Collapsed Variational Bounds
for Bayesian Neural Networks

Marcin B. Tomczak, Siddharth Swaroop, Andrew Y. K. Foong, Richard E. Turner
University of Cambridge
Cambridge, UK
{mbt27,ss2163,ykf21,ret26}@cam.ac.uk

Abstract

Recent interest in learning large variational Bayesian Neural Networks (BNNs)
has been partly hampered by poor predictive performance caused by underbtting,
and their performance is known to be very sensitive to the prior over weights.
Current practice often bxes the prior parameters to standard values or tunes them
using heuristics or cross-validation. In this paper, we treat prior parameters in a
distributional way by extending the model and collapsing the variational bound with
respect to their posteriors. This leads to novel and tighter Evidence Lower Bounds
(ELBOs) for performing variational inference (V1) in BNNs. Our experiments show
that the new bounds signibcantly improve the performance of Gaussian mean-peld
VI applied to BNNs on a variety of data sets, demonstrating that mean-peld VI
works well even in deep models. We also bnd that the tighter ELBOs can be good
optimization targets for learning the hyperparameters of hierarchical priors.

1 Introduction

There has been a lot of recent interest in developing methods for Bayesian Neural Networks (BNNSs),
and variational methods provide computationally cheap approximations to the posterior over weights
when compared to alternatives like MCMC. Research on Variational Inference (VI) for BNNs has seen
multiple advances enabling optimization of the Evidence Lower Bound (ELB®BE, 24,7, 39],
allowing for scaling to large neural networks and datadei<@3, (15, /16, 66]. However, the under-
conbdence of mean-beld VI (MF-VI) in output-space has caused poor adoption of VI in applications,
especially in sequential decision maki@y60,[69]. Although a lot of work has improved performance

by deriving better estimators of the gradient of the ELIZS, b5, 24,7, 38], this work has focused

on thevariational parametersf distributions over weights, with the prior over weights usually bxed

to zero-mean isotropic Gaussiahs|[55,[70,/74|15,120,17, 40].

In this paper, we also apply inference to fhréor parametersof Gaussian BNNs (e.g. means and
variances of a Gaussian prior over weights). We do this by using collapsed VI b@6)d8,47, [64],

which analytically solve the inference over prior parameters and allow us to derive tighter ELBOs for
performing VI in BNNs. Many previous works argue that point estimates for parameters of Gaussian
prior in BNNs can be learned reliably by maximizing the ELBR2,[52, 50, [31], although there

have also been arguments against such an appri@dadeperiments using our derived ELBOs lead

to two bPndings: (i) MF-VI performs well in deep models where the prior parameters of Gaussian
distributions over weights have been learned, but severely under-bts data in output space if the prior
over weights is bxed and, (ii) the derived tighter ELBOs are good optimization targets to learn
the hyperparameters of hierarchical Gaussian priors, even in large networks. We provide the code
implementing the introduced algorithmshatps://github.com/marctom/collapsed_bnns
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2 Collapsed Variational Bounds for Bayesian Neural Networks

We consider performing VI in a supervised learning scenario givettata pointD = {(x;,y;)}\; .
We denote a neural network &g , the observation model @y |fw (X)), whereW denotes the
yectorized weights and biases of the network, and the likelihood of the welgrasp(D|W ) =
' iN:l p(y;Ifw (Xi)). We focus on Gaussian mean-Peld priors (with non-zero means) over vectorized
network weight(W [u,,! 2) = N (W [u,,! 3) meaningw !N (pp,! 2) for any coordinatev in
W (bothp, and! FZ, are also vectors in this notation). Similarly, we restrict our attention to mean-peld
Gaussian approximate posteriof&V L, ! (21) = N(W |ug,! 5). VI bnds an approximate posterior
(W |ug,! 5) by minimizing the KL divergenc®k. (q(W [1q,! DIIP(W D, 1y, ! 3)) w.rt. the
}/Ssrizj[;onal parameteng, ! (21 This is done by optimizing the Evidence Lower Bound (ELBO)

"N

L(Hg ! ZiHp, ! 2) = E Ing#yilfW (Xi)$" DL #q(Wluq,! Dp(W [, ! S)$-
i1 9W ig.! )
1)

We denote the Prst term on RHSlagua (K¢, ! ﬁ). AsDkr (A(W |ug,! é)llp(W ID, W, ! ﬁ)) # 0,
the ELBO lower bounds log marginal likelihodaig p(D|p,, ! ) #L (Kq,! 5 Hp,! 5)- Previous
work [[7, 138] introduces low variance updates for mean-beld VI by reparametrizing wealghts
Bayesian predictions are approximated by integrating the learned variational pogtéviofp q! é)

asp(y' X', D) $ Eq (w ju,t P Ifw (x')).

