
Supplementary Material

In the supplementary material, we have provided the following. Additional related works are discussed
in Appendix A. Further details on the GP-ThreDS algorithm are presented in Appendix B. Proof of
Theorem 1 and all the lemmas are provided in Appendix C. More details on the experiments, as well as
additional experiments are given in Appendix D.

A Additional Related Work

Following the work by [1] on GP-UCB, several extensions have been proposed based on combining GP
with bandit techniques. Representative results include extensions to arbitrary compact metric spaces
[2], contextual bandits [3, 4], parallel observations [5, 6], ordinal models [7], robust optimization [8], and
multi-fidelity observations [9]. In [10], the authors proposed an improved version of GP-UCB with an
improved confidence interval based on a self-normalized concentration inequality that was inspired by
similar results derived in [11] for linear bandits. The query point selection strategy in all these approaches
involves optimizing the UCB over the entire domain through an exhaustive search over a grid of O(t2d)
points at time instant t.

There is a growing body of work in the literature addressing the high cost associated with computing
the posterior distribution (the first computational bottleneck as discussed in the main text). Such
approaches usually involve approximating the GP posterior by using techniques such as adaptive matrix
sketching [12], sparse variational inference [13, 14, 15, 16], random Fourier features [17], linearization [18]
and additivity [19].

As pointed out in the main text, the dominating source of the computational cost is in finding the
maximizer of the UCB score. This issue has not received much attention except in a couple of recent
studies. Mutný et al. [20] considered a problem where the kernel can be approximated with Quadratic
Fourier Features. This additional assumption results in a linear model where the UCB proxy can be
optimized using an efficient global optimizer. However, this assumption practically limits the GP model
to squared exponential kernels. In contrast, the computationally efficient approach proposed in this
work is generally applicable. In [21], the authors proposed an adaptive discretization approach similar to
that of [22, 23]. The key idea is to replace the uniform discretization in GP-UCB with a non-uniform
discretization that adapts to the observed function values so that regions with higher function values
enjoy a finer discretization. Nevertheless, the discretization is still carried over the entire function
domain throughout the learning process, and a global maximization of the UCB score needs to be
carried out at each time instant over a linearly growing set of discrete points. The proposed GP-ThreDS,
however, continuously shrinks the function domain and evaluates the UCB score always on a bounded
set of discrete points. The global maximization objective is also relaxed to determining the existence of
threshold-exceeding points.

Using a tree structure to represent successive partitions of the search domain is a classical approach and
has seen its use in the bandit literature [22, 24, 25]. Such methods are characterized by growing the tree at
nodes with high UCB without pruning the nodes with low values of UCB. This is fundamentally different
from the domain shrinking approach of GP-ThreDS. A different tree-based method was considered in
[26] where the tree structure is dynamic and may not be computationally efficient. Furthermore, they
did not provide any theoretical results.

In contrast to our agnostic regularity assumption on f (being fixed and belonging to an RKHS), a
Bayesian setting was also considered in [1] where f is assumed to be a sample from a GP. The regret
bounds were then provided in high probability with respect to both noise and the randomness in f .

1

For GP-UCB algorithm, [1] proved a tighter O(
√
TγT) bound under the Bayesian setting. Under the

Bayesian setting, [27] built on ideas from [28, 29] to show that GP-TS achieves the same order of regret
as GP-UCB. A Bayesian optimization algorithm for max-value entropy search was shown to enjoy the
same regret order as GP-UCB and GP-TS in [30]. An Ω(

√
T) lower bound on regret was proven under

the Bayesian setting [31, 32]

Several works consider a noise-free setting (εt = 0,∀t) which results in tighter regret bounds. In particu-
lar [33] and [34] studied the noise-free Bayesian optimization for Matérn family of kernels, under simple
and cumulative regret settings, respectively. The simple regret problem can be addressed using pure
exploration algorithms such as epsilon greedy. Under a Bayesian and noise free setting the regret bounds
can further improve to exponential rates [35, 36, 37] .

Practitioners’ approach to Bayesian optimization generally consists of selecting the observation points
based on optimizing the so called acquisition functions (such as UCB in GP-UCB and Thompson sample
in GP-TS). Other notable acquisition functions are GP-EI (that stands for expected improvement) and
GP-PI (that stands for probability of improvement) [38], which are shown to enjoy the same regret
guarantees as GP-UCB [39, 40, 41]. When implementing Bayesian optimization algorithms which are
based on an acquisition function (GP-UCB, TS, PI and EI), a practical idea is to use an off-the-shelf
optimizer to solve the optimization of the acquisition function at each iteration. This method although
can lead to significant gains in computational complexity, invalidates the existing regret bounds. Our
focus in this work has been to introduce a practical algorithm with provable regret guarantees.

B GP-ThreDS Algorithm

In this section, we provide a pseudo code for GP-ThreDS as well as additional details on its implementation.

B.1 GP-ThreDS Pseudo Code

A pseudo code for GP-ThreDS is given in Algorithm 1 below. In the pseudo-code,getHighPerformingNodes
is the routine identifying the high-performing nodes on a tree of depth d that is the routine de-
scribed in Section 3.2 of the main paper. Lυ denotes the set of high-performing nodes returned by
getHighPerformingNodes corresponding to the node υ in Dk.

B.2 Random-walk based search for high-performing nodes

We provide additional details of the random walk based search described in Sec. 3.2.1 in the main paper.
We first provide a pseudo code for the random-walk based search strategy for the case of identifying a
single high-performing node with confidence level δRW in Alg. 2.
As the names suggest, the function root returns the root node of the tree, parent, leftChild and
rightChild return the parent node, the left child and the right child, respectively, of the node in the
argument. SequentialTest is the sequential test routine described in Section 3.2.2 of the main paper. In
addition to the node and threshold, it takes two confidence parameters as input. If only one is provided,
then a sequential test with symmetric confidence levels is carried out as described in the main paper. If
two arguments are provided, then the routine carries out the sequential test with asymmetric confidence
levels as described in Appendix B.3. In this case, the former parameter is considered to be a bound on
the probability of a false negative and the latter parameter a bound on the probability of a false positive.
Lastly, p ∈ (0, 1/2) is the confidence parameter that is associated with the bias of the random walk, δ̂ is
the confidence parameter determined by δRW , whose exact value is given below.
This strategy can be extended for the case of an unknown number of high-performing leaf nodes as
follows. First, each high-performing node is identified using a separate iteration of the routine described
in Alg. 2. Thus, several runs of the random walk are carried out. Secondly, in order to address the issue
of unknown number of high-performing nodes, a termination test at the root node is carried out to deter-
mine whether there is any unidentified high-performing leaf node left. A pseudo code is described in Alg. 3.

In Alg. 3 a high-performing node is identified, it is not considered in future iterations, in order to avoid
redetection. Specifically, while carrying out the sequential test on any node, during the (r+ 1)th iteration,
on any ancestor of the r identified nodes, the points belonging to the identified high-performing nodes
are not considered. This is reflected in updating T to T \ retNode. The parameter δRW is set to δ0/4T

2

Algorithm 1 GP-ThreDS

Input: D0 = {X}, [a1, b1] = [0, 1], δ0 ∈ (0, 1)
// The refining stage in epoch 0 is completed and we have a tree with 2d leaves with

root at D0.

Set k ← 1, ρ1 ← d, τ1 = (a1 + b1)2
repeat

Set Dk ← ∅
// Start Pruning Stage

for υ in Dk−1 do
Set Tυ to be the tree of depth d rooted at the node υ ∈ Dk−1

Lυ ← getHighPerformingNodes(Tυ, τk, δ0/4T)
Dk ← Dk ∪ Lυ

end for
if Dk = ∅ then
// No refining

Dk ← Dk−1, ρk+1 ← ρk
ak+1 ← ak − (bk−ak)

2 and bk+1 ← bk − (bk−ak)
2

else
//Carry refining stage by growing subtrees rooted at υ for all υ ∈ Dk
ak+1 ← τk − c2−αρk/d+1, bk+1 ← bk, ρk+1 ← ρk + d

end if
// Update the threshold

τk+1 = (ak+1 + bk+1)/2
k ← k + 1

until query budget is exhausted

Algorithm 2 Random-walk based strategy for one high-performing node

Input: Binary tree T of depth d, threshold τ , confidence level δRW .
Set currNode ← root(T), terminate ← 0
while terminate 6= 1 do

if depth(currNode) == d then

retLeaf ← SequentialTest(currNode,τ, p, δ̂)
if retLeaf == 1 then
terminate ← 1
retNode ← currNode

else
currNode ← parent(currNode)

end if
else
retLeft ← SequentialTest(leftChild(currNode),τ, p)
if retLeft == 1 then
currNode ← leftChild(currNode)

else
retRight ← SequentialTest(rightChild(currNode),τ, p)
if retRight == 1 then
currNode ← rightChild(currNode)

else
currNode ← parent(currNode)

end if
end if

end if
end while
return retNode

3

and δ̂(r) = δ0
8Tr(r+1)(p−1/2)2 log

(
4dT
δ0

)
.

