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Abstract

Extracting temporal relationships over a range of scales is a hallmark of human
perception and cognition—and thus it is a critical feature of machine learning
applied to real-world problems. Neural networks are either plagued by the explod-
ing/vanishing gradient problem in recurrent neural networks (RNNs) or must adjust
their parameters to learn the relevant time scales (e.g., in LSTMs). This paper intro-
duces DeepSITH, a deep network comprising biologically-inspired Scale-Invariant
Temporal History (SITH) modules in series with dense connections between layers.
Each SITH module is simply a set of time cells coding what happened when with
a geometrically-spaced set of time lags. The dense connections between layers
change the definition of what from one layer to the next. The geometric series
of time lags implies that the network codes time on a logarithmic scale, enabling
DeepSITH network to learn problems requiring memory over a wide range of time
scales. We compare DeepSITH to LSTMs and other recent RNNs on several time
series prediction and decoding tasks. DeepSITH achieves results comparable to
state-of-the-art performance on these problems and continues to perform well even
as the delays are increased.

1 Introduction
The natural world contains structure at many different time scales. Natural learners can spontaneously
extract meaningful information from a range of nested time scales allowing a listener of music
to appreciate the structure of a concerto over time scales ranging from milliseconds to thousands
of seconds. Recurrent neural networks (RNNs) enable information to persist over time and have
been proposed as models of natural memory in brain circuits [1]. For decades, long-range temporal
dependencies have been recognized as a serious challenge for RNNs [2]. This problem with RNNs
is fundamental, arising from the exploding/vanishing gradient problem [3, 4]. The importance of
long-range dependencies coupled with the difficulties with RNNs has led to a resurgence of interest
in long short-term memory networks (LSTMs) over the last several years.

LSTMs, however, are neurobiologically implausible and, as a practical matter, tend to fail when
time scales are very large [5, 6]. More recent approaches attempt to solve the problem of learning
across multiple scales by constructing a scale-invariant memory. For example, Legendre Memory
Units (LMU) are RNNs that utilize a specialized weight initialization technique that theoretically
guarantees the construction of long time-scale associations [7]. LMUs construct a memory for the
recent past using Legendre polynomials as basis functions. In a different approach, the Coupled
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oscillatory Recurrent Neural Network (coRNN) [8] treats each internal node as a series of coupled
oscillators which has the benefit of orthogonalizing every discrete moment in time. In this paper, we
introduce a novel approach to machine learning problems that depends on long-range dependencies
inspired by recent advances in the neuroscience of memory.

Figure 1: Structure of the DeepSITH network. A: A dia-
gram of the DeepSITH network, depicting an example
with two layers. B: The input signal f(t) is convolved
with the precalculated temporal filters to produce an
output of the

∗
τ nodes. C: A table outlining the parame-

ters that need to be specified for each DeepSITH layer.
Typically, we recommend that N,

∗
τmin, and hidden

size remain constant across layers, but
∗
τmax should

increase logarithmically, and k is calculated via the
formula outlined in the text. The #hidden parameter
dictates the output of the dense layers, constant across
layers, combining both what and when information into
new features.

In neuroscience, it has become increasingly
clear that the brain makes use of a memory
for the recent past that 1) contains infor-
mation about both the time and identity of
past events 2) represents the time of past
events with decreasing accuracy for events
further in the past and 3) represents the
past over many different time scales. So-
called “time cells” with these properties
have been observed in many different brain
regions in multiple mammalian species in
a variety of behavioral tasks (see [9], and
[10] for reviews). Recent evidence sug-
gests that the brain constructs temporal ba-
sis functions over logarithmic time [11, 12].
These neuroscience findings were antici-
pated by computational work that describes
a method for computing a scale-invariant
temporal history [13] and consistent with a
long tradition in human memory research
noting the scale-invariance of behavioral
memory [14]. Here, we introduce a Deep
Scale-Invariant Temporal History (Deep-
SITH) network. This network consists of
a series of layers. Each layer includes a
biologically-inspired scale-invariant tem-
poral history (SITH)—effectively a set of
time cells that remembers what happened
when—the history of its inputs—along a
logarithmically-compressed time axis. A
dense layer with learnable weights con-
nects each layer to the next (see Figure 1),
transforming temporal relationships into
new features for the next layer. The next

