , (22h)

= E
p(yt)

[
E

p(ω|yt)

[(
µ̂ω(x, t

′)− E
p(ω)

[µ̂ω(x, t
′)]

)2
]]

, (22i)

= E
yt∼p(Yt|x,t,D)

[
Var

ω∼p(Ω|Dtrain)
(µ̂ω(x, t

′))

]
, (22j)

where (22a) by definition of variance; (22a)-(22b) by definition of τ̂ω; (22b)-(22c) by linearity of
expectations; (22c)-(22d) by grouping terms; (22d)-(22e) by symmetry of the square; (22e)-(22f) by
rewriting expectations in terms of densities; (22f)-(22g) the observed potential outcome does not
have an effect on the expectation of the model for the counterfactual outcome; (22g)-(22h) we drop
the term as an approximation as we cannot estimate here how much the expected outcome is going
to change—the conservative assumption is that will not change; (22h)-(22i) by definition of µ̂ω;
(22i)-(22j) by definition of variance;
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B Baselines

B.1 S-type error Information Gain

In their work, Sundin et al. [45] assume that the underlying model is a Gaussian Process (GP) and
also that they have access to the counterfactual outcome. Although GPs are suitable for uncertainty
estimation, they do not scale up to high dimensional datasets (e.g. images). We propose to use Deep
Ensembles and DUE for alleviating the capabilities issues and we modified the objective to be more
suitable for our architecture.

Following the formulation from Houlsby et al. [18], the acquisition strategy becomes
argmaxxH[γ|x,D] − EH[p(θ|D)[γ|x, θ]], where γ(x) = probit−1(− |Ep(τ|x,Dtrain)[τ ]|√

Var(τ |x,Dtrain)
), probit−1(·)

is the cumulative distribution function of normal distribution and p(γ|x,D) = Bernoulli(γ). With
DUE (Deep Kernel Learning method) Deep Ensembles (samples from p(θ|D) we can compute those
terms similarly to how we implemented our BALD objectives.

Below is an example of how this was implemented in PyTorch:

tau_mu = mu1s - mu0s
tau_var = var1s + var0s + 1e-07
gammas = torch.distributions.normal.Normal(0, 1).cdf(

-tau_mu.abs() / tau_var.sqrt()
)
gamma = gammas.mean(-1)
predictive_entropy = dist.Bernoulli(gamma).entropy()
conditional_entropy = dist.Bernoulli(gammas).entropy().mean(-1)
# it can get negative very small number
# because of numerical instabilities
scores = (predictive_entropy - conditional_entropy).clamp_min(1e-07)

C Datasets

C.1 Synthetic Data

We modify the synthetic dataset presented by Kallus et al. [22]. Our dataset is described by the
following structural causal model (SCM):

x := Nx, (23a)
t := Nt, (23b)
y := (2t− 1)x + (2t− 1)− 2 sin(2(2t− 1)x) + 2(1 + 0.5x) +Ny, (23c)

where Nx ∼ N (0, 1), Nt ∼ Bern(sigmoid(2x + 0.5)), and Ny ∼ N (0, 1).

Each random realization of the simulated dataset generates 10000 pool set examples, 1000 validation
examples, and 1000 test examples. In the experiments we report results over 40 random realizations.
The seeds for the random number generators are i, i + 1, and i + 2; {i ∈ [0, 1, . . . , 19]}, for the
training, validation, and test sets, respectively.

C.2 IHDP Data.

Infant Health and Development Program (IHDP) is a semi-synthetic dataset [17, 42] commonly used
in literature to study the performance of causal effect estimation methods. The dataset consists of 747
cases, out of which 139 are assigned in treatment group and 608 in control. Each unit is represented
by 25 covariates describing different aspects of the infants and their mothers. We report results over
200 random realizations of response surface B described by Hill [17].
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C.3 CMNIST Data.