In the experiments, for a simpler implementation, we have devised the search for high-performing nodes
at depth d, for a given input domain D, by directly searching among the leaf nodes. To be complete, a
pseudo-code is given in Alg. 4 which is slightly different from the pseudo-code given in Alg. 3 regarding
this step.

Algorithm 3 Random-walk based strategy for multiple high-performing node

Input: Binary tree T of depth d, threshold τ , confidence level δRW .
Set currNode ← root(T), terminate ← 0, r ← 1, HPNodes ← ∅, retNode = NULL
while terminate 6= 1 do
if currNode == root(T) then

retRoot ← SequentialTest(currNode,τ, δ̂(r), p)
if retRoot == −1 then
terminate ← 1

end if
else
if depth(currNode) == d then

retLeaf ← SequentialTest(currNode,τ, p, δ̂(r))
if retLeaf == 1 then
retNode ← currNode

else
currNode ← parent(currNode)

end if
else
retLeft ← SequentialTest(leftChild(currNode),τ, p)
if retLeft == 1 then
currNode ← leftChild(currNode)

else
retRight ← SequentialTest(rightChild(currNode),τ, p)
if retRight == 1 then
currNode ← rightChild(currNode)

else
currNode ← parent(currNode)

end if
end if

end if
if retNode ! = NULL then
HPNodes ← HPNodes ∪ retNode
T ← T \ retNode
r ← r + 1
retNode = NULL

end if
end if

end while
return HPNodes

B.3 Sequential test with asymmetric confidence levels

In this section, we describe the sequential test with asymmetric confidence levels. Recall the sequential
test with symmetric confidence level η, given a node/region D and a threshold τ described in Sec.
3.2.2 of the main paper (see Fig. 1). In the asymmetric case, similarly, we assume a threshold τ and a
node/region D is given. We consider two separate cases based on whether false positive rate is higher
than false negative rate or vice versa.

In the first case, let 1− δ̂ denote the confidence level for declaring whether node D is high-performing (i.e.,
it contains a point with function value exceeding τ). Let 1−p denote the confidence level for declaring the

4

Algorithm 4 Heuristic for Updating the domain

Input: Input domain D, discretization Dg, C, confidence parameter δ, x1 ∈ Dg, threshold τ
Set HPNodes ← {} , terminate ← 0, t← 1, tloc ← 1
while terminate 6= 1 do
if max

x∈Dg

µt−1(x) + βt(δ)σt−1(x) ≤ τ − L∆α then

terminate ← 1 // Stop the search
else if max

x∈Dg

µt−1(x)− βt(δ)σt−1(x) ≥ τ then

c∗ ← {c ∈ C : arg maxx∈Dg
µt−1(x)− βt(δ)σt−1(x) ∈ c}

HPNodes ← HPNodes ∪ c∗ // Add the child node to the list of high-performing nodes
C ← C \ c∗ // Update the set of children
Dg ← Dg \ {x : x ∈ c∗} // Update the set of search points
tloc ← 0

else if tloc == tterm then
c∗ ← {c ∈ C : arg maxx∈Dg

µt−1(x)− βt(δ)σt−1(x) ∈ c}
HPNodes ← HPNodes ∪ c∗
C ← C \ c∗
Dg ← Dg \ {x : x ∈ c∗}
tloc ← 0

end if
xt ← arg maxx∈Dg

µt−1(x) + βt(δ)σt−1(x)
Observe yt = f(xt) + εt
Update t← t+ 1, tloc ← tloc + 1 and use the update equations to obtain µt and σt

end while
return HPNodes

node is not high-performing (i.e., it does not contain a point with function value exceeding τ). We assume

that the false positive rate δ̂ is lower than the false negative rate p. In this case the lower confidence bound
and the upper confidence bound used in the test will initially be set to maxx∈Dg

µs−1(x)−βs(δ̂)σs−1(x) ≥ τ
and maxx∈Dg

µs−1(x) + βs(p)σs−1(x) ≤ τ − L∆α, respectively. After S̄(p) steps, the upper confidence

bound used in the test will be set to maxx∈Dg
µs−1(x) + βs(δ̂)σs−1(x) ≤ τ − L∆α. The number of

samples is capped to S̄(δ̂).

If the sequential test outputs a negative value, we have f(x∗Dg
) < τ − L∆α with probability at least

1− p, (the probability will be higher, at least 1− δ̂, if the sequential test outputs a negative value after
S̄(p) steps). If the sequential test outputs a positive value, we have f(x∗Dg

) > τk with a confidence of

1− δ̂. A pseudo code is provided in Alg. 5.

In the case where δ̂ is the false negative rate and p is false positive rate (δ̂ < p), the upper and

lower confidence bounds used in the test are set to maxx∈Dg
µs−1(x) + βs(δ̂)σs−1(x) ≤ τ − L∆α and

maxx∈Dg
µs−1(x)− βs(p)σs−1(x) ≥ τ , respectively. The cap on the number of samples is set to S(δ̂).

In this case, if the sequential test outputs a positive value, we have f(x∗Dg
) > τk with probability of at

least 1− p. If the sequential test outputs a negative value, we have f(x∗Dg
) < τ − L∆α with probability

at least 1− δ̂. The cap on the number of samples is set to S(δ̂) which helps us to focus our attention on
the high confidence result of −1 rather than on the low confidence result of +1 resulting from the cap on
the number of samples. The test may terminate (after S̄(δ̂) steps) and output a potentially erroneous
positive value that is addressed in the analysis by the update rule of the thresholds τk over epochs k. A
pseudo code is provided in Alg. 6.

C Detailed Proofs

In this section, we provide the proof of Theorem 1 in the main paper, as well as all the lemmas that are
used in the proof of theorems. We first state all the lemmas . We then provide the proof of Theorem 1
followed by the proof of the lemmas.

5

• If maxx∈Dg µs−1(x)− βs(η)σs−1(x) ≥ τ , terminate and output +1.

• If maxx∈Dg
µs−1(x) + βs(η)σs−1(x) ≤ τ − L∆α, terminate and output −1.

• Otherwise, query xs = arg maxx∈Dg
µs−1(x) + βs(

δ0
4T)σs−1(x)

• Observe ys = f(xs) + εs and use it to obtain µs and σs. Increment s by 1.

• Repeat until s < S̄(η, L∆α).
If s = S̄(η, L∆α), terminate and output +1.

Figure 1: The local sequential test for the decision problem of finding a τ -exceeding point.

Algorithm 5 Sequential Test with Asymmetric Confidence (low false positive rate)

Input: Discretization Dg, confidence parameters δ̂ and p, x1 ∈ Dg, threshold τ
terminate ← 0, s← 1
while terminate 6= 1 do
if s < S̄(p) then

if maxx∈Dg
µs−1(x)− βs(δ̂)σs−1(x) ≥ τ then

terminate ← 1, retVal ← +1
else if maxx∈Dg µs−1(x) + βs(p)σs−1(x) ≤ τ − L∆α then
terminate ← 1, retVal ← −1

else
Query xs = arg maxx∈Dg

µs−1(x) + βs(
δ0
4T)σs−1(x)

Observe ys = f(xs) + εs and use it to obtain µs and σs
s← s+ 1

end if
end if
if s ≥ S̄(p) and s < S̄(δ̂) then

if maxx∈Dg
µs−1(x)− βs(δ̂)σs−1(x) ≥ τ then

terminate ← 1, retVal ← +1
else if maxx∈Dg µs−1(x) + βs(δ̂)σs−1(x) ≤ τ − L∆α then
terminate ← 1, retVal ← −1

else
Query xs = arg maxx∈Dg

µs−1(x) + βs(
δ0
4T)σs−1(x)

Observe ys = f(xs) + εs and use it to obtain µs and σs
s← s+ 1

end if
end if
if s == S̄(δ̂) then
terminate ← 1, retVal ← +1

end if
end while
return retVal

Lemma 1. For any set of sampling points {x1, x2, . . . , xt} chosen from Dg (under any choice of

algorithm), the following holds:
∑t
s=1 σs−1(xs) ≤ (1 + 2λ)

√
|Dg|t.