layer also codes for what happened when but the meaning of “what” changes from one layer to the
next. We compare DeepSITH to an LSTM, LMU and coRNN on a set of time series prediction and
decoding tasks designed to tax the networks’ ability to learn and exploit long-range dependencies in
supervised learning situations.

1.1 Scale-invariant temporal history
Each DeepSITH layer includes a scale-invariant temporal history (SITH) layer. Given a time series
input f(t), the state of the memory at time t is denoted f̃(t, ∗τ). This memory approximates the past
in that f̃(t, ∗τ) is an approximation of f(t− ∗τ). At each moment t, f̃(t, ∗τ) is given by

f̃(t, ∗τ) = ∗
τ
−1
∫ −∞

t′=t

Φk

(
t′

∗
τ

)
f (t− t′) dt′, (1)

where the scale-invariant filter Φ(x) is just a gamma function

Φk(x) ∝ (x)k e−kx. (2)

The function Φk(x) defined in Eq. 2 describes a unimodal impulse response function that peaks at
∗
τ .

The width of the impulse response function is controlled by k; higher values of k result in sharper
peaks (Fig. 2). Because the filter in Eq. 1 is a function of t/

∗
τ , f̃(t, ∗τ) samples different parts of

f(t′ < t) with the same relative resolution [13].
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Figure 2: SITH temporal filters and selection of k. Curves in panels A, B, and C show impulse
responses of 10 SITH filters, with each panel corresponding to a different value of parameter k, which
controls the coefficient of variation of the filters (larger k results in narrower filters). Note that the
filters are scale-invariant: the coefficient of variation is proportional to the peak time. The filters
in this figure have been normalized for easier visualization and for our calculation of the optimal
k. In the experiments the amplitude will decay as a power-law function of time, such that the area
under each filter is the same. In panel B we applied an automated method to optimize the selection of
k (here, k = 16), such that the filters were overlapping, but not so much that there was redundant
information. D illustrates the optimization approach minimizing the ratio between the standard
deviation across time of the sum of all of the filters and the standard deviation of the sums of every
other filter (Please see the supplemental information for more detail.)

In implementing this formal approach, the variable
∗
τ must be mapped onto a population of units.

Noting the scale-covariance of f̃(t, ∗τ) one obtains constant resolution per unit if the
∗
τ of the ith unit

is chosen as ∗
τ i = ∗

τmin (1 + c)i

This means that
∗
τ values are sampled more densely for values close to the present

∗
τ = 0 and less

densely for time points further in the past. This property is shared with populations of time cells in
the brain. More precisely, the expression for

∗
τ i above implies that the

∗
τ values are evenly spaced on

a logarithmic axis. Recent evidence suggests that the brain codes time on a logarithmic axis as well
[11, 12].

Equation 1 appears to require access to the entire temporal history to construct the representation
f̃(t, ∗τ); in the experiments described below, we used numerical convolution of f(t′ < t) and Φk

to construct f̃(t, ∗τ). However, it is possible to construct f̃(t, ∗τ) without remembering the entire
history. For instance, one might first construct the real Laplace transform of f(t′ < t), F (s), using a
time-local differential equation as

dF (t, s)
dt

= −sF (t, s) + f(t). (3)

The filter Φk described above is the analytic result for the Post approximation for the inverse Laplace
transform, which can be approximated with a linear operator L-1

k :

f̃(t, ∗τ) = L-1
k F (t, s) ≡ Cks

k+1 d
k

dsk
F (t, s) (4)

with the mapping s = k/
∗
τ . Defining f̃ in this way gives Eq. 1 as a solution. There are other ways

one could construct f̃ without remembering the entire history [15, 16].