Following the setup from [21], we use a simulated dataset based on MNIST [29]. CMNIST is
described by the following SCM:

x := Nx, (24a)

φ :=

(
clip

(
µNx − µc

σc
;−1.4, 1.4

)
−Minc

)
Maxc −Minc

1.4− -1.4
(24b)

t := Nt, (24c)
y := (2t− 1)φ+ (2t− 1)− 2 sin(2(2t− 1)φ) + 2(1 + 0.5φ) +Ny, (24d)

where Nt (swapping x for φ), and Ny are as described in Appendix C.1. Nx is a sample of an
MNIST image. The sampled image has a corresponding label c ∈ [0, . . . , 9]. µNx is the average
intensity of the sampled image. µc and σc are the mean and standard deviation of the average image
intensities over all images with label c in the MNIST training set. In other words, µc = E[µNx | c]
and σ2

c = Var[µNx | c]. To map the high dimensional images x onto a one-dimensional manifold
φ with domain [−3, 3] above, we first clip the standardized average image intensity on the range
(−1.4, 1.4). Each digit class has its own domain in φ, so there is a linear transformation of the clipped
value onto the range [Minc,Maxc]. Finally, Minc = −2 + 4

10c, and Maxc = −2 + 4
10 (c + 1).

For each random realization of the dataset, the MNIST training set is split into training (n = 35000)
and validation (n = 15000) subsets using the scikit-learn function train_test_split(). The test set is
generated using the MNIST test set (n = 10000). The random seeds are {i ∈ [0, 1, . . . , 19]} for the
10 random realizations generated.

D More Results

Figure 6:
√
εPEHE performance (shaded standard error) for Deep Ensembles based models. (left

to right) synthetic (20 seeds), IHDP (50 seeds) and CMNIST (5 seeds) dataset results, (top to
bottom) comparison with baselines, comparison between BALD objectives. We observe that BALD
objectives outperform the random, γ and propensity acquisition functions significantly, suggesting
that epistemic uncertainty aware methods that target reducible uncertainty can be more sample
efficient.
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Figure 7:
√
εPEHE performance (shaded standard error) for DUE models. (left to right) synthetic

(40 seeds), and IHDP (200 seeds). We observe that BALD objectives outperform the random, γ and
propensity acquisition functions significantly, suggesting that epistemic uncertainty aware methods
that target reducible uncertainty can be more sample efficient.

E Compute

We used a cluster of 8 nodes with 4 GPUs each (16 RTX 2080 and 16 Titan RTX). The total GPU
hours is estimated to be:

8 baselines x (.5 + 1 + 1) days per dataset x (5 ensemble components * 0.25 GPU usage + 1 DUE *
0.3 GPU usage) x 24 hours = 744 GPU hours

Code is written in python. Packages used include PyTorch [35], scikit-learn [36], Ray [32], NumPy,
SciPy, and Matplotlib.

F Model Architectures

For deep ensembles, we use an ensemble of TarNETs [42]. For Due, we append the treatment variable
to the features extracted, then define the GP over that input. Synthetic Architecture

===========================================================
Layer (type:depth-idx) Output Shape
===========================================================
Sequential --

NeuralNetwork: 1-1 [64, 100]
Sequential: 2-1 [64, 100]

Linear: 3-1 [64, 100]
ResidualDense: 3-2 [64, 100]

PreactivationDense: 4-1 [64, 100]
Sequential: 5-1 [64, 100]

Activation: 6-1 [64, 100]
Linear: 6-2 [64, 100]

Identity: 4-2 [64, 100]
ResidualDense: 3-3 [64, 100]

PreactivationDense: 4-3 [64, 100]
Sequential: 5-2 [64, 100]

Activation: 6-3 [64, 100]
Linear: 6-4 [64, 100]

Identity: 4-4 [64, 100]
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ResidualDense: 3-4 [64, 100]
PreactivationDense: 4-5 [64, 100]

Sequential: 5-3 [64, 100]
Activation: 6-5 [64, 100]
Linear: 6-6 [64, 100]

Identity: 4-6 [64, 100]
Activation: 3-5 [64, 100]

Sequential: 4-7 [64, 100]
Identity: 5-4 [64, 100]
LeakyReLU: 5-5 [64, 100]
Dropout: 5-6 [64, 100]

GMM: 1-2 [64, 5]
Linear: 2-2 [64, 5]
Linear: 2-3 [64, 5]
Sequential: 2-4 [64, 5]

Linear: 3-6 [64, 5]
Softplus: 3-7 [64, 5]

===========================================================
Total params: 32,115

IHDP Architecture

==============================================================
Layer (type:depth-idx) Output Shape
==============================================================
Sequential --

TARNet: 1-1 [64, 400]
NeuralNetwork: 2-1 [64, 400]