Lemma 2. If the local test is terminated by the termination condition at instant S̄(δ2,∆f) defined as

S̄(δ2,∆f) = min

{
t ∈ N : 2(1 + 2λ)βt(δ2)

√
|Dg|
t ≤ ∆f

}
+ 1, then with probability at least 1− δ2, we have

τ − L∆α −∆f ≤ f(x∗Dg
) ≤ τ + ∆f .

Lemma 3. Consider the random walk based routine described in Section B.2 with a local confidence
parameter p ∈ (0, 1/2). Then with probability at least 1 − δ1, one iteration of RWT visits less than
log(d/δ1)
2(p−1/2)2 nodes before termination.

Lemma 4. The number of points in the discretization, |Dg|, for any node D, is upper bounded by a
constant, independent of time. i.e., |Dg| = O(1), ∀ t ≤ T .

Lemma 5. Consider the local test module carried out on a domain D, with a threshold τ and a confidence
parameter p ∈ (0, 1/2), during an epoch k ≥ 1 of GP-ThreDS. If D contains a τ -exceeding point, then

6

Algorithm 6 Sequential Test with Asymmetric Confidence (low false negative rate)

Input: Discretization Dg, confidence parameters δ̂ and p, x1 ∈ Dg, threshold τ
terminate ← 0, s← 1
while terminate 6= 1 do
if s < S̄(δ̂) then

if maxx∈Dg µs−1(x)− βs(p)σs−1(x) ≥ τ then
terminate ← 1, retVal ← +1

else if maxx∈Dg
µs−1(x) + βs(δ̂)σs−1(x) ≤ τ − L∆α then

terminate ← 1, retVal ← −1
else

Query xs = arg maxx∈Dg
µs−1(x) + βs(

δ0
4T)σs−1(x)

Observe ys = f(xs) + εs and use it to obtain µs and σs
s← s+ 1

end if
end if
if s == S̄(δ̂) then
terminate ← 1, retVal ← +1

end if
end while
return retVal

the local test module outputs +1 with probability at least 1− p. If the local test outputs −1, then with
probability at least 1− p, D does not contain a τ -exceeding point.

Lemma 6. Let the interval in which f(x∗) lies, as maintained by the algorithm at the beginning of epoch
k, be denoted by [ak, bk]. Then |bk − ak| ≤ (1 + 2c(ρk/d− 1))2−α(ρk/d−1).

C.1 Proof of Theorem 1

For the regret analysis of GP-ThreDS, we write the overall regret as a sum of two terms, R1 and R2. R1

is the regret incurred by the algorithm until the end of the epoch k0, and R2 is the regret incurred by the
algorithm after k0 epochs are completed, where k0 = max{k : ρk ≤ d

2α log T}. All the following regret
calculations are conditioned on the event that throughout the time horizon, all the random walk modules
identify all the target nodes always correctly. We later show that this event occurs with a high probability.

We begin with the analysis of R1. To obtain an upper bound on R1, we first obtain the regret incurred
at each node and sum that over the different nodes visited by the algorithm in the first k0 epochs. Since
the sampling of the algorithm is independent across different nodes, we can bound the regret incurred
at any node D visited by the algorithm during an epoch k ≤ k0 independent of others. We denote the
discretized version of the domain by Dg and x∗D and x∗Dg

are defined as follows: x∗D = arg maxx∈D f(x)

and x∗Dg
= arg maxx∈Dg

f(x). Recall that the cap on the number of samples in epoch k is defined as

S̄(k)(p) = min

{
t ∈ N : 2

(
B +R

√
2(γt−1 + 1 + log(1/p))

)
(1 + 2λ)

√
|Dg|
t
≤ L∆α

k

}
+ 1.

We focus our attention on any arbitrary node visited during the kth epoch. Let N denote the random
number of queries issued at that node and R̄(N) denote the regret incurred at that node. By the

7

definition of regret, we have,

R̄(N) =

N∑
n=1

f(x∗)− f(xn)

=

N∑
n=1

f(x∗)− τk + L∆α
k + τk − f(x∗Dg

)− L∆α
k + f(x∗Dg

)− f(xn)

=

[
N∑
n=1

f(x∗)− τk + L∆α
k

]
︸ ︷︷ ︸

R(1)(N)

+

[
N∑
n=1

τk − L∆α
k − f(x∗Dg

)

]
︸ ︷︷ ︸

R(2)(N)

+

[
N∑
n=1

f(x∗Dg
)− f(xn)

]
︸ ︷︷ ︸

R(3)(N)

.

where xn is the point sampled by the algorithm at the nth time instant spent at the node. We will bound
each of the three terms separately as outlined in the main text.

We begin with bounding the third term, R(3)(N). Notice that it can be bounded in the same way as
the regret for IGP-UCB since the sampling is always carried out on the grid by maximizing the UCB
score over it. Since xn = arg maxx∈Dg

µn−1(x) + βn(δ0/4T)σn−1(x), therefore, with probability at least
1− δ0/4T , we have

f(x∗Dg
)− f(xn) ≤ µn−1(x∗Dg

) + βn(δ0/4T)σn−1(x∗Dg
)− (µn(xn)− βn(δ0/4T)σn−1(xn))

≤ µn−1(xn) + βn(δ0/4T)σn−1(xn)− µn(xn) + βn(δ0/4T)σn−1(xn)

≤ 2βn(δ0/4T)σn−1(xn).

From Lemma 1, we can conclude that
∑N
n=1 σn−1(xn) ≤ (1 + 2λ)

√
|Dg|N . Using this result along with

the bound on f(x∗Dg
)− f(xn), we obtain

R(3)(N) =

N∑
n=1

f(x∗Dg
)− f(xn)

≤
N∑
n=1

2βn(δ0/4T)σn−1(xn)

≤ 2βN (δ0/4T)

N∑
n=1

σn−1(xn)

≤ 2
(
B +R

√
2(γN−1 + 1 + log(4T/δ0))

)
(1 + 2λ)

√
|Dg|N.

To bound the first term, R(1)(N), we relate the maximum number of samples taken at the node to
f(x∗)− τk + L∆α

k using Lemmas 2 and 6. Recall the definition of S̄(k)(p). It is defined as

S̄(k)(p) = min

{
t ∈ N : 2

(
B +R

√
2(γt−1 + 1 + log(1/p))

)
(1 + 2λ)

√
|Dg|
t
≤ L∆α

k

}
+ 1.

This implies that,

L∆α
k ≤ 2

(
B +R

√
2(γS̄(k)−3 + 1 + log(1/p))

)
(1 + 2λ)

√
|Dg|

S̄(k) − 2

=⇒ 2−αρk/d ≤ 2

c

(
B +R

√
2(γS̄(k) + 1 + log(1/p))

)
(1 + 2λ)

√
3|Dg|
S̄(k)

Notice that f(x∗) lies in [ak, bk] (under the high probability event on which the analysis is conditioned).
Since τk = (ak + bk)/2, therefore |f(x∗)− τk| ≤ |bk − ak|/2. Using this, we can write R(1)(N) as,

8

R(1)(N) =

N∑
n=1

f(x∗)− τk + L∆α
k

≤ (|f(x∗)− τk|+ L∆α
k)N

≤
(
|bk − ak|

2
+ c2−αρk/d

)
N

≤
(

(1 + 2c(ρk/d− 1))2−α(ρk/d−1)−1 + c2−αρk/d
)
N

≤
(

(1 + 2c(ρk/d− 1))2−αρk/d + c2−αρk/d
)
N

≤ 2N

c
(1 + c+ 2c(ρk/d− 1))

(
B +R

√
2(γS̄(k) + 1 + log(1/p))

)
(1 + 2λ)

√
3|Dg|
S̄(k)

≤ 2N

c
(1 + c+

c

α
log2 T)

(
B +R

√
2(γN + 1 + log(1/p))

)
(1 + 2λ)

√
3|Dg|
N

≤ 2

c

(
2 +

c

α
log2 T

)(
B +R

√
2(γN + 1 + log(1/p))

)
(1 + 2λ)

√
3|Dg|N,

where we use Lemma 6 in line 4, definition of k0 in line 7 and the fact that N ≤ S̄. Lastly, we consider
the second term, R(2)(N). Note that it is trivially upper bounded by zero if f(x∗Dg

) > τk − L∆α
k . For

the case when f(x∗Dg
) < τk − L∆α

k , we analyze it like R(1)(N) with a different time instant instead of

S̄(k)(p). Define t1 as

t1 = min

{
t ∈ N : 2

(
B +R

√
2(γt−1 + 1 + log(4T/δ0))

)
(1 + 2λ)

√
|Dg|
t
≤ τk − L∆α

k − f(x∗Dg
)

}
.