Note that Eq. 4 does not require storing the history of f to construct the real Laplace transform of
that history. It is possible to sample s logarithmically as well as

∗
τ , resulting in exponential memory

savings. However, in the experiments presented here we used numerical convolution to avoid errors
that arise from approximating derivatives with large values of k [17]. To distinguish this from prior
machine learning work that used a direct implementation of L-1

k , we refer to this implementation of
scale-invariant temporal history as iSITH.

It is perhaps worth noting that the Laplace transform in Eq. 3 can be understood as an RNN with a
diagonal connectivity matrix that does not change with learning. Similarly, f̃ can also be understood
as an RNN with fixed weights, that is, a reservoir computer. The reservoir has a very specific form,
however. The reservoir is chosen such that the eigenvalues are in geometric series and the eigenvectors
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are translated versions of one another [18]. Taken together these two properties correspond to the
statement that f̃ represents what happened when as a function of log time. DeepSITH can thus be
understood simply as a deep reservoir computer with this specialized form for the reservoir.

1.2 DeepSITH: A Deep Neural Network Using Neurally Plausible Representations of Time
A DeepSITH network consists of a series of DeepSITH layers. At the input stage of the ith DeepSITH
layer, a SITH representation is constructed for each of the ni input features. The number of units in
this SITH representation is equal to the number of input features ni times the number of

∗
τs, Ni. At

the output stage of each DeepSITH layer, the SITH representation is fed through a dense layer with
modifiable weights W(i) and a ReLU activation function g(.):

o(t) = g
[
W(i)f̃(t, ∗τ)

]
. (5)

The weight matrix W(i) connects the output of layer i to the input of layer i + 1. W(i) has
ni+1 × (ni ×Ni) entries. In the experiments examined here, the input to the first layer is one- or
two-dimensional, but the number of features is greater for subsequent layers.

One final dense linear layer converts the output from the final DeepSITH layer to the dimensionality
required for the specific problem. A diagram depicting this network is shown in Figure 1.A. We
provide all the code for DeepSITH and the subesquent analysis in our github here.

1.3 Parameterization of DeepSITH
There are a few hyper-parameters that need to be specified to optimize the performance of a DeepSITH
network. A network with three layers proved successful for most of the experiments here, but four
layers were used for Mackey-Glass and Hateful-8 described below. Layer-specific parameters are
∗
τmax and number of

∗
τs, Ni. We set

∗
τmax to increase geometrically from layer to layer, and

∗
τmin was

set to 1 ∆t for all problems. The number of
∗
τs, Ni was constant across layers; we found that values

from 10-30 were roughly equivalent.

The value of k was chosen to be dependent on the values of
∗
τmax andNi (see Figure 2.D). The density

of the centers of the temporal filters are controlled by the value c, where c =
(
∗
τmax/

∗
τmin

)1/N

+ 1.

The rate in which width of the filters increase as a function of
∗
τ is dependent on k. We choose k

in order to minimize the ratio of the standard deviation of the sum of all the filters, stdall, to the
standard deviation of the sum of alternating filters, stdalt. This minimization is so that, for a given c,
we do not over represent the past in our iSITH representation, nor do we construct temporal filters in
iSITH that have too much overlap. More detail on this minimization is provided in the supplemental
sections.

The final key hyper-parameters when setting up a DeepSITH network are the sizes of the dense layers.
This decision depends largely on the number of input features and the expected complexity of the
input. The number of output features from each dense layer, or the hidden size, is an estimate of
how many unique temporal associations can be extracted at each moment from the history of input
features decomposed via the SITH layer. In order to keep the network size small, this hidden size
should be kept relatively small (less than 100 nodes), and we have found in practice that it can be
consistent across layers after the first layer. In the cases where an input signal is sufficiently complex
in the breadth of temporal dynamics that need to be encoded, a larger hidden size may be required.

Table 1 summarizes the hyperparameters used in the experiments.