For BNNs, prior means are most often set to zego= 0, and prior variances are set to a constant
! ,2) = "1 (often scaled by the size of a previous laye5, [13]). We consider a more general setup
where the weights of a BNN are dePned by a hierarchical mu(dl|p ,, ! g)p(pp)p(! 2) and aim

to perform inference over weigh®' andp,,, ! S. For clarity, we will refer top,! g asprior
parametersleaving the ternhyperparameterfor any other free variables.

2.1 Deriving collapsed variational bounds

In this section, we develop an efpcient optimization scheme for variational BNNs with weights
debned in a hierarchical fashion, where the inference over prior parameters is done analytically
and prior parameters are subsequently marginalized out. This dePnes new learning objectives for
learning variational BNNs, which we show by providing specibc examples later in the text. More
specibcally, we apply collapsed variational bour@8; #13,47,[26] to BNNs, and present a general,
systematic way of deriving novel, tighter lower bounds on the model evidence which are useful for
learning variational posteriors over weights. The idea behind a collapsed bound is simple: Suppose
we maximizef (x,y) and we can derive the optimel (y) = argmaxf (x,y). Substitutingc' into

f results inf (x' (y),y), which only depends oy, is easier to optimize, and has the property that

% f(x'(y),y) # f(x,y). Collapsed variational bounds apply this reasoning to the ELBO with
factorized variational posteriors taking the rolexaindy.

Inferring prior parameters in BNN. We consider inference over both network weigtts and
prior parameterg, and! g which we treat as latent variables and subsequently discuss collapsing
the inference w.r.t. prior parametgrs and! 7. We use the factorizatiog(W , u,, ! 3lug.! 3) =
a(W [Hg,! 2)a(up. ! 3), where we omit the variational parametersifi ,, ! 3) for concise notation.
Learningq(Hp, ! ,2)) under this assumption does not complicate computing the BNNOs predictive
distributionp(y |x, D), i.e. lg, ! g do not need to be sampled at the prediction time, since,
Py Ix, D)= Epw .1 20)PYIFw (X)) $ Eqew . 2)PYIFw (X)) = Eqw g 2)PYIFw (X))

(2)
To apply inference, we invoke the variational principle which lower bounds the log marginal likelihood
logp(D) as:

p(Dlwaup!! ’2)) _ # 2 2$
|ng(D)# Eq(W |qu,! g)q(pp,! g) |0g q(W “.J.q,' g)q(up,l r\2)) - Lq uqal q!q(“p!' p) . (3)

The bound in Eq.|]3) reduces kg, ! 3) in Eq. @) wheng(p,, ! 2) = q(up)a(! 3) andg(u,),
q(! ﬁ) are delta functions. If we are able to analytically derive the distriqui(Qpp, ! g) maximizing



L9, we can substitute the resulting distribution into Eq. (3) to derive a tighter (collapsed) bound on
the marginal likelihood, saving the need to perform coordinate ascent or gradient updates to learn the
prior parameters:

p(D, W, pp, ! 7)
AW g ! D (p.! §)
whereL' (ug,! 2) # L 9(ug,! 2,9(1,,! 2) andL' depends only on the variational parameters

ar’ g arr q dHps = p

Mg, ! g Collapsed variational bounds are desirable as they have been shown to make learning
signibcantly more efbcien6fl]. The tighter bound in Eq[ [4) has been also referred to as a KL
corrected bound [36] and marginal VI bound|[43] 47].

logp(D) # Eqw |1yt 2)at (u,. 2) 10D =L (Mg, ! 3, 4

Collapsing the variational bound for BNNs. We now provide a method to derive a collapsed
variational bound by maximizing 9(u, ! ﬁ,q(up,! g)) w.r.t. the posterior over weights prior
parameters(i, ! 3) in BNNs. We use the property that the BNN likelihood tdogp(y X, fw (X))
does not depend on the prior_ parameteysand! g, i.e.p(DIW , i, ! g) = p(D|W ). The bound
L9 from Eq. [3) decompgses into three terms:

$
L9l ! 5 0(Hp ' 5) = Laata (Mg ! D) +! Mg ! §aMp ! )+ HAW kg, ! D1 (B)

whereH [q(W |pg, ! g)] denotes the differential entropy, and we have debned
% &

# $ # $

Mgl GAkpt) = E E , 10gp(W [ky, ! 5) " D k! p)IIP(kp)P(! B) -
a(up,! 2) a(W lug.! 2)

(6)

Only ! depends on the posteriofu,,! ), and therefore bnding' (u,,! 5) can be done by
maximizing!( W, ! 2, 9k, ! 3))-

We can signibcantly simplify this by noting that the objective in [E§. (6) is analogous t¢ JEq. (1),
hence optimizing takes the form of a nested VI problem: we want to ird@r ., ! S) where the
OdataO distribution is replaced by the current variational posterior over vegighlis ;! 3). This
implies the solutionsf (Mp,! g) are straightforward to derive in closed-form for priors/approximate

posteriors from the exponential famil§,[6]. Specibcally, we can write the maximizgr(u ,, ! 3)
as:

logqf (Hp,! ) & logp(k,) +10g p(! ) + Eqw |, 2) l0gP(W |1, ! 3). @)

Substituting the optimal variational postertqir(up, ! ,2)) into EqQ. @) gives us ' , and we can substi-

tute this into Eq.) to give our Pnal collapsed bolindu g, ! §) = Ldaa +! ' + H[Q(W |u,,! 2)].
Furthermore, when calculatirlg' , the inferred prior parameteqé(up,! ﬁ) can be analytically
integrated out in many cases, i.e. the outer expectation on the RHS ip]Eq. (6) can be solved in
closed-form (we provide examples in Secfion 2.2), leading to a concise optimization objective.

The bnal optimization target to learn the variational postey(@V |, ! 3) is given byL' (g, ! 3).
Compared to gradient learning pf, and! f), eliminatingp,, and! f, fromL' performs better (as

we show in Sectiof]4), and halves both the memory requirement and time taken per update. It is
important to remember that optimizing learns both the variational parameters ! g and the

postezrio_r over prior parametetq‘s(up, ! g), but the latter is implicit as we express it as a function of
Hg.! 2 given by Eq.[(]).
In summary, there are four steps to derive a collapsed bhtind/hich we directly use to learn the

variational posterior of a BNN. These steps are given in Algor[thm 1. We next give two concrete
examples of collapsed bounds.

2.2 Examples of tighter ELBOs

Learn prior means, bx prior variances. As an easier example, we brst consider bxing the prior
variance of weights, and learning prior means. We follow the four steps of Algdrithm 1 to derive our
collapsed bound. Detailed derivations are in Appefidix B.

Step |: This step debPnes a model and the family of variational approximations. We choose
P(W |pp) = N(W [up, " 1) with a Gaussian priop(p,|[#) = N (1,|0,#1), where# and” are
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Algorithm 1 Deriving a collapsed bound' for BNN in four steps.
Stepl:  Choose priorp(H,), p(! 5), P(W |1, ! 3),
and approximate posteriogéi,, ! 3),o(W |ug, ! 3) over network weights.
Step ll:  Calculate optimal prior parametegs(i,, ! 3) using Eq.). (

Step lll: Form! ' and solveEy (o 2) Eqw g, 2) l0gP(W [l ! 3) inEq. @).
Step IV:  The collapsed bound is' = Lgaa +! ' + H[Q(W ug,! 3)].

hyperparameters. We also employ a mean-beld Gaussian pos(&vidn;, ! é) and a Gaussian
posteriorg(p ).

Step II: This step analytically Pnds the optimal variational distribukif)(up). Substituting our
distributions into Eq[(7) for every coordingtig gives us

(“’q ) p-p)z n u‘fﬁ (8)
2" 24"

In this case the variational posteriqir(up) matches the true posterior, as the above dependency

is equivalent Bayesian in"ference oyey given Gaussian likelihood/prior and observatjog so

d (Mp) = N (UplrirHg 75+ 1).

Step Ill: This step formd ' by calculating the divergences between optimal postegioend priors

and simplibes the derived optimization objective by marginalizing out approximate prior parameters.
The divergence between two Gaussiins ( (Mp)lIp(Hp)) is straightforward to compute. Next

we solve the integrdl = Eq () [Eqw [, 2) 10GP(W |1y, ! DI:

logd' (p) &"

*
)1T!§+(uq" M) (" Hp) | L 1T1E L, "HiMg

L1 E - ! - L
N (Ml Mg 1) 2 2 2#+ ")

Step IV:This step forms a collapsed bound that will be used to learn variational posteriors. Substituting
the above intd.' = Lgam +! ' + H[Q(W |u,,! 3)] results in our new bound:

(
S 1TU 2+ gl + 2171091 2+ D logg,  (9)
where we have debned the hyperparametgr = "/ (" + #) ' (0, 1), and for bxed there is a
1-to-1 relation betwee# and# g .