From Lemma 2, we know that Pr(N > t1) ≤ δ0
4T

. Therefore, with probability at least 1 − δ0
4T

, we

have N ≤ t1. Conditioning on this event and using a similar sequence of arguments as used in proof of
R(1)(N), we can write

τk − L∆α
k − f(x∗Dg

) ≤ 2
(
B +R

√
2(γt1 + 1 + log(4T/δ0))

)
(1 + 2σ)

√
2|Dg|
t1

.

Thus with probability at least 1− δ0
4T

, we have,

R(2)(N) =

N∑
n=1

τk − L∆α
k − f(x∗Dg

)

≤
(
τk − L∆α

k − f(x∗Dg
)
)
N

≤ 2N
(
B +R

√
2(γt1 + 1 + log(4T/δ0))

)
(1 + 2λ)

√
2|Dg|
t1

≤ 2
(
B +R

√
2(γN + 1 + log(4T/δ0))

)
(1 + 2λ)

√
2|Dg|N.

On combining all the terms, we can conclude that R̄(N) is O(log T
√
N(γN + log(T/δ0)). To compute

R1, we just need to evaluate the total number of nodes visited by the algorithm in the first k0 epochs.
Using Lemma 3, we can conclude that with probability at least 1− δ0/4T , one iteration of random walk

would have visited less than
1

2(p− 1/2)2
log

(
4dT

δ0

)
nodes. Therefore, throughout the algorithm, all

iterations of random walks would have visited less than
1

2(p− 1/2)2
log

(
4dT

δ0

)
nodes with probability

at least 1− δ0/4.

9

Let Lm denote the number of nodes at depth md of tree T0 for m = 1, 2, . . . , k0 that contain a point
x such that f(x) ≥ τm − c2−αρm/d+1. Therefore Lm denotes an upper bound on the number of tar-
get nodes for epoch m. Let L0 = max1≤i≤k0 Li. Using the upper bound on the number of nodes
visited during on iteration of RWT, we can conclude that the algorithm would have visited less than

K =
k0L0

(p− 1/2)2
log

(
4dT

δ0

)
nodes in the first k0 epochs with probability at least 1− δ0/4. To bound k0,

note that the update scheme of the interval [ak, bk] (and consequently τk) ensures that the algorithm
does not spend more than 2 epochs at any specific depth of the tree. This implies that k ≤ 2ρk/d. Thus,
k0 ≤ 1

α log2 T .

Let Nj denote the random number of queries at node j visited during the algorithm and R̄j(Nj) denote
the associated regret for j = 1, 2, . . . ,K. Therefore, for some constant C0, independent of T , we have,

R1 ≤
K∑
j=1

R̄j(Nj)

≤ C0 log T

K∑
j=1

√
Nj(γNj

+ log(T/δ0))

≤ C0 log T
√
γT + log(T/δ0)

K∑
j=1

√
Nj

≤ C0 log T
√
γT + log(T/δ0) ·

√√√√K

K∑
j=1

Nj

≤ C0 log T
√
γT + log(T/δ0) ·

√
KT

≤ C0

√
T log(T)L0

2(p− 1/2)2
log

(
4dT

δ0

)
·
√
γT + log(T/δ0) · log T.

Therefore, R1 is O(
√
TγT log T

√
log T · log(T/δ0)).

We now focus on bounding R2. Let D represent a node being visited after k0 epochs and x∗D =
arg maxx∈D f(x). The instantaneous regret at time instant t can be written as

rt = f(x∗)− f(xt)

= [f(x∗)− f(x∗D)] + [f(x∗D)− f(xt)].

We bound both the expressions, f(x∗) − f(x∗D) and f(x∗D) − f(xt) separately for any such node. We
begin with the second expression. After k0 epochs, all the high-performing nodes being considered by
the algorithm would be at a depth of at least d

2α log2 T in the original infinite binary tree. This implies

that the length of the edges of the cuboid corresponding to the nodes would be smaller than T−1/(2α).
Consequently, no two points in any such node would be more than

√
dT−1/(2α) apart. Therefore,

f(x∗D) − f(xt) ≤ L
√
dα/T , where xt is a point sampled at time instant t after k0 epochs have been

completed. To bound the first expression, notice that f(x∗D) ∈ [ak0+1, bk0+1] for all nodes visited after
k0 epochs have been completed. This follows from the construction of intervals [ak, bk]. Since f(x∗) also
lies in [ak0+1, bk0+1] (under the high probability event), we have, f(x∗) − f(x∗D) ≤ |bk0+1 − ak0+1| ≤
(1 + 2c(ρk0+1/d− 1))2−α(ρk0+1/d−1) for any node visited after k0 epochs. Therefore, we can bound the
instantaneous regret as

rt = [f(x∗)− f(x∗D)] + [f(x∗D)− f(xt)]

≤ (1 + 2c(ρk0+1/d− 1))2−α(ρk0+1/d−1) + L

√
dα

T

≤ 2(2 +
c

2α
log2 T)

√
1

T
+ L

√
dα

T
.

If TR2 denotes the samples taken by the algorithm after completing k0 epochs, then R2 can be bounded
as

R2 ≤
TR2√
T

(
2
(

2 +
c

2α
log2 T

)
+ L
√
dα
)
.

10

Noting that TR2
≤ T , we have that R2 is O(

√
T log T). On adding the bounds on R1 and R2, we obtain

that the regret incurred by the algorithm is O(
√
TγT log T

√
log T · log(T/δ0)), as required.

We now show that this bound holds with high probability. Firstly, we had obtained a bound on R(3)(N)
for a node D ⊆ X by conditioning on the event that |f(x)− µt−1(x)| ≤ βt(δ0/4T)σt−1(x) holds for all
x ∈ D and t ≥ 1. Since the probability that event occurs is at least 1− δ0/4T , the bound on R(3)(N)
holds simultaneously for all nodes visited throughout the time horizon with a probability of at least
1− δ0/4. Similarly, to obtain a bound on R(2)(N) for any node D ⊆ X , we had conditioned the analysis
on another event which holds with a probability of at least 1− δ0/4T . Therefore, the bound on R(2)(N)
holds simultaneously for all nodes visited by the algorithm with a probability of at least 1− δ0/4. We
also note that while using Lemma 3 to bound the number of nodes visited by the algorithm, we had
conditioned the analysis on another event (that bounded the number of nodes visited in an iteration of
RWT) that holds with a probability of at least 1− δ0/4 (See Sec. C.4). Lastly, since we assume that the
algorithm always identifies all the target nodes correctly, we also need to account for the probability
that this is true. From the error analysis of RWT as described in Section C.4, we note that every target
node is identified correctly with a probability of at least 1− δ0/4T . Therefore, using a probability union
bound, the algorithm identifies all the target nodes correctly with a probability of no less than 1− δ0/4.
Combining all the above observations, we can conclude that the above obtained regret bound holds with
a probability of at least 1− δ0, as required.

C.2 Proof of Lemma 1

We consider a domain D ⊆ X and its discretization Dg that contains |Dg| number of points. Let the
points be indexed from 1 to |Dg| and let ni denote the number of times the ith point was chosen in the set
of sampled points {x1, x2, . . . , xt}. Let I = {i : ni > 0} and |I| denote the number of elements in I. Con-
sider the ith point, denoted by x(i), and let 1 ≤ t1 < t2 < · · · < tni

≤ t denote the time instances when the
ith point is sampled, that is, at time tj , it is sampled for the jth time, for j = 1, 2, . . . , ni. Clearly, we have
σt1−1(xt1) = σt1−1(x(i)) ≤ k(x(i), x(i)) ≤ 1. For all 2 ≤ j ≤ ni, at time instant tj , x

(i) has been sampled

for j − 1 times before tj . Using Proposition 3 from [21], we have σtj−1(xtj) = σtj−1(x(i)) ≤ λ√
j − 1

.

