
1 Supplement1

1.1 Checklist Items2

1. For all authors...3

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s4

contributions and scope? [Yes]5

(b) Did you describe the limitations of your work? [Yes] Sec. 76

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Supple-7

ment8

(d) Have you read the ethics review guidelines and ensured that your paper conforms to9

them? [Yes]10

2. If you are including theoretical results...11

(a) Did you state the full set of assumptions of all theoretical results? [N/A]12

(b) Did you include complete proofs of all theoretical results? [N/A]13

3. If you ran experiments...14

(a) Did you include the code, data, and instructions needed to reproduce the main ex-15

perimental results (either in the supplemental material or as a URL)? [Yes] Code,16

instructions, and MSR data are included in the supplement17

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they18

were chosen)? [Yes] Sec: 4, 6 and supplement19

(c) Did you report error bars (e.g., with respect to the random seed after running experi-20

ments multiple times)? [No]21

(d) Did you include the total amount of compute and the type of resources used (e.g., type22

of GPUs, internal cluster, or cloud provider)? [Yes] Supplement23

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...24

(a) If your work uses existing assets, did you cite the creators? [Yes] Sec. 625

(b) Did you mention the license of the assets? [N/A]26

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]27

Supplement28

(d) Did you discuss whether and how consent was obtained from people whose data you’re29

using/curating? [Yes] Supplement30

(e) Did you discuss whether the data you are using/curating contains personally identifiable31

information or offensive content? [N/A]32

5. If you used crowdsourcing or conducted research with human subjects...33

(a) Did you include the full text of instructions given to participants and screenshots, if34

applicable? [N/A]35

(b) Did you describe any potential participant risks, with links to Institutional Review36

Board (IRB) approvals, if applicable? [N/A]37

(c) Did you include the estimated hourly wage paid to participants and the total amount38

spent on participant compensation? [N/A]39

1.1.1 Impact Considerations40

Since an inherent goal in our method is to identify and characterize human activity, there are privacy41

considerations could be brought up. These concerns apply to both the potential for unwanted42

monitoring of activity, as well as potential exposure in identifying information with regard to the43

nature of, and sequence of tasks performed.44

1.1.2 Data Acquisition45

The Microsoft Research Human Activity (MSR) dataset1 (Morris et al., 2014) was obtained under a46

CDLA-Permissive license. The time series included in this submission have been truncated to the47

first 5 minutes of activity.48

1https://msropendata.com/datasets/799c1167-2c8f-44c4-929c-227bf04e2b9a
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Figure 1: (left) Total time required for convergence optimizing simulated data outlined in Sec. 1.2
across data dimensions ranging from 2 to 200. Optimization with respect to Wasserstein-Bures
geometry (red) for PSD matrices converges much faster than using Euclidean geometry (blue)
parameterized by the Cholesky (LL) decomposition for both 2-state (dotted), and 3-state (solid)
problems. (right) total number of line-search iterations required to reach convergence. Both methods
converge to similar results.

The Beep Test (BT) dataset is a proprietary dataset and thus is not included in this submission and is49

unfortunately not available to share with the public. It was collected under approval by an affiliated50

institution’s Institutional Review Board (IRB). All data has been deidentified before it was shared51

with study authors. All study authors are approved by their institutional IRB to use this deidentified52

wearable sensor data for research purposes.53

1.1.3 Compute Time and Resources54

Results were obtained using 4 CPU cores with 16 GB RAM, replicated for each time series on an55

internal cluster using slurm. On average convergence was reached in 6 hours.56

1.2 Optimization Simulations57

Algorithm 1: Riemannian Manifold Line Search (Absil et al., 2008)

Given :(M, gMp (·, ·)): Riemannian manifold
f(p): Smooth scalar function on the manifold
expM

p : Exponential map
α0: Initial step
β: Sufficient decrease
c: Contraction factor
η: Convergence threshold

1 while f
(
p(n)

)
− f

(
p(n+1)

)
> η do

2 α = α0

3 while(
f
(
p(n)

)
− f

(
expM

p(n)

(
α gradf

(
p(n)

))))
> αβgM

p(n)

(
gradf

(
p(n)

)
, gradf

(
p(n)

))
do

4 α = cα
5 end
6 p(n+1) = expM

p(n)

(
α gradf

(
p(n)

))
7 end

To motivate the choice of the Wasserstein-Riemannian manifold for optimization, we compare the58

optimization speeds in terms of wall-clock time and number of line search iterations with the more59

standard Euclidean geometry for covariance matrices (Arsigny et al., 2007) parameterized by the60

Cholesky decomposition. We evaluate performance on a set of simulated time series following our61

data model similar to that shown in Fig. 1 from the main paper where the system state linearly62

interpolates between two pure states over the course of 100 time steps. We vary the dimensionality of63
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the data ranging from d = 2 to 200, and number of states for K = 2, 3, repeating the experiment 1064

times for each case.65

To construct the data, we start by creating a random Gaussian distribution by generating a random66

mean vector m1 ∼ N (0, I), and a random PSD matrix S1 generated by the method described in67