2 Experiments
We compared the DeepSITH network to previous RNNs—LSTM, LMU, and coRNN—in several
experiments that rely on long-range dependencies. Each of the networks is based on a recurrent
architecture, but with different approaches to computing the weights and combining the information
across the temporal scales. Specifically, SITH builds a log-compressed representation of the input
signal and DeepSITH learns a relevant set of features at every layer, which become the input to the
next layer. Where practical, we explicitly manipulate the characteristic time scale of the experiment
and evaluate the performance of the network as the scale is increased.
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Table 1: Parameter values of the DeepSITH network in each task.

EXPERIMENT # LAYERS τmax k Ni #HIDDEN TOT. WTS.

P/SMNIST 3 30, 150, 750 125, 61, 35 20 60 146350

ADDING PROBLEM 4 20, 120, 720, 4320 75, 27, 14, 8 13 25 25151

MACKEY-GLASS 3 25, 50, 150 15, 8, 4 8 25 10301

HATEFUL-8 4 25, 100, 400, 1200 35, 16, 9, 6 10 35 37808

We ran all of the experiments presented in this work with the PyTorch machine learning framework
[19]. In Table 1 we show the hyperparameters chosen for each experiment. We attempted to keep
the number of learnable parameters for each network to be close to those presented in the current
state of the art [20]. For the following experiments, we applied a 20% dropout on the output of each
DeepSITH layer, except for the last one, during training. We utilized the Adam optimization algorithm
[21] for training all of the networks. Additionally, for all the following experiments except psMNIST,
we run each test 5 different times, and report the 95% confidence intervals in their respective results
figures.

It should also be noted that we did not perform a hyperparameter search for any networks a priori. For
DeepSITH, we instead followed the heuristics described above. For the three other networks, we used
hyperparameters presented in the paper’s they were interoduced. In the cases where hyperparameters
were not explicitly published, we hand-titrated the values of the hyperparameters based on ranges of
values in each network’s respective publications. The LMU paper for the LMU and LSTM parameters,
and the coRNN paper for the coRNN parameters. If the publication did not have the same experiment,
we used the closest comparable experiment’s presented hyperparameter ranges to titrate for that
network. All parameters for the compared network architectures are provided in the suplemental
materials.

2.1 Permuted/Sequential MNIST

Figure 3: The DeepSITH network achieves results comparable to state-of-the-art on the sequential
MNIST tasks. Top: Stacked in order are 10 examples of each of the 10 digits, flattened to be 1-
dimensional time series, from sMNIST and psMNIST items. Middle: Plots the accuracy across
epochs on sMNIST and psMNIST. DeepSITH achieves a classification accuracy of 99.32% on
sMNIST, and 97.36% on psMNIST with identically configured networks. Bottom: Plots the loss
across epochs on sMNIST and psMNIST.
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Table 2: Results from DeepSITH on psMNIST and sMNIST compared to other networks. Best
performances are in bold.

Network psMNIST sMNIST

DeepSITH 97.36% 99.32%

LSTM 90.20% 98.90%

LMU 97.15% NA

coRNN 97.34% 99.40%

In the MNIST task [22], handwritten numerical digits can be identified by neural networks with
almost 100% accuracy utilizing a convolutional neural network (CNN). This task is transformed
into a more difficult, memory intensive task by presenting each pixel in the image one at a time,
creating the time series classification task known as sequential MNIST (sMNIST). An even harder
task, permuted sequential MNIST (psMNIST), is constructed by randomizing the order of pixels
such that each image is shuffled in the same way and then presented to the networks for classification.
Here, we train a DeepSITH network to classify digits in the sequential and permuted sequential
MNIST tasks by learning to recognize multiple scales of patterns in each time series.