This can be interpreted as bounding the standard deviation by only the contribution coming from the
noisy observations. We would like to emphasize that we are using the Proposition 3 for the surrogate
GP-model adopted for the optimization. While the actual noise is indeed R-sub-Gaussian, we are ap-
plying the Proposition 3 bearing in mind the fictitious Gaussian noise assumption for our surrogate model.

Thus for each point in I, the contribution to the sum is upper bounded by 1 + λ

ni−1∑
j=1

j−1/2. Thus, we

have,

t∑
s=1

σs−1(xs) ≤
∑
i∈I

1 + λ

ni−1∑
j=1

1√
j

≤
∑
i∈I

(
1 + λ

∫ ni−1

0

1√
z
dz

)
≤
∑
i∈I

(
1 + 2λ

√
ni − 1

)
≤ (1 + 2λ)

∑
i∈I

√
ni

≤ (1 + 2λ)|I|
√

1

|I|
∑
i∈I

ni

≤ (1 + 2λ)
√
|I|t.

In the fifth step, we have used Jensen’s Inequality. Noting that |I| ≤ |Dg|, we obtain the required result.

11

C.3 Proof of Lemma 2

Consider the performance of the local test on a domain D ⊆ X with a threshold τ . The discretized version
of the domain is denoted by Dg. As before, we use the following notation throughout the proof of this
lemma,. Let x∗D = arg maxx∈D f(x), x∗Dg

= arg maxx∈Dg
f(x), x̂t = arg maxx∈Dg

µt−1(x) + βt(p)σt−1(x)

and let x̄t = arg maxx∈Dg
µt−1(x)− βt(p)σt−1(x). Lastly, recall that the termination time is defined as

S̄(δ2,∆f) = min

{
t ∈ N : 2

(
B +R

√
2(γt−1 + 1 + log(1/δ2))

)
(1 + 2λ)

√
|Dg|
t
≤ ∆f

}
+ 1.

Let us consider the case when f(x∗Dg
) < τ −L∆α −∆f and let N denote the random number of samples

taken in a sequential test without a cap on the total number of samples. We first make the following
observation about the posterior variance at the point to be sampled at t, xt, and x̂t. From the definitions
of xt and x̂t, we have,

µt−1(xt) + βt(δ0/4T)σt−1(xt) ≥ µt−1(x̂t) + βt(δ0/4T)σt−1(x̂t)

µt−1(x̂t) + βt(p)σt−1(x̂t) ≥ µt−1(xt) + βt(p)σt−1(xt)

On adding the two, we obtain that σt−1(x̂t) ≤ σt−1(xt). Note that this holds for all t. Next, we define
the event E as |f(x)− µt−1(x)| ≤ βt(δ2)σt−1(x) being true for all x ∈ D and t ≥ 1. From Theorem 2
in [10], we know that the probability of E is at least 1− δ2. Let Ec denote the complement of the event
E. Using the event E, we evaluate the probability that the local test queries more than n points. The
probability that N > n can be written as follows,

Pr(N > n) ≤ Pr ({∀t ≤ n : µt−1(x̂t) + βt(p)σt−1(x̂t) ≥ τ − L∆α})
≤ Pr ({∀t ≤ n : µt−1(x̂t) + βt(p)σt−1(x̂t) ≥ τ − L∆α} |E) Pr(E)+

Pr ({∀t ≤ n : µt−1(x̂t) + βt(p)σt−1(x̂t) ≥ τ − L∆α} |Ec) Pr(Ec)

≤ Pr

(
n∑
t=1

µt−1(x̂t) + βt(p)σt−1(x̂t) ≥
n∑
t=1

(τ − L∆α)

∣∣∣∣E
)

+ Pr(Ec)

≤ Pr

(
n∑
t=1

f(x̂t) + βt(δ2)σt−1(x̂t) + βt(p)σt−1(x̂t) ≥
n∑
t=1

(τ − L∆α)

∣∣∣∣E
)

+ δ2

≤ Pr

(
n∑
t=1

f(x∗Dg
) + 2βt(δ2)σt−1(x̂t) ≥

n∑
t=1

(τ − L∆α)

∣∣∣∣E
)

+ δ2

≤ Pr

(
n∑
t=1

2βt(δ2)σt−1(xt) ≥
n∑
t=1

(τ − f(x∗Dg
)− L∆α)

∣∣∣∣E
)

+ δ2

To bound the first term on the RHS, we make use Lemma 1.
Therefore, we have

1

n

n∑
t=1

2βt(δ2)σt−1(xt) ≤
2βn(δ2)

n

n∑
t=1

σt−1(xt)

≤ 2βn(δ2)

n
(1 + 2λ)

√
|Dg|n

≤ 2βn(δ2)(1 + 2λ)

√
|Dg|
n

≤ ∆f < τ − f(x∗Dg
)− L∆α.

This implies that the first term on RHS goes to zero for n ≥ S̄ − 1 implying that the probability that
the local test takes more than S̄ samples when f(x∗Dg

) < τ − L∆α −∆f is less than δ2. This implies if
the local test has reached the termination condition then with probability atleast 1− δ2, we have that
f(x∗Dg

) > τ − L∆α −∆f . We can carry out a similar analysis for the case when f(x∗Dg
) > τ + ∆f to

obtain the statement of the lemma.

12

C.4 Proof of Lemma 3

The proof of this lemma is mainly based on the analysis of random walk on a binary tree. This analysis
is similar to the one described in [42]. We reproduce a slightly different version of the proof that is more
focused on finding a high probability bound on the number of nodes visited in the random walk. In
this proof, we consider a binary tree of depth d, denoted by T̂ , to represent the tree considered in the
random walk. We index the leaf nodes from 1 to n where n = 2d. Throughout this proof, we refer to the
high-performing nodes as target nodes. We begin with the case of a single target and then extend the
proof for the case of multiple targets.

WLOG, we consider the single target node to be the leaf node indexed as 1. We divide the tree T̂ into a
sequence of sub-trees denoted by T̂0, T̂1, . . . for i = 0, 1, 2, . . . d which are defined as follows. Consider the
nodes on the path joining the root node to the target node. Such a path is unique as the underlying graph
is a tree. Let vi denote the node on this path that is at a distance of i from the target node. The distance
between two nodes is defined as the length of the path connecting those two nodes. T̂i is defined to be tree
that contains the node vi along with the sub-tree rooted at the child that does not contain the target node.

This construction is similar to the one outlined in [42]. Also, T̂0 corresponds to the target node. Since the
random walk is biased towards the minimizer, given the construction of T̂i, the probability that random
walk is still in one of such sub-trees would decrease with time. To formalize this idea, we consider the
last passage times of any sub-tree T̂i for 1 ≤ i ≤ d. Let τi denote the last passage time to T̂i.

We begin with the analysis for τd. This problem of random walk on T̂d can be mapped to the problem of
a random walk on the set S = {−1, 0, 1, 2, . . . d}. If each non-negative integer is mapped to the subset of
nodes at the corresponding depth in the sub-tree, then our random walk on Td between different levels is
equivalent to the random walk on these integers. Note that since the target node is not contained in this
sub-tree, all nodes at the same depth are identical in terms of distance to the target node. In particular,
they all are equally far away from exiting the tree and therefore can be abstracted into single node. This
abstraction is precisely what leads to the equivalence between the two problems. Under this setup, the
root node is mapped to 0 and the sub-tree containing the target node is mapped to −1, indicating an
exit from the sub-tree T̂d.

We begin the random walk at integer 0 where escaping the tree is equivalent to arriving on the integer
−1. For the random walk to arrive on −1, it would have to take greater number of steps in the negative
direction than it took in the positive one. Also, since the probability of moving along the negative
direction is at least 1− p, we can write,

P(τd > n) ≤ P(Z ≤ n/2),

where Z ∼ Bin(n, p) is a Binomial random variable. Therefore, we have

P(τd > n) ≤ exp(−2(p− 1/2)2n).

On account of the underlying symmetry, we can conclude that this bound holds for all i. Therefore, we
have P(τi > n) ≤ exp(−2(p− 1/2)2n) for all i = 0, 1, . . . , d.