Sequential: 3-1 [64, 400]
Linear: 4-1 [64, 400]
ResidualDense: 4-2 [64, 400]

PreactivationDense: 5-1 [64, 400]
Sequential: 6-1 [64, 400]

Identity: 5-2 [64, 400]
ResidualDense: 4-3 [64, 400]

PreactivationDense: 5-3 [64, 400]
Sequential: 6-2 [64, 400]

Identity: 5-4 [64, 400]
Sequential: 2-2 [64, 400]

ResidualDense: 3-2 [64, 400]
PreactivationDense: 4-4 [64, 400]

Sequential: 5-5 [64, 400]
Activation: 6-3 [64, 401]
Linear: 6-4 [64, 400]

Sequential: 4-5 [64, 400]
Dropout: 5-6 [64, 401]
Linear: 5-7 [64, 400]

ResidualDense: 3-3 [64, 400]
PreactivationDense: 4-6 [64, 400]

Sequential: 5-8 [64, 400]
Activation: 6-5 [64, 400]
Linear: 6-6 [64, 400]

Identity: 4-7 [64, 400]
Activation: 3-4 [64, 400]

Sequential: 4-8 [64, 400]
Identity: 5-9 [64, 400]
ELU: 5-10 [64, 400]
Dropout: 5-11 [64, 400]

GMM: 1-2 [64, 5]
Linear: 2-3 [64, 5]
Linear: 2-4 [64, 5]
Sequential: 2-5 [64, 5]

Linear: 3-5 [64, 5]
Softplus: 3-6 [64, 5]

==============================================================
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CMNIST Architecture

=============================================================================
Layer (type:depth-idx) Output Shape
=============================================================================
Sequential --

TARNet: 1-1 [200, 100]
ResNet: 2-1 [200, 48]

Sequential: 3-1 [200, 48, 1, 1]
Conv2d: 4-1 [200, 12, 28, 28]
Identity: 4-2 [200, 12, 28, 28]
ResidualConv: 4-3 [200, 12, 28, 28]

Sequential: 5-1 [200, 12, 28, 28]
PreactivationConv: 6-1 [200, 12, 28, 28]
PreactivationConv: 6-2 [200, 12, 28, 28]

Sequential: 5-2 [200, 12, 28, 28]
Dropout2d: 6-3 [200, 12, 28, 28]
Conv2d: 6-4 [200, 12, 28, 28]

ResidualConv: 4-4 [200, 24, 14, 14]
Sequential: 5-3 [200, 24, 14, 14]

PreactivationConv: 6-5 [200, 12, 28, 28]
PreactivationConv: 6-6 [200, 24, 14, 14]

Sequential: 5-4 [200, 24, 14, 14]
Dropout2d: 6-7 [200, 12, 28, 28]
Conv2d: 6-8 [200, 24, 14, 14]

ResidualConv: 4-5 [200, 24, 14, 14]
Sequential: 5-5 [200, 24, 14, 14]

PreactivationConv: 6-9 [200, 24, 14, 14]
PreactivationConv: 6-10 [200, 24, 14, 14]

Sequential: 5-6 [200, 24, 14, 14]
Dropout2d: 6-11 [200, 24, 14, 14]
Conv2d: 6-12 [200, 24, 14, 14]

ResidualConv: 4-6 [200, 48, 7, 7]
Sequential: 5-7 [200, 48, 7, 7]

PreactivationConv: 6-13 [200, 24, 14, 14]
PreactivationConv: 6-14 [200, 48, 7, 7]

Sequential: 5-8 [200, 48, 7, 7]
Dropout2d: 6-15 [200, 24, 14, 14]
Conv2d: 6-16 [200, 48, 7, 7]

ResidualConv: 4-7 [200, 48, 7, 7]
Sequential: 5-9 [200, 48, 7, 7]

PreactivationConv: 6-17 [200, 48, 7, 7]
PreactivationConv: 6-18 [200, 48, 7, 7]

Sequential: 5-10 [200, 48, 7, 7]
Dropout2d: 6-19 [200, 48, 7, 7]
Conv2d: 6-20 [200, 48, 7, 7]

ResidualConv: 4-8 [200, 48, 7, 7]
Sequential: 5-11 [200, 48, 7, 7]