The DeepSITH network is trained with a batch size of 64, with a cross–entropy loss function, with a
training/test split of 80%-20%. In between each layer we applied batch normalization, and applied a
step learning rate annealing after every third of the training epochs (2e-3, 2e-4, 2e-5). It should be
noted that the permutation that we applied in our tests was the same as in the [8] study examining the
coRNN, making the results directly comparable. Test set accuracy was queried after every training
epoch for visualization purposes. While we did not attempt to minimize the number of learnable
weights in this network, DeepSITH had 146k weights, compared to 134k, 102k, and 165k weights for
the coRNN, LMU, and LSTM networks, respectively.

The performance of DeepSITH on the standard (left) and permuted (right) sequential MNIST task
is shown in Figure 3, along with comparisons to other networks in Table 2. DeepSITH was able
to achieve performance comparable to state-of-the-art on permuted sequential MNIST with a test
accuracy of 97.36% [8], and comparable performance to the best performing networks at 99.32% for
normal sequential MNIST [6, 7]. This result displays the expressivity of DeepSITH on this difficult
time series classification task.

2.2 Adding Problem

Figure 4: DeepSITH learns the adding problem within the first 2500 training steps, faster than any
other tested network. Plotted here are the running average mean squared error (MSE) losses over the
previous 100 items trained with each network on signal lengths of T = 100, T = 500, T = 2000, and
T = 5000, over 5 runs with a 95% confidence interval. As T gets larger, the signals become much
more difficult to learn, as they require the networks to make associations between larger temporal
distances.

We examined the Adding Problem [5] as a way to measure the ability of different networks to process
and encode long-range temporal associations. In this implementation of the task, taken directly from
[8], a 2-dimensional time series of length T is generated. The first dimension contains a series of
uniformly distributed values between 0 and 1, and the second dimension contains all zeros except two
indexes set to 1. These two indexes are chosen at random such that one occurs within the first T/2
indexes and the other within the second T/2 indexes. The goal of this task is to maintain the random

6



values from the first dimension presented at the same time as the 1’s in the second dimension until
the end of the sequence and then add them together. The evaluation criterion is mean square error
(MSE). The experiments were ran with a batch size of 50 items for all tests, and the loss was logged
for every other batch. In terms of complexity, DeepSITH had 25k learnable weights for all sequence
lengths, the LMU ranged from 2k to 11k , LSTM had 67k across all lengths, and the coRNN had 33k
across all lengths. For training and testing, please note that all examples were randomly generated at
every epoch.

Figure 4 shows the results of the four networks across different signal lengths, T . The DeepSITH
network learned the tasks quickly at every length of signal without changing model parameters. As
T increases, the LMU and LSTM struggled with learning within a reasonable number of training
samples. The coRNN also struggled, but it should be noted that this network has been shown in a
previous study to learn the adding problem very well at all signal durations tested here. We were
unable to replicate the results in any of the conditions. The DeepSITH network was able to solve the
problem regardless of signal duration.

2.3 Mackey-Glass Prediction of Chaotic Time Series

The Mackey-Glass equations are a series of delay differential equations originally applied to describe
both healthy and abnormal variations in blood cell counts and other biological systems [23]. Here we
generated a one-dimensional time series with the differential equations with different lag values, tau,
which controls a time scale of the dynamics. The task was then to predict values some number of
time steps into the future as the time series is fed into the network.

Figure 5: DeepSITH learns to predict multiple
levels of Mackey-Glass complexity. Top These
plots contain examples of Mackey-Glass time se-
ries with different values for tau, which controls
the complexity of the signal. Bottom This plot
contains prediction results in terms of normalized
root mean squared error for different levels of sig-
nal complexity and number of timesteps into the
future the networks were predicting, 95% confi-
dence interval over 5 runs.

The starting parameters for this experiment were
taken from previous work, with tau of 17 and
the prediction distance into the future set to 15
time steps [7]. To test prediction accuracy for
increasing levels of complexity in the signal, we
then generated signals with increasing multiples
of tau, while also ensuring the ratio of complex-
ity to the prediction duration was kept constant,
giving rise to tau/prediction distance values of
17/15, 34/30, 51/45, 68/60, 85/75. To illustrate
the effect of tau on the complexity of the signal,
we plot examples for tau = 17 and 85 in the top
of Figure 5. Different values of tau introduce
correlations at different temporal scales into the
chaotic dynamics, allowing us to test the net-
works’ ability to predict and encode multiple
time-scales of information simultaneously.