For the case of multiple target nodes, we can construct a similar set of sub-graphs and conclude the same
result for those sub-graphs. Note that we redefine these set for every different iteration of the random
walk when it restarts after detecting a target node. Consider the case when there are L target nodes.
We begin with considering the first iteration of the random walk. For each target node j = 1, 2, . . . , L,

we define a sequence of sub-trees T (j)
i for i = {0, 1, . . . , d} exactly in the same manner as we did in the

previous case. That is, T (j)
i would be a tree consisting of the node that lies on the path between the

target node j and the root node and is at a distance of i from the target node, along with child that

does not contain the target node j. By definition, the sub-trees T (j)
i are not disjoint for different values

of j. Using these sub-trees, we define a partition of the binary tree denoted by the sub-graphs T̂ ′i for
i = {0, 1, . . . , d} as follows. If V denotes the set of all nodes on the binary tree, then for each v ∈ V,

we define v(j) = {i : v ∈ T (j)
i }. Therefore, v(j) denotes the index of the sub-tree corresponding to the

target node j to which the node v belongs. From the construction of T (j)
i , it follows that v(j) is unique

13

for each v ∈ V. Using this, we define

T̂ ′i = {v ∈ V : min
j
v(j) = i}

In other words, T̂ ′i consists of all the nodes such that there is at least one target node j for which it

belongs to T (j)
i .

The motivation is that if the random walk escapes T̂ ′i in the correct direction then it has moved closer

to at least one of the target nodes. It is not difficult to note that this is exactly how the sub-trees T̂i
were designed in the previous proof. The only difference between the two cases is that T̂ ′i is designed to
accommodate the presence of multiple target nodes where all the target nodes have the same level of
preference for the random walk. In a similar vein to the case of a single target, we define τ ′i as the last

passage time to T̂ ′i for i = {0, 1, . . . , d}.

Leveraging the similarity of definitions of T̂ ′i and T̂i along with the agnosticism of the random walk to
the target node, we can use exactly the same analysis as for the single target case to conclude that

P(τ ′i > n) ≤ exp(−2(p− 1/2)2n).

We let M denote the random number of steps taken by one iteration of random walk before termination.
Therefore, we can write,

Pr(M > r) ≤ Pr

(
d⋃
i=0

{τ ′i > r}

)

≤
d∑
i=0

Pr (τ ′i > r)

≤
d∑
i=0

exp(−2(p− 1/2)2r)

≤ d exp(−2(p− 1/2)2r)

Using the above relation, we can conclude that one iteration of the random walk will take less than
1

2(p− 1/2)2
log

(
d

δ1

)
with probability at least 1− δ1, as required.

This also helps bound the probability of error in the random walk. If M1 denotes the number of non-target
leaf nodes visited in the random walk, then the probability that a target node is identified incorrectly is
less than M1δ2, where δ2 is the error probability for the leaf test. Using the above bound on M1 with
δ1 = δ0/4T along with the value of δ2 as specified by the algorithm (See Appendix B.2), we conclude
that an iteration of random walk identifies a target node correctly with probability at least 1− δ0/4T .

C.5 Proof of Lemma 4

A key idea in the proof of the lemma is to establish that for the choice of parameters used in GP-ThreDS,
the rate at which domain shrinks matches the rate at which the discretization gets finer. Let D be a
node visited by the algorithm during epoch k and Dg be its associated discretization such that

sup
x∈D

inf
y∈Dg

‖x− y‖ ≤ ∆k.

More specifically, D refers to the subset of the domain corresponding to the node visited by the algorithm.
Note that using the definition of a covering set, we can conclude that Dg is a ∆k-cover of D. Then, using
the bounds on the covering number of a hypercube in Rd [43], we have that |Dg| is O(vol(D)∆−dk). Since
D is a node visited during epoch k of the algorithm, it lies at a depth of at least ρk − d on the infinite
depth binary tree constructed on the domain. From the construction of the binary tree, we note that the
lengths of nodes in all the dimensions get halved every d steps. Thus, the lengths of the edges of the
cuboid corresponding to D are less than 2−ρk/d+1. Consequently, vol(D) is O(2−ρk). On substituting
this value in the bound for |Dg| along with ∆k = (c/L)1/α2−ρk/d, we obtain |Dg| is O(1), independent of

14

k (and thus t). The exponential dependence of |Dg| on d also immediately follows from the above analysis.

As mentioned in the main text, the proof of Theorem 2 follows from this lemma. Since only a constant
number of UCB scores have to be evaluated at every time instant, the matrix inversion becomes the
dominant cost resulting in a worst-case computational cost of O(t3) at time t. Consequently, this results
in worst-case overall computational complexity of O(T 4).

C.6 Proof of Lemma 5

For the analysis of the local test, we consider several cases based on the maximum value of the function
on the grid and consider the results obtained in each one of them.

We consider the performance of the local test on a node corresponding to D ⊆ X visited by the random
walk during epoch k. The discretized version of the domain is denoted by Dg. Recall that during epoch
k, the closest point in Dg from any point x ∈ D is at a distance less than ∆k. We define x∗D, x

∗
Dg
, x̂t and

x̄t in the same way as in the proof of Lemma 2 (Appendix C.3).
The cap on the number of samples in epoch k is given as

S̄(k)(p) = min

{
t ∈ N : 2

(
B +R

√
2(γt−1 + 1 + log(1/p))

)
(1 + 2λ)

√
|Dg|
t
≤ L∆α

k

}
+ 1.

Similar to the proof of Lemma 2 (Appendix C.3), we define the event E as the inequality |f(x)−µt−1(x)| ≤
βt(p)σt−1(x) being true for all x ∈ D and t ≥ 1. We know this event occurs with a probability of at least
1− p. For the following analysis, we assume that event E occurs. Consider the following scenarios based
on the value of f(x∗Dg

).

• f(x∗Dg
) > τk + L∆α

k :
From the results obtained in the proof of Lemma 2, we know that the local test will not terminate.
Also notice that the local test cannot return −1 as

µt−1(x̂t) + βt(p)σt−1(x̂t) ≥ µt−1(x∗Dg
) + βt(p)σt−1(x∗Dg

)

≥ f(x∗Dg
)

> τk − L∆α
k .

Therefore, the local test will always return +1.

• τk + L∆α
k ≥ f(x∗Dg

) ≥ τk:
Similar to the previous case, we can conclude that the local test will never return −1. It may
return +1 or terminate.

• τk > f(x∗Dg
) > τk − L∆α

k :
Again, similar to the previous cases, the local test will never return −1. For this case, we also have,

µt−1(x̄t)− βt(p)σt−1(x̄t) ≤ f(x̄t)

≤ f(x∗Dg
)

< τk.

Therefore, the local test will also never return +1 (before termination) implying it will always
terminate.

• τk − L∆α
k ≥ f(x∗Dg

) ≥ τk − 2L∆α
k :

Similarly, the local test will not return +1 (before termination). It may return −1 or terminate.

• τk − 2L∆α
k > f(x∗Dg

):
From the results obtained in Sec. C.3 we can show the local will neither terminate nor return +1,
implying that the local test will always return −1.

From the above analysis, one can directly obtain the statement of the lemma. If D is high-performing with
respect to the threshold τk, then f(x∗D) > τk implying that f(x∗Dg

) > τk − L∆α
k . If f(x∗Dg

) > τk − L∆α
k ,

then the local test will output +1 whenever event E occurs, i.e., with a probability of at least 1 − p.

15

Similarly, if the local test outputs −1 when E has occurred, we know that f(x∗Dg
) < τk −L∆α

k , implying

f(x∗D) < τk and hence D is not high-performing w.r.t. the threshold τk, as required.

However, we would like to point out that when τk − L∆α
k > f(x∗Dg

) > τk − 2L∆α
k , the test may output

−1 or terminate, in which case it returns a +1 and accept the current node. This happens because of
the conservative nature of the local test. In order to avoid missing nodes that contain a point with a
function value greater than τk, the local test sometimes accepts nodes nodes like these which have a
point with a function value greater than τk − c2−αρk/d+1 but not greater than τk. This explains the
reason behind the particular choice of values used in the update policy of τk.