(Davies and Higham, 2000) with eigenvalues given by Λ = diag([λ, ...λd] where λi ∼ U [0.5, 1.5]. A68

second Gaussian distribution is generated a set distance away such thatW2
2 ((m1,S1), (m2,S2)) = 569

where E2(m1,m2) = 1, and B2(S1,S2) = 4. This is achieved by generating a random vector in the70

tangent space and traveling the specified distance, along the geodesic on the manifold in the tangent71

direction. Specifically, for a random tangent vector to the mean v ∈ Rd, we setm2 = m1 + 1
‖v‖2

v,72

and for a random symmetric matrix V , S2 = expBS1

(
2

gB
S1

(V ,V )
V

)
, where expB

S and gBS are the73

corresponding exponential map and Riemannian metric on the Wasserstein-Bures Manifold (Takatsu,74

2011). For the three-state example, this process is repeated to generate a third Gaussian distribution75

such thatW2
2 ((m2,S2), (m3,S3)) = 5.76

For the simulated data, the state interpolates between e1 to e2 over 100 equi-spaced steps. The77

three-state problem, continues on and interpolates from e2 to e3 over an additional 100 steps. The78

empirical Gaussian distributions at each of these intermediate points is generated from 20d samples79

drawn from ρBt according to the Wasserstein barycentric model described in the main paper. Since80

this optimization choice only pertains to Θ, for the purposes of this experiment we fix X as the81

ground truth thus eliminating the need to estimate Γ,H .82

Fig. 1 shows that estimating the for Θ using Wasserstein Riemannian geometry for Gaussians has83

improved performance in terms of converge speed in terms of both wall-clock and number of line-84

search iterations needed to converge. We found no significant difference in the solutions to which the85

two methods converged.86

The python files used to generate the simulated data as well as run the simulated experiments are87

included in the supplemental code with instructions provided in Sec. 1.5.88

1.3 Parameter Initialization and Optimization Parameters89

Model Params Initialization Constraint Description
γt[k] 1e− 6 [0, 1] State innovation
x0[k] 1

K

∑
k x0[k] = 1 Initial state

(a1[k], b1[k]) (10, 20) a1[k] > 1.1
a1[k]

a1[k]+b1[k]
> 0.15

Beta prior for
transition dynamics

w 0.5 [0.01, 0.99] Weight for Beta
mixture prior

(µk,Sk)
Time series clustering

given (Cheng et al.,
2020b)

µk ∈ Rd

Sk ∈ Symd
+

Pure state distribution

Table 1: Initialization and constraints of learned model parameters. Time index, t = 1, ..., T and
pure-state index k = 1, ...,K

The initialization and constraints for the learned model parameters are provided in Table 1. Other90

fixed parameters for the algorithm are included in Table 2.91

For the optimization parameters, we use a learning rate of 2e−3 for the ADAM optimization (Kingma92

and Ba, 2017) of Γ,H and a convergence criterion of η = 0.05.93

The Riemannian line search used to estimate Θ is given in Alg. 1. Our implementation sets94

α0 = 1e− 1, β = 1e− 10 c = 0.5, η = 0.0595

96

1.4 Additional Results97

1.4.1 MSR Results with Ground Truth Initialization98
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Model Params Value Description

m0
1
T

∑T
t=1 yt

Used as reference distribution mean
for Θ

σ0
average eigenvalue of covariance

matrices of K-component GMM fit to
yt (Pedregosa et al., 2011)

σ0I used as reference distribution
covariance for Θ

η 0.05 Convergence threshold
(a0, b0) (1.1, 20) Beta prior for stationary dynamics

10
# fixed point iterations for covariance
Wasserstein barycenter computation

(Álvarez Esteban et al., 2016)

5000

# Monte Carlo samples used to
compute Wasserstein distance
between GMM and Gaussian
(Sriperumbudur et al., 2010)

Table 2: Value of fixed algorithm parameters.

Figure 2: Evaluation comparison between the
GMM and Wasserstein barycenter model for the
MSR data when using the ground truth discrete
labels to initialize the pure-state distribution pa-
rameters. Results shown here are close to that
shown in the main paper using an unsupervised
approach for parameter initialization.