We generated 128 continuous one-dimensional
signals for each value of tau, and split these
signals for a 50%-50% training
test split. Each network was trained and tested
separately on each tau/prediction distance com-
bination. Training was with a batch size of 32,
and the networks were evaluated on the test-
ing set with normed root mean squared error
(NRMSE) calculated over predictions made at
each time step, as in previous work [7]. The pa-
rameterizations for each network did not change
across values of tau. For the LSTM, LMU, and
DeepSITH, we kept the number of weights to

around 18k, while the coRNN had 32k weights.

The bottom of figure 5 shows the NRMSE for each network as a function of tau and prediction
distance over 5 runs. DeepSITH outperforms the other architectures, and to our knowledge is
performing at state of the art on this task.
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Figure 6: DeepSITH consistently and quickly classifies long, noisy time series signals known as the
Hateful 8. Left 8 example Hateful-8 signals. The useful signal occurs in the first 17 time steps, and
after a short pause, the rest is semi-random, signal-similar noise. Center and Right Plotted are the
performance on a held out test set after training for various noise lengths, over 5 runs with a 95%
confidence interval. The darker color indicates longer noise durations. The DeepSITH and LMU
networks were able to learn this task the fastest, approximately 10 times faster than the coRNN
network.

2.4 The Hateful-8
When learning to decode a time series after a delay, there may be noise during the delay that will
hinder the network’s ability to maintain the signal through time. Noise can be even more of an issue
if it is similar to the signal, such that it is difficult to separate signal from noise. In such cases the
network must learn the key features of the signal that can enable successful classification, while
ignoring similar features until the end of the time series. Here, we introduce a novel time series
classification task based on Morse code, which we call the Hateful 8. In Morse code, all letters
are defined by a unique one-dimensional pattern of dots (represented by activation lasting for one
time step) and dashes (represented by activation lasting for three time steps), each separated by one
inactivated time step, with three inactive time steps indicating the end of a letter. In the Hateful 8 task
there are 8 unique patterns of dots and dashes making up the signals to decode, followed by noise
made up of semi-random dots and dashes similar to the signal.

The total decodable signal is 17 time steps long (including the 3 time steps long pause), followed
by signal-similar noise. We trained and tested the four networks over increasingly longer durations
of noise added to the end of the decodable signal. Thus, to exhibit high performance a network
must maintain decoded information in the face of noise that resembles the signal. We generated the
signal-similar noise pseudo randomly such that there is an even mix of dots and dashes, along with
pauses similar to the one to indicate the end of the decodable signal. Figure 6 plots examples of all 8
different decodable signals followed by example signal-similar noise.

For training, we generated 32 different versions of each of the Hateful 8, each with a different
randomization of the noise. For the testing set, we again generated randomized noise, and generated
10 noise patterns for each of the 8 different decodable portions. In total, we had 256 training signals
and 80 test signals for each amount of noise. Note, each duration of noise was trained and tested in
independent experiments. Each network was trained and tested 5 times for each noise duration. We
trained networks with a batch size of 32. DeepSITH had 38k weights, LSTM had 30k weights, LMU
had 30k weights, and the coRNN 32k weights.

In the center and right of Figure 6 we see the performance of the four networks on the testing set as
a function of epoch and amount of noise. All networks exhibited some degree of success with the
lower amounts of noise, and only the LSTM was unable to learn to 100% accuracy at the higher noise
lengths. In terms of training time, the LMU and DeepSITH networks learned quickly and were more
stable than the coRNN and LSTM networks.