C.7 Proof of Lemma 6

We prove the statement of the lemma using induction. Recall that [ak, bk] denotes the interval to
which f(x∗) is likely to belong at the beginning of epoch k. For the base case, for the LHS we have
|b1 − a1| = |b− a| = 1. Since ρ1 = d, the RHS also evaluates to 1 verifying the base case. Let us assume
that the relation |bk − ak| ≤ (1 + 2c(ρk − d)/d)2−α(ρk/d−1) is true for some k ≥ 1.
In the event that the algorithm does not find any τk-exceeding point, we set ak+1 = ak − (bk − ak)/2,
bk+1 = bk − (bk − ak)/2 and ρk+1 = ρk. Thus, we have,

|bk+1 − ak+1| =
∣∣∣∣bk − bk − ak

2
− ak +

bk − ak
2

∣∣∣∣
= |bk − ak|
≤ (1 + 2c(ρk − d)/d)2−α(ρk/d−1)

≤ (1 + 2c(ρk+1 − d)/d)2−α(ρk+1/d−1),

as required. Now, if the algorithm finds a τk-exceeding point, we set ak+1 = τk − c2−αρk/d+1, bk+1 = bk
and ρk+1 = ρk + d. Thus, we have,

|bk+1 − ak+1| = |bk − τk + c2−αρk/d+1|

≤ 1

2
|bk − ak|+ c2−αρk/d+1

≤ 1

2

(
1 +

2c(ρk − d)

d

)
2−α(ρk/d−1) + c2−αρk/d+1

≤
(

1 +
2c(ρk − d)

d

)
2−αρk/d + 2c2−αρk/d

≤
(

1 + 2c

(
(ρk + d)− d

d

))
2−α(ρk+1/d−1)

≤
(

1 + 2c

(
ρk+1 − d

d

))
2−α(ρk+1/d−1)

≤
(

1 +
2c(ρk+1 − d)

d

)
2−α(ρk+1/d−1),

as required. This completes the proof.

D Supplemental Material on Experiments

In this section, we provide further details on the experiments, as well as additional experiments on a
hyperparameter tuning problem.

D.1 Details of Benchmark Functions, Algorithms and their Parameters

We used two standard benchmark functions, Branin and Rosenbrock in our experiments. The analytical
expression for these functions is given below [44, 45]

• Branin: f(x, y) = − 1

51.95

((
v − 5.1u2

4π2
+

5u

π
− 6

)2

+

(
10− 10

8π

)
cos(u)− 44.81

)
, where u =

15x− 5 and v = 15y.

16

• Rosenbrock : f(x, y) = 10− 100(v − u)2 − (1− u)2, where u = 0.3x+ 0.8 and v = 0.3y + 0.8.

The domain is set to X = [0, 1]2. The details of IGP-UCB, AD, PI and EI are provided below.

1. IGP-UCB: The algorithm is implemented exactly as outlined in [10] with B (in scaling parameter
βt) set to 0.5 and 2 for Branin and Rosenbrock, respectively. The parameters R and δ0 are set to
10−2 and 10−3 in both experiments. γt was set to log t. The size of discretization is increased over
time, starting from 400 points at the beginning and capped at 6400 points.

2. Adapative Discretization (AD): The algorithm and its parameters are implemented exactly as
described in [21].

3. Expected Improvement(EI)/Probability of Improvement (PI): Similar to IGP-UCB, EI and PI
select the observation points based on maximizing an index often referred to as an acquisition

function. The acquisition function of EI is (µ(x)− f∗ − ε)Φ (z) + σ(x)φ(z), where z = µ(x)−f∗−ε
σ(x) .

The acquisition function of PI is Φ(z), where z = µ(x)−f∗−ξ
σ(x) . Here, Φ(·) and φ(·) denote the

CDF and PDF of a standard normal random variable. f∗ is set to be the maximum value of
µ(x) among the current observation points. The parameters ε and ξ are used to balance the
exploration-exploitation trade-off. We follow [38] that showed the best choice of these parameters
are small non-zero values. In particular, ε and ξ are both set to 0.01.

4. GP-ThreDS: A pseudo-code is given in Alg. 4. The parameter βt is set exactly in the same way as
in IGP-UCB. The initial interval [a, b] is set to [0.5, 1.2] for Branin and [3, 12] for Rosenbrock. The
parameter c is set to 0.2 for both functions.

D.2 Additional Experiments

We have re plotted the average regret against wall clock time for different algorithms on benchmark
functions (the same as Fig. 4 in the main paper), with error bars in Fig. 2 and Fig. 3.

0 2 4 6 8 10 12

10-1

100

Figure 2: Average regret against wall clock time for Branin

D.3 Hyperparameter Tuning for a convolutional neural network

In this section, we provide additional experiments on using the Bayesian optimization algorithms for
hyperparameter tuning for a convolutional neural network (CNN) on an image classification task. We have
considered the task of digit classification on the MNIST dataset. For the experiments, we have considered
a smaller training dataset that contains only 12000 images instead of 50000 images in the original dataset.
This smaller training dataset is created by randomly sampling 1200 images corresponding to each digit,
making a total of 12000 images. This dataset is split to training and validation sets of size 10000 and
2000, respectively. The split is done in a way that each label has equal numbers of images in the training

17

0 5 10 15

10-1

100

(a)

0 5 10 15

10-2

10-1

100

101

(b)

Figure 3: Average regret against wall clock time for Rosenbrock

and the validation set. We used the same test set of 10000 images as in the original MNIST data set.

We consider a simple CNN with 2 convolutional layers followed by two fully connected feedforward layers.
We use the ReLU activation function and a max pooling layer with stride 2 after each convolutional layer.
The performance of the algorithms is evaluated on the task of tuning the following five hyperparameters
of this CNN.

• Batch size: We considered 8 possible values of the batch sizes given by {23, 24, . . . , 210}.

• Kernel size of the first convolutional layer with possible values in {3, 5, 7, 9}.

• Kernel size of the second convolutional layer with possible values in {3, 5, 7, 9}.

• Number of (hidden) nodes in the first feedforward layer: The possible values for this hyperparameter
belonged to {10, 11, 12, . . . , 38, 39, 40}.

• Initial learning rate: We used stochastic gradient descent with momentum to optimize the loss
function. This parameter defined the initial learning rate for the optimizer and it took values in
{10−6, 10−5, . . . , 10−1}.

In the implementation, all these parameters were mapped to [0, 1] with distinct intervals corresponding
to each discrete value. The kernel sizes and the number of hidden nodes were mapped linearly to
the interval while the other two parameters were mapped on a log scale, that is, log2(batch-size) and
log10(learning-rate) were mapped uniformly to the interval [0, 1].

For this task, the underlying function was modelled using a Matérn kernel with smoothness parameter
2.5 and lengthscale l = 0.2. For this kernel γt was set to

√
t and the noise variance was set to 0.0001.

The implementation of all the algorithms is similar to the description in Sec. D.1.

For the exploration parameter βt, B and R are set to 0.5 and 10−4, respectively, for both IGP-UCB and
GP-ThreDS. The confidence parameter δ0 is set to 2.5×10−2 for IGP-UCB and 2×10−2 for GP-ThreDS.
The slightly higher confidence for GP-ThreDS is chosen because it runs for a longer horizon to achieve
the same compute time. In GP-ThreDS, the interval [a, b] is set to [0.3, 1.4] and c is set to 0.1.

All the computations were carried out using MATLAB 2019a on a computer with 12 GB RAM and Intel
i7 processor (3.4 GHz) with an overall compute time of around 200 hours.

The results for average regret against wall clock time, averaged over 10 Monte Carlo runs, are shown
in Fig. 4a. As it can be seen from the figure, GP-ThreDS offers a better performance compared to all
other algorithms. It is important to point out that the time on X-axis does not include the time spent

18

to train the CNN, it only includes the time spent on Bayesian optimization algorithms assuming the
values of the objective function f (here the performance of CNN) are accessible in zero time. To be
clear we refer to this time as Optimization time. The optimization time spent by different algorithms for
T = 50 is shown in Fig. 4c. We also report the corresponding total time contrasting the optimization
time that also includes the time spent to train the CNN, in Fig. 4d. It can be seen that the total time for
GP-ThreDS is significantly lower than all other algorithms. Its optimization time however is comparable
to AD, while significantly lower than IGP-UCB, EI, PI. It seems that, due to its exploration scheme,
AD selects hyperparameters which lead to longer training times. PI and EI in comparison seem to take
longer to converge as shown in Fig. 4b.

1 2 3 4 5 6 7 8

10-1

100

(a) Average regret against wall clock time for CNN.