In order to stay true to the unsupervised nature99

of our problem, in our real-world experiments,100

we initialize the pure-state Gaussian model101

parameters using the time-series segmentation102

algorithm using the unsupervised methods103

described in (Cheng et al., 2020a). Since our104

problem is non-convex, poor initialization105

could lead to local minimum. To ensure that106

our reported results are not a result of biased107

initialization, we also run the same experiments108

initializing Θ according to the sample mean109

and covariance matrices of each activity given110

the ground truth discrete labels of the MSR111

data. As shown in Fig. 2, the results given by112

this ground truth initialization do not deviate113

much from Fig. 6 from the main paper where114

the average absolute difference between the115

two initialization methods for eW (DWB) and116

eW (GMM) are 0.011 and 0.022 respectively.117

118

1.4.2 Innovation Prior Ablation Study119

Figure 3: Sample pdfs of single a single compo-
nent and two-component Beta mixture. Beta dis-
tributions are defined on the domain [0, 1] and are
uni-modal for parameters a, b > 1, The Beta mix-
ture allows us to separately model the stationary
and transition dynamics.

Here Fig. 4 shows the comparison when using120

fixed a, b parameters for a single-modal Beta121

distribution for the prior on γt versus using122

the two-component Beta mixture with learnable123

a, b, w parameters for the transition component124

as specified in the main paper in Sec. 4.1.125

When using a fixed single component Beta prior,126

there is a single mode to learn the system dy-127

namics in both transition regions (where one128

expects more rapid changes in state) and station-129

ary regions (where changes are much smaller).130

Because of this compromise, the transitions be-131

tween states are more sluggish while compared132

to the two-component Beta model. The learned pure-state distribution parameters do not differ133

much but the overall model fit is improved in the two-component model due to better tracking in134

the transition regions. For the two-component Beta prior, the average across all MSR datasets is135

eW = 0.50 compared to the average eW = 0.27 for the single-component fixed Beta model.136
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Figure 4: Comparison of model output using a single-component fixed prior versus a two-component
learnable prior for the innovations γt. While the pure state results in the right column are comparable
between the two approaches, the state-variable is more sluggish in adapting to faster transitions in the
single-component model.

1.4.3 Deep State Space Benchmark137

We emphasize that in addition to the characterization of the underlying distribution shown in the138

above evaluation, our DWB approach identifies a set of discrete pure states in the system and yields a139

directly-interpretable per-sample state representation; the Wasserstein barycentric mixing weights140

for each pure-state is directly given by the corresponding component of the simplex-state vector.141

In contrast, there is no direct interpretation of the latent state and no equivalent comparison to the142

learned pure-state in the DSS model. Additional ad hoc processing (e.g. clustering) of the DSS latent143

state space would be required to achieve this, which is beyond the scope of our present paper. Tab. 3144

highlights additional similarities and differences between the two models.145

As mentioned, we run the DSS with two parameter settings. The first uses 2 hidden layers each146

with 5 neurons for a total of 94 learned parameters for each transmission and emission networks.147

The second uses the default parameters included with the code2 which contains 3 hidden layers for148

the transition and emission networks with a hidden state dimension of 200 for a total of for each149

neural network. In both cases, the latent space has dimension (K-1) (to match the dimensionality of150

the K-simplex), an RNN of 2 layers and 600 nodes each is used as the variational approximation151

network, and training occurs over 1000 epochs with a learning rate of 0.008. Plots of the variational152

lower bound show convergence under these conditions153

2https://github.com/clinicalml/dmm
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DWB DSS
State Space K-simplex Rn

State Transition
Dynamics Beta mixture Gaussian distribution

State Transition
Parameters

Learnable Beta
parameters

Neural network
parameterizing mean

and diagonal
covariance of Gaussian

Emission distribution
model

Gaussian with full
covariance

Gaussian with diagonal
covariance

Number of learned
parameters

O(d2K) d =data
dimension K = #

clusters

O(m2) m =NN
hidden layer size

Table 3: Comparison between DWB and DSS models

1.4.4 Additional Results for MSR Data154

We provide the results for learned model parameters for the entire MSR dataset. All plots follow the155

same format as Fig. 4 from the main paper, where the raw accelerometer data is included in the top156

right, the learned state in the bottom left, and the scatter plot of the time series overlayed with the157

estimated pure states projected onto each of the pair-wise axes in the right column.158

The plots produced through initialization using change point detection and time series clustering159

(CPD) discussed in (Cheng et al., 2020a) are in the “MSR_Plots” folder, and those produced through160

ground truth discrete labels (GT) are in “MSR_GT_Plots”.161

1.5 Code Instructions162

1.5.1 MSR163

To run the code 3 and replicate the results reported in our paper,164

# usage: DynamicalWassersteinBarycenters.py dataSet dataFile debugFolder
interpModel [--ParamTest PARAMTEST] [--lambda LAM] [--s S]↪→

# Sample run on MSR data
>> python DynamicalWassersteinBarycenters.py MSR_Batch

../Data/MSR_Data/subj090_1.mat ../debug/MSR/subj001_1.mat Wass↪→

# Sample run for parameter test
>> python DynamicalWassersteinBarycenters.py MSR_Batch

../Data/MSR_Data/subj090_1.mat ../debug/ParamTest/subj001_1.mat Wass
--ParamTest 1 --lambda 100 --s 1.0

