1 Proof

Proposition 1. Let n; = 1/t. Assume v < 1/02. Both 1, in MAML (with one inner gradient step)
and 0, in CommonMean converge to w = E . w.

Proposition 2. Assume that v < 1/o2. We have w =argming E,Eg Eq Z(x,y)eQT(XTWSP rox) _
y)?= argming E,Es EQ > ,yco. (Xnggd) —y)%

We first prove Proposition 2 that the mean regressor is the unique minimizer. Then, we prove
Proposition 1 by showing that MAML (with one inner gradient step) and CommonMean algorithms
achieve global convergence.

1.1 Proof of Proposition 2]

Proof. For each task 7, let v, = w* — w, then {v,} are i.i.d. random variables with zero mean.

Denote C, = (AT + X X,) ™" Aswi™ = C, (A0 + X[y, ) andy, = X, w + &, it follows
that

E-Es,Bo, Y (x wP)—y)
(x,9)€Q~
=E.Es,Eq, >, (Ax'C0+x CX](X,w}+&)—x"wh—¢)°
(x,9)€Q~
=E,Eg Eq, Z MxTCO+x"C.XT(X,w+ X v, +&) —x'TW—x' v, —¢&)?
(x,9)€Q~
=E,;Es Eq, Z ()\XTCTG + XTC-,—XIXTW — xTv‘v)2 + constant (1)
(x,9)€Q~
=E,Egs Eq. Z (Ax"C, (8 — w))? + constant
(x,9)€Q~
=\%02n,E,Es_ (8 — W) C2(6 — W) + constant,
where we have used the setting that x, &, X, &,, and v, are independent to obtain (I). Since
E,Eg, C2 = A\~2I, we conclude that & = w is the unique optima.
For MAML with one gradient step wed — P — X (X4 —y,), it follows that

EEs,Eg, Y (x'wi)—y)?

(x,y)€Q~r
=E.Es,Eq, Y (x (I-1X]X )¢ +x Xy, —y)?
(x,9)€Q~
=B, Es.Eq. Y, (x (T—7X]X )¢ +9x X[ (X, W+ X,v, + &) —x'w —x"v, —)?
(x,9)€Q~
=E,Eg, Eq, Z (xT(I—X]X,) (¢ — \7\/))2 + constant
(x)€Q~
=n,02E, Eg_||(I - yX]X,)(¢ — W)||? + constant.
As v < /02, we conclude that v = w is the unique optima. O

1.2 Proof of Proposition ]

Proof. (i) Notice that w'P is affine in 6, thus, E,Eg, Eqo. 3 ()€@r (x "W — )2 is convex

in 8. The CommonMean algorithm is using stochastic gradient descent to minimize the population
risk, and the global convergence of 6, follows from the stochastic convex optimization [1]].

(i) Similarly, w2 is affine in 1, thus, the loss E,Eg_ Eq, X xyeo. (xTwe — )

7). Using stochastic gradient descent, 1), achieves global convergence [1]. By Proposition 2, w is the
unique optima, and we finish the proof. O

2 is convex in



1.3 Proof of Proposition[d]

The task index 7/ will be omitted for simplifying notations in Proposition 4}

~ a . 2
Proposition 4. E¢|w) —w*|? = |[b[|* + >_72, (%) +>5L (()\/V 7 ) , where the
J

expectation is over the label noise vector €.

Proof. The ridge regression has a closed-form solution w(Pr%) = ()\I + XTX) ! ()\9 + XTy).
Using the SVD decomposition of X = UXV " and y = Xw* + £, we obtain

W) — (T4 AT'VS2VT) ™ (Vag + VEby + A7 ' VU Ty)
_ —lyry2yT) L i -1 2, % -1
- 0
T+ A'VE2VT) 7 (Vag + VEiby + A1 VE2a* + A" 'VEUE) @)
— Vb + VI+AIS) (ag+ A 12%) + V(ARSI +2) ' UTE, Q)

where we have used Uy = UT (Xw*+£&) = U'UZV T (Va* + Vib* )+ U ¢ =Za* + U "¢
in () and the Woodbury identity in (3). Then the estimation error is

W) _w* = Vi(by —b*) + V(I+ A '22) ! (ag—a*) + V(A1 + ) U
Taking the square ¢2-norm and then expectation over £ on both sides, we have
EEHW(me) o W*||2
=[[V-(bo — b*)[[* + V(I + A7 527 (ag —a") |2 + B[V (AS + %) UTg? @)
=[[bo = b2+ [T+ A7'52) 7! (a9 — a*) |2 + e[| (AB '+ 2) 7 UT¢|?

2 2
= Aa; [ vjo

—|IblI2 Z J }: J9¢

b ( ) ]_1<)\+1/]2> ’

where (@) follows from the fact that V- is V’s orthogonal complement and £ is independent with X
(also the 32, U and V). O]

1.4 Proof of Theorem/[I]
Lemma 1. £, (0, ¢) is Lipschitz-smooth w.r.t. (0, @) with a Lipschitz constant Byera.

Lipschitz-smoothness is a basic assumption to establish convergence of gradient descent algorithms
in stochastic non-convex optimization [4} 8] and meta-learning in non-convex settings [2, [11].