0 2 4 6 8 10 12 14 16 18 20

10-1

100

(b) Average regret against wall clock time for EI and
PI with a longer time horizon

12.76

1.65 2.57

39.38
41.72

0

5

10

15

20

25

30

35

40

45

CNN

Time taken (in seconds)

IGP UGB Adaptive Discretization GP-ThreDS EI PI

(c) Optimization time spent by different algorithms for T = 50
samples

3195.2

2189.1

610.3

1983.7
2252.2

0

500

1000

1500

2000

2500

3000

3500

CNN

Time taken (in seconds)

IGP UGB Adaptive Discretization GP-ThreDS EI PI

(d) Total time spent by different algorithms for T = 50 samples

References

[1] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In ICML 2010 - Proceedings, 27th
International Conference on Machine Learning, pages 1015–1022, 2010.

[2] Emile Contal and Nicolas Vayatis. Stochastic Process Bandits: Upper Confidence Bounds Algorithms
via Generic Chaining. feb 2016.

[3] Andreas Krause and Cheng Soon Ong. Contextual Gaussian process bandit optimization. In 25th
Annual Conference on Neural Information Processing Systems 2011, NIPS 2011, pages 2447–2455,
2011.

[4] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time
analysis of kernelised contextual bandits. In Uncertainty in Artificial Intelligence - Proceedings of
the 29th Conference, UAI 2013, pages 654–663, 2013.

19

[5] Thomas Desautels, Andreas Krause, and Joel Burdick. Parallelizing exploration-exploitation tradeoffs
with Gaussian process bandit optimization. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, volume 2, pages 1191–1198, 2012.

[6] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian process
optimization with upper confidence bound and pure exploration. In Hendrik Blockeel, Kristian
Kersting, Siegfried Nijssen, and Filip Železný, editors, Machine Learning and Knowledge Discovery
in Databases, pages 225–240, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[7] Victor Picheny, Sattar Vakili, and Artem Artemev. Ordinal bayesian optimisation. arXiv preprint
arXiv:1912.02493, 2019.

[8] Ilija Bogunovic, Stefanie Jegelka, Jonathan Scarlett, and Volkan Cevher. Adversarially robust
optimization with Gaussian processes. In Advances in Neural Information Processing Systems,
volume 2018-Decem, pages 5760–5770, 2018.

[9] Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider, and Barnabás Póczos.
Multi-fidelity Gaussian process bandit optimisation. Journal of Artificial Intelligence Research,
66:151–196, 2019.

[10] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In 34th International
Conference on Machine Learning, ICML 2017, volume 2, pages 1397–1422, 2017.

[11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011,
2011.

[12] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco, Lorenzo
Rosasco Gaussian, Michal Valko MICHALVALKO, Alina Beygelzimer, and Daniel Hsu. Gaussian
process optimization with adaptive sketching: Scalable and no regret. Technical report, 2019.

[13] Michalis K Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
Journal of Machine Learning Research, volume 5, pages 567–574, 2009.

[14] James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Uncertainty
in Artificial Intelligence - Proceedings of the 29th Conference, UAI 2013, pages 282–290, sep 2013.

[15] Sattar Vakili, Victor Picheny, and Artem Artemev. Scalable Thompson Sampling using Sparse
Gaussian Process Models. 2020.

[16] Jonathan H Huggins, Trevor Campbell, Miko laj Kasprzak, and Tamara Broderick. Scalable
Gaussian process inference with finite-data mean and variance guarantees. In AISTATS 2019 - 22nd
International Conference on Artificial Intelligence and Statistics, 2020.

[17] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, 2009.

[18] Ilja Kuzborskij, Leonardo Cella, and Nicolò Cesa-Bianchi. Efficient linear bandits through matrix
sketching. In AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics,
2020.

[19] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian Optimi-
sation and bandits via additive models. In 32nd International Conference on Machine Learning,
ICML 2015, volume 1, pages 295–304, 2015.

[20] Mojmı́r Mutný and Andreas Krause. Efficient high dimensional Bayesian optimization with additivity
and quadrature fourier features. In Advances in Neural Information Processing Systems, volume
2018-Decem, pages 9005–9016, 2018.

[21] Shubhanshu Shekhar and Tara Javidi. Gaussian process bandits with adaptive discretization.
Electronic Journal of Statistics, 12(2):3829–3874, 2018.

[22] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-Armed Bandits. Journal of
Machine Learning Research, 12:1655–1695, 2011.

20

[23] Ziyu Wang, Babak Shakibi, Lin Jin, and Nando De Freitas. Bayesian multi-scale optimistic
optimization. In Journal of Machine Learning Research, volume 33, pages 1005–1014, 2014.

[24] Rémi Munos. Optimistic optimization of a deterministic function without the knowledge of its
smoothness. In 25th Annual Conference on Neural Information Processing Systems 2011, NIPS
2011, 2011.

[25] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In
Proceedings of the Annual ACM Symposium on Theory of Computing, pages 681–690, sep 2008.

[26] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning Search Space Partition for Black-box
Optimization using Monte Carlo Tree Search, jul 2020.

[27] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos. Parallelised
Bayesian optimisation via Thompson sampling. In International Conference on Artificial Intelligence
and Statistics, pages 133–142, 2018.

[28] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, nov 2014.

[29] D. Russo and B. Van Roy. An information-theoretic analysis of Thompson sampling. The Journal
of Machine Learning Research, 17(1), 2016.

[30] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In 34th
International Conference on Machine Learning, ICML 2017, volume 7, pages 5530–5543, 2017.

[31] Jonathan Scarlett. Tight regret bounds for Bayesian optimization in one dimension. arXiv preprint
arXiv:1805.11792, 2018.

[32] Shubhanshu Shekhar and Tara Javidi. Significance of gradient information in bayesian optimization.
In International Conference on Artificial Intelligence and Statistics, pages 2836–2844. PMLR, 2021.

[33] Adam D Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, 12:2879–2904, 2011.

[34] Sattar Vakili, Victor Picheny, and Nicolas Durrande. Regret bounds for noise-free bayesian opti-
mization. arXiv preprint arXiv:2002.05096, 2020.

[35] Nando De Freitas, Alex J Smola, and Masrour Zoghi. Exponential regret bounds for Gaussian
process bandits with deterministic observations. In Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, volume 2, pages 1743–1750, 2012.

[36] Kenji Kawaguchi, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Bayesian optimization with
exponential convergence. In Advances in Neural Information Processing Systems, volume 2015-Janua,
pages 2809–2817, 2015.

[37] Steffen Grünewälder, Jean Yves Audibert, Manfred Opper, and John Shawe-Taylor. Regret bounds
for Gaussian process bandit problems. In Journal of Machine Learning Research, volume 9, pages
273–280, 2010.

[38] Matthew D Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for bayesian optimiza-
tion. In UAI, pages 327–336. Citeseer, 2011.

[39] Zi Wang, Beomjoon Kim, and Leslie Pack Kaelbling. Regret bounds for meta bayesian optimization
with an unknown gaussian process prior. arXiv preprint arXiv:1811.09558, 2018.

[40] Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Regret for expected
improvement over the best-observed value and stopping condition. In Asian Conference on Machine
Learning, pages 279–294. PMLR, 2017.

[41] Ziyu Wang and Nando de Freitas. Theoretical analysis of bayesian optimisation with unknown
gaussian process hyper-parameters. arXiv preprint arXiv:1406.7758, 2014.

[42] Chao Wang, Qing Zhao, and Kobi Cohen. Dynamic Search on a Tree with Information-Directed
Random Walk. In IEEE Workshop on Signal Processing Advances in Wireless Communications,
SPAWC, volume 2018-June, pages 1–5. IEEE, jun 2018.

21

[43] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

[44] Javad Azimi, Ali Jalali, and Xiaoli Z Fern. Hybrid batch bayesian optimization. In Proceedings of
the 29th International Conference on Machine Learning, ICML 2012, volume 2, pages 1215–1222,
2012.

[45] Victor Picheny, Tobias Wagner, and David Ginsbourger. A benchmark of kriging-based infill criteria
for noisy optimization. Structural and Multidisciplinary Optimization, 48(3):607–626, apr 2013.

22

	Additional Related Work
	GP-ThreDS Algorithm
	GP-ThreDS Pseudo Code
	Random-walk based search for high-performing nodes
	Sequential test with asymmetric confidence levels

	Detailed Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Supplemental Material on Experiments
	Details of Benchmark Functions, Algorithms and their Parameters
	Additional Experiments
	Hyperparameter Tuning for a convolutional neural network