3 Discussion
DeepSITH is a brain-inspired approach to solving time series prediction and decoding tasks in ML
[24], especially those that require sensitivity to temporal relationships among events. DeepSITH was
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able to achieve near state-of-the-art performance in all the examples examined in this paper. It is
possible that some other set of hyper parameters eould provide better results for DeepSITH or for the
other networks tested.

For comparison within the p/sMNIST framework, we did not have to select any hyperparameters
for other networks since their results were published in previous studies. With the p/sMNIST tasks,
DeepSITH was able to achieve near state-of-the-art performance on permuted sMNIST and sMNIST
proper. For Mackey-Glass prediction DeepSITH achieved state of the art prediction accuracy. For
the other networks, we used parameter values directly from their source papers in the cases where
they ran the same experiments, otherwise we made an educated guess based on the parameters in
the published work. DeepSITH was able to learn the Adding Problem with essentially the same
amount of training time regardless of the length of the input, and did so seemingly faster than the
other networks. It was also able to achieve 100% accuracy on the Hateful-8 problem regardless of
how much noise we presented, as was the LMU network. We attribute the successes of DeepSITH to
the scale-invariance of the memory representation and the decomposition of what information from
when information.

We compared DeepSITH to LMU [7] and coRNN [8], which are both recent approaches based on
modified RNNs. They both demonstrated remarkable success in time series prediction on similar
problems, paving the road for new approaches that tackle the problem differently from most common
RNNs, such as LSTM. While similar in spirit, LMU and coRNN use different memory representations
than the one proposed here.

The compression introduced by Φk(t/∗τ) results in a loss of information about timing of events as they
recede into the past. On its face, this may seem like a disadvantage of this approach. However, the
ubiquity of logarithmic scales in perception and psychophysics suggest that this form of compression
is adopted widely by the brain [10, 11, 12]. Viewed from one perspective, this gradual loss of
information is a positive good. The blur induced by Φk forces the system to generalize over a range
of time points. The width of that range scales up linearly with the time point in the past at which
the observation is made. The deep architecture with SITH representations enables the network
to store fine temporal relationships at early layers and turn them into features that are retained
over the entire range of time scales at the next layer. The temporal representation at each layer is
logarithmically-compressed but extending over a progressively larger range of scales.

The ubiquity of logarithmic scales in perception and neuroscience raises the question of what adaptive
benefit has led to this form of compression. Logarithmic scaling may be a reaction to power law
statistics in the natural world [25]. Perhaps the choice of logarithmic scale allows the organism to
provide an equivalent amount of information about environments with a wide variety of intrinsic scales
[26]. Another possibility, suggested by recent work [27, 28] is that the choice of a logarithmic scale
enables a perceptual network to generalize to unseen scales. For instance, consider a convolutional
filter trained on a time series projecting onto a representation of log time. Rescaling time t → at,
that is presenting the time series faster or slower, has the effect of translating the representation over
log time by log a. Because convolution is translation-covariant, a CNN would (ignoring edge effects)
identify the same features, but at translated locations in log time. Thus logarithmic compression
could allow deep networks to show to perceptual invariances to changes in scale. This property could
enable CNNs to learn faster and generalize across a wider range of stimuli.

4 Societal Impact

Given that we are introducing a methodology that is attempting to function as a drop-in replacement
for RNNs, we also inherit the fundamental risks associated with improving the accuracy of these types
of network architectures. Action-detection, voice recognition, and other time-series decoding tasks
run the risk of being heavily biased, and by introducing a human inspired method we run the risk of
introducing more human-like biases. Furthermore, in the realm of natural language processing we run
the risk of creating an AI that better captures long-range dependencies and is, consequently, able to
generate extremely human-like text, which could potentially add to the already problematic fake-news
epidemic. Extra caution should be taken that these methods are steered away from applications that
could be used maliciously, but we believe that, ultimately, these AI advances will do more good than
harm.
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 4
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See Supple-
mentals: Github

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Table 1 & Section 2

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We report only the best performing models

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We did not ran anything that could
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(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [No] It does not have personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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