↪→

↪→

The “interpMethod” is either “Wass” for the Wasserstein barycentric model or “GMM” for the linear165

interpolation model.166

1.5.2 Optimization Simulations167

The simulated data and experiment included in this supplement can be replicated using using the168

following commands.169

# Generate 2 and 3 state simulated data
>> python GenerateOptimizationExperimentData.py
>> python GenerateOptimizationExperimentData_3K.py

# usage: OptimizationExperiment.py FileIn Mode File

3Code available at https://github.com/kevin-c-cheng/DynamicalWassBarycenters_Gaussian
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# Sample run for optimization experiment
>> python OptimizationExperiment.py

../data/SimulatedOptimizationData_2K/dim_5_5.mat/ WB

../debug/SimulatedData/dim_5_5_out.mat
↪→

↪→

The “Mode” is either “WB” for Wasserstein-Bures geometry and “Euc” for Euclidean geometry using170

Cholesky decomposition parameterization.171

1.5.3 Computation Environment172

We use Python 3.8 with the package requirements included in "requirements.txt" and copied below.173

_libgcc_mutex=0.1=conda_forge174

_openmp_mutex=4.5=1_llvm175

_pytorch_select=0.2=gpu_0176

blas=2.17=openblas177

ca-certificates=2020.12.5=ha878542_0178

certifi=2020.12.5=py38h578d9bd_1179

cffi=1.14.4=py38h261ae71_0180

cudatoolkit=8.0=3181

cudnn=7.1.3=cuda8.0_0182

cycler=0.10.0=py_2183

freetype=2.10.4=h7ca028e_0184

future=0.18.2=py38h578d9bd_3185

immutables=0.15=py38h497a2fe_0186

intel-openmp=2020.2=254187

joblib=1.0.0=pyhd8ed1ab_0188

jpeg=9d=h36c2ea0_0189

kiwisolver=1.3.1=py38h82cb98a_0190

lcms2=2.11=hcbb858e_1191

ld_impl_linux-64=2.33.1=h53a641e_7192

libblas=3.8.0=17_openblas193

libcblas=3.8.0=17_openblas194

libedit=3.1.20191231=h14c3975_1195

libffi=3.3=he6710b0_2196

libgcc-ng=9.3.0=h5dbcf3e_17197

libgfortran-ng=7.3.0=hdf63c60_0198

libgomp=9.3.0=h5dbcf3e_17199

liblapack=3.8.0=17_openblas200

liblapacke=3.8.0=17_openblas201

libopenblas=0.3.10=pthreads_hb3c22a3_4202

libpng=1.6.37=h21135ba_2203

libstdcxx-ng=9.3.0=h6de172a_18204

libtiff=4.1.0=h4f3a223_6205

libwebp-base=1.1.0=h36c2ea0_3206

llvm-openmp=11.0.0=hfc4b9b4_1207

lz4-c=1.9.2=he1b5a44_3208

matplotlib-base=3.3.3=py38h5c7f4ab_0209

mkl=2020.4=h726a3e6_304210

mkl-service=2.3.0=py38he904b0f_0211

mkl_fft=1.3.0=py38h5c078b8_1212

mkl_random=1.2.0=py38hc5bc63f_1213

ncurses=6.2=he6710b0_1214

ninja=1.10.2=py38hff7bd54_0215

numpy=1.19.5=py38h18fd61f_1216

numpy-base=1.18.5=py38h2f8d375_0217

olefile=0.46=pyh9f0ad1d_1218

openssl=1.1.1k=h7f98852_0219

pillow=8.1.0=py38h357d4e7_1220

pip=20.3.3=py38h06a4308_0221
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pot=0.7.0=py38h950e882_0222

pycparser=2.20=py_2223

pyparsing=2.4.7=pyh9f0ad1d_0224

python=3.8.5=h7579374_1225

python-dateutil=2.8.1=py_0226

python_abi=3.8=1_cp38227

pytorch=1.7.1=cpu_py38h36eccb8_1228

readline=8.0=h7b6447c_0229

scikit-learn=0.24.1=py38h658cfdd_0230

scipy=1.5.2=py38h8c5af15_0231

setuptools=51.1.2=py38h06a4308_4232

six=1.15.0=py38h06a4308_0233

sqlite=3.33.0=h62c20be_0234

threadpoolctl=2.1.0=pyh5ca1d4c_0235

tk=8.6.10=hbc83047_0236

tornado=6.1=py38h497a2fe_1237

wheel=0.36.2=pyhd3eb1b0_0238

xz=5.2.5=h7b6447c_0239

zlib=1.2.11=h7b6447c_3240

zstd=1.4.5=h6597ccf_2241
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