Proof of Lemma 1. As Liew(0,0) = Y o r Z(x,y)EQ,— £(y,y), it suffices to show that (¢, y) is
Lipschitz-smooth in (0, ¢).

Using the chain rule, we have

Vie,0)l(0,y) = Vil(9,9)V (6,4)7, §))
Vie.$)d = Vie.¢) fo(2) + (V(g_yd,)lC(ZT,z))TaT + (V(e,cp)a'r)TIC(ZT, z). (6)

The Lipschitz properties of direct derivatives V1£(3,y), V(0,¢)f0(2), V (9,¢)K(Z~,2), and K(Z,z)
follow from the Assumption 1. It remains to claim «, and V(g 4y, are Lipschitz. Let p =

[fo(z1);-..; fo(zn,); K(Zr,21);...; K(Zr,2p,)] € R”s+7% be the input of the dual problem.
(i) Claim: « is Lipschitz w.r.t. (6, ¢) and e (p) is Lipschitz-smooth w.r.t. p. To show

o, is Lipschitz wrt.  (6,¢), it suffices to show that [|V(g 4y, | is bounded. By
the chain rule, Vg gy = Vpa Vg p. Denote the dual objective by g(p, ).

By the implicit function theorem [9], Vpa, = — (V2 g(p7a7))_1 ag;ag(p,aT),

where V2g(p,a,) = Z(x“yi)esf V2U(fr(2i),y)K(Zr,2:)K(Zr,2:)" + K(Zr,Z,),
2

3330‘9(13’0‘7') = [’C(ZT,ZT)D ‘ (/C(ZT,Z.,-)D)®aI+VT®I+I®a:}, D =




diag([V3(f+(z1),11); - s V(7 (Z0,), Yn)])s vV = [Vil(fr(21),11);- s Vil(fr(Zn,), Yn.)],

where ® is the Kronecker product. It follows from the Assumption 1 that both V2 ¢(p, ) and
aI‘?%g(p, o) are Lipschitz w.rt. p. Hence, we conclude that Vo, (p) is Lipschitz, o, (p) is
Lipschitz-smooth w.r.t. p, and ||V, (p)|| is bounded. Again, the boundedness of Vg 4)p follows
from the Lipschitz-smoothness of p w.r.t. (8, ¢). We conclude that v, is Lipschitz w.r.t. (0, ¢).

(i) Claim: V(g g)a is Lipschitz w.rt. (6, ). Given (6,¢) and (0',¢'), we show
IV (0,4)2- (0, 9) — Vio,4)0-(0',¢)| < BI(6,¢) — (6,¢')|| for some 3 > 0. For nota-
tion simplicity, let ¢ = (0, ¢) and ¢’ = (0’, ¢'), then we have
IVear(e) = Veor (¢)]
=[|Vper (P(9))VeP(®) — Voar (p(¢')) Vep (¢
|V par (p(#))Vb() — Vpar (b(#) Vop(¢') & Vpors (p(#)) Vb ()
<IVear (P(@)IIIVep(9) = Vep(#)ll + Ve (@) [ Voar(p(9)) — Voo (p(#)]-
As p(p) and o, (p) are Lipschitz-smooth, there exists 5 > 0 such that
IVear(¢) = Vear (@) < Blle — &'l + Bllp(e) — p¥)ll
<Blle =l +Ble - ¢
=2Bll¢ - ¢'ll.

We conclude that V , o, is Lipschitz.

By (i) and (ii), ¢ is Lipschitz-smooth w.r.t. the meta-parameters . Therefore, L () is Lipschitz-
smooth w.r.t. ¢o with a Lipschitz constant Sye, > 0. O]

Theorem 1. Let the step size be n; = min(YVT, Y/ Bu) Algorithm 3 satisfies

mini<¢<7 E||V (g, ¢,) Limeta(01, d1) | = O (7&/VT), where the expectation is taken over the random
training samples.

The proof is similar to non-convex stochastic programming [4].

Proof of Theorem 1. Let ¢ = (0, ¢). Let {s = Vo, Lmew(pr) — % > ren, &r» Where % > ren, 87
is an unbiased estimation of V,, Lineta (¢4 ), Using the Taylor expansion, we have

Emela(‘Pt—&-l)
1
S £meta(§0t) + Vnptﬁmela(ﬂot)—r(ﬂot—&-l - Sot) + §Bmeta||90t+l - Sot”Q

m 1
< £meta(§0t) - nt(l ﬁ emnt)chpycmela(ﬂot)H2 + UtV;t Lmeta(ﬂot)Ct + §Bmeta"7t?0'é-

Taking conditional expectation over {;—; on both sides and then take the expectation over the random
training samples, we have