PreactivationConv: 6-21 [200, 48, 7, 7]
PreactivationConv: 6-22 [200, 48, 7, 7]

Sequential: 5-12 [200, 48, 7, 7]
Dropout2d: 6-23 [200, 48, 7, 7]
Conv2d: 6-24 [200, 48, 7, 7]

AdaptiveAvgPool2d: 4-9 [200, 48, 1, 1]
Sequential: 2-2 [200, 100]

ResidualDense: 3-2 [200, 100]
PreactivationDense: 4-10 [200, 100]

Sequential: 5-13 [200, 100]
Activation: 6-25 [200, 49]
Linear: 6-26 [200, 100]

Sequential: 4-11 [200, 100]
Dropout: 5-14 [200, 49]
Linear: 5-15 [200, 100]

ResidualDense: 3-3 [200, 100]
PreactivationDense: 4-12 [200, 100]
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Sequential: 5-16 [200, 100]
Activation: 6-27 [200, 100]
Linear: 6-28 [200, 100]

Identity: 4-13 [200, 100]
Activation: 3-4 [200, 100]

Sequential: 4-14 [200, 100]
Identity: 5-17 [200, 100]
LeakyReLU: 5-18 [200, 100]
Dropout: 5-19 [200, 100]

GMM: 1-2 [200, 5]
Linear: 2-3 [200, 5]
Linear: 2-4 [200, 5]
Sequential: 2-5 [200, 5]

Linear: 3-5 [200, 5]
Softplus: 3-6 [200, 5]

=============================================================================
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Figure 8: PreactivationConv is a convolution layer with LeakyReLU (or ELU when slope is
negative) activation, dropout and spectral norm applied [15, 31]. Similarly, PreactivationDense
is a dense layer with BatchNorm [19], LeakyReLU (or ELU when slope is negative) activation and
spectral norm applied [15, 31]. ResidualConv is the residual convolution layer, defined as Preacti-
vationConv(PreactivationConv(x)) + SpectralNorm(1x1Conv(x)) and ResidualDense
are residual dense layers, defined as PreactivationDense(x)+x).

All experiments were trained using Adam optimizer [24].

F.1 Hyper-parameters

We use ray tune [30] with the hyperopt [6] search algorithm to optimize our network hyper-parameters.
The hyper-parameter search spaces are given in Table 2 and Table 3. The hyper-paramter optimization
objective for each dataset is the expected batch-wise log-likelihood of the validation data for a single
dataset realization with random seed 1331. The final hyper-parameters are given in Table 4 and
Table 5.

Table 2: Hyper-parameter search space for Deep Ensemble
Hyper-parameter Search Space

hidden units [100, 200, 400]
network depth [2, 3, 4]
negative slope [ReLU [2], 0.1, 0.2, ELU [7]]
dropout rate [0.05, 0.1, 0.2, 0.5]
spectral norm [None, 0.95, 1.5, 3.0]
batch size [32, 64, 100, 200]
learning rate [2e-4, 5e-4, 1e-3]
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Table 3: Hyper-parameter search space for DUE
Hyper-parameter Search Space

kernel [RBF, Matern]
ν (Matern) [0.5, 1.5, 2.5]
inducing points [20, 50, 100, 200]
hidden units [100, 200, 400]
network depth [2, 3, 4]
negative slope [ReLU [2], 0.1, 0.2, ELU [7]]
dropout rate [0.05, 0.1, 0.2, 0.5]
spectral norm [None, 0.95, 1.5, 3.0]
batch size [32, 64, 100, 200]
learning rate [2e-4, 5e-4, 1e-3]

Table 4: Training hyper parameters for Deep Ensemble experiments
Parameter Synthetic IHDP CMNIST
dim hidden 100 400 100
dropout 0.0 0.15 0.1
depth 4 3 3
spectral norm 12 0.95 24
learning rate 0.001 0.001 0.001
non-linearity ReLU ELU ReLU

Table 5: Training hyper parameters for DUE experiments
Parameter Synthetic IHDP CMNIST
kernel RBF Matern (ν = 1.5) RBF
inducing points 20 100 100
dim hidden 100 200 200
dropout 0.2 0.1 0.05
depth 3 3 2
batch size 200 100 64
spectral norm 0.95 0.95 3.0
learning rate 0.001 0.001 0.001
non-linearity ReLU ELU ELU
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