1
Eﬁmela(‘Pt-&-l) § Eﬁmeta(got) - %E”vq’f Emeta(‘Pt)HQ + iﬂmetant20é7 (7)

where we have used 1 — M > % Rearranging the above inequality and summing over ¢, we have

T T
Z %E”cht £meta<‘Pt> ||2 < EEmeta(‘Pl) + Bmetaa'é Z 77?- (8)
t=1 =
Since 7; = min(1/vT, /284 ), We have Ethl n? < 1. Diving both sides by 1/v/T, we conclude that
minlStST IEHvatﬁmeta(Sot)”Q =0 (Ué/ﬁ). O

1.5 Proof of Theorem 2|

Theorem 2. Assume that M (0, ¢) is uniform conditioning. (i) Let n; = min(Y/vT, 1/28.u.). Algo-
rithm 3 satisfies miny <y <7 BELpera (01, ¢r) — min g, ¢y Lnera (6, ¢) = O (Ué/ﬁ), where the expecta-
tion is taken over the random training samples.  (ii) Let ny = 1 < min(/28u, 271/pp) and B, = T.
Algorithm 3 satisfies Liea(0t, Pt) — ming, gy Linewa(0, @) = O((1 — neu/a|T)?).



Proof of Theorem 2. Let ¢ = (0, ¢). By the chain rule, we have

\Y Emeta |7-‘ Z Z V1 y y y (9)
T€T (x,9)EQ~
1

= WQ(WTVPM(‘P)’ (10)
where G(@) = [--+  V1l(9,y) -] € R™I7l stacks all gradients of the losses on query examples

as a vector. Hence, we establish the Polyak-Lojasiewicz (PL) inequality [7] as follows

2 1 T 2
chpﬁmeta(‘P)” = |7-|2 Hg(‘P) chM(SD)H

1
- ITI2

5 1G(p )|I? (uniform conditioning)

G(¢) VM)V M(0)G(p)

ITI

TET (x y)GQT

Z Z —minf(y', y)) (strongly convex)
y/

TET(x,y)EQT

>
- 2|T\2

o .
> 2P . — min Lo .
2|T‘ (»Cmetd(‘ao) 1 meld(‘)o))

The PL inequality is commonly used in proving the global convergence of nonconvex optimization [5|
6]. Then, mini <¢<7 ELmew(9:) — ming L () = O (72/vT) follows directly from Theorem 1.

For full grqdient descent, the gradient noise ¢; = Vo, L:{nem(.cpt) — % Yo 5, 8- = 0, thus, the noisy
gradient will be the true gradient. By the Taylor expansion, it follows that

Lmela(‘Pt-&-l) - Hgn Lmela(‘P)
/Bmeta

o1

<Lmeta (1) + v;t Luneta (1) (Pr1 — P1) + 1 — - Hgn Lineta ()

||2 T/ ﬁmeta

:Emela(‘Pt) - 77||vcpt£meta(99t) ||V £meta(‘Pt>|| - mgn Emeta(‘-ﬁ)

nep i
(1 — 4,T|> (‘Cmeta(‘Pt) - H};H Emeta(‘f’))?

and we obtain the exponential convergence. O

2 Additional Experiments

2.1 Compared with MAML using a wide network on Sine

As the network width is critical to MAML, we perform few-shot regression experiments on Sine using
the setting in [[10]. We compare MetaProx with MAML that uses a larger (denoted by LargeMAML)
and wider (denoted by VeryWideMAML) network. As can be seen from Table[I] MetaProx achieves
the best performance.

2.2 MetaProx with RBF kernel on Sine

In this section, we evaluate the performance of MetaProx with the radial basis function (RBF) kernel
[I%1 —x2 |

on Sine. The RBF kernel is K(x1,%2) = exp <_T2>’ where ¢ > 0. Tablereports the

results when o varies from {0.01,0.05,0.1,0.5,1.0,5.0}. As can be seen, a simple linear kernel is
better.



Table 1: Average MSE (with 95% confidence intervals) of few-shot regression on Sine using the
settings in [10]. Results of baselines are from [[10].

method 5-shot 10-shot
OriginalMAML [3]] 0.390 + 0.156 0.114 +£0.010
LargeMAML 0.208 £ 0.009 0.061 +0.004
VeryWideMAML 0.205 £ 0.013 0.059 +£0.010
MetaFun [10] 0.040 + 0.008 0.017 4+ 0.005
MetaProx (proposed) 0.010 + 0.001 0.002 + 0.001

Table 2: Average MSE (with 95% confidence intervals) of MetaProx with different base kernels on
Sine (noise-free).

References

kernel 2-shot 5-shot
RBF (0.01) 2.92+0.19 2.78 £0.18
RBF (0.05) 2.72+0.18 2.36 £0.17
RBF (0.1) 2.50+0.17 2.254+0.14
RBF (0.5) 2.38 +£0.16 1.714+0.13
RBF (1.0) 2.36 +£0.16 1.68 £0.12
RBF (5.0) 2.38 +£0.15 1.724+0.13

linear 0.11 +£0.01 0.01+0.00
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