When# (- 0 (so#req (1) we recover the standard expression for the ELBO given by[Eq. (1) with
A(W |pg, ! g) and priorN (W [0, " 1). This corresponds to a dogmatic prig{t,) = N (M0, #1)
converging to a delta spike at 0, and no inferencg pf When we allow for inference, the regulariza-

tion of the (approximate) posterior mepg decreases. Whefieq (0 (uninformative prior) the
modeling can be prone to over-ptting due to insufbcient regularization in the model specibcation.
Note that this is reBected by the ter%nlog;hfreg which can be interpreted as an OccamOs Razor
penalty B9]: this term penalizes smafeg as it diverges to negative inbnity whégpg (0. Since

#reg ' (0, 1), this enables Pnding well-performing valuestefy by evaluating-;, (without having

a validation set)[30], and we show this in our experiments in Sefjion 4.

L:‘n(“qll c21) I Ldata (“qvl g) "

We bnd tha# g ' (0.01,0.1) signibcantly improves upon the predictions of MF-VI with bxed Gaus-
sian priors. For existing implementations learning BNNs with Gaussian variational posterior/prior
we suggest the default settiig.y = 0.05in front of the mean regularization in the expression for

KL divergence to instantaneously improve the predictions (as opposed to down-weighting the whole
KL divergence term). Large#,g increases the strength of the regularization of the model.

Learn both prior means and variances. We now discuss a scheme to learn hyperparameters of
both prior means and variances. We follow the same four steps from Algdrjthm 1. We again defer the
detailed derivations to AppendiX B.

Step t p(W [up,"p) = N(W |Mp,%) andp(Mplt™) = N(Kpl0, ), p(") = G(" [#,9$). We
again consider posteriotgW |i,,! 2) = N (W |ug,! ), a(kpl" p) = N (1) andg(" p) = G(" ).
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Figure 1: Comparison of regularizing termslinL}, andL},, scaled to unity. In the absence of
gradients fromL 4415 (approximate) posteriors over weights converge to the blue region (red cross-
mark). OptimizingL prunes weights to prior Gaussians which still inBuence predictions causing
under-btting (see Sectiph 4) and is opposite to optimikifyg which prunes to spiked Gaussians.

Step It The optimal posteriorg' are given byd' (1) = N (Wl g H g ﬁ) and d ("p) =
G(" pl(# + %)1,$ + 2(1t+ ) I~l§ + %! (2])

Steps lll and IV The bound.' (1, ! 5) becomes,

Lt 12y L 12) (#+ D17 I$1+%2+1'2(+11T| 12 10
mv (Mg ! @) ! Laata (Hgo! )" ( E) 0g Euq 54 5 og! g  (10)
where%= t/ (1+ t). Eq. ) recovers the case of setting prior mpgn= 0 and learning only prior
varianced g when the prior precisiot’ , overp, goesto) ,i.e.t () . Setting% <1in Eq. (10)
weakens the regularization of posterior megy) allowing it to vary more. The regularizer in Ef. {10)
is a decreasing function @iy, i.e. without gradients from gata , the posterior meapq of a weight
w converges t@. In Sectiorf # we show that!, outperforms standard MF-VI.

Comparison of regularizing terms. We compare the regularization terms jop and! 2 in the
standard mean-peld ELBO in Ef] (1) and introduced ELBOs in[Eq. (9) andl Bq. (1?)) in Fjgure 1,
where we use prior the(w) = N (w]|0, 1). We consider what happens in the absence of gradients
from the data ternh gaia to better understand the bounds. In Fidure 1 (left) we see that Gaussian
posteriors (in the absence of data) optimized with Efg. (1) converge to theit\b(iof0, 1) [[7, 68].
In Figure 1 (middle) we are down-weightirpgg Hq in EQ. {9), hence weakening the regularization of
M4 This allows posterior means to vary more, and can be interpreted as scaliggakis in Figure

by #. Aswe showin Secti 4, this enables posterior megn® saturate activations and reduce
the noise from pruned weights. Optimizing Hq.|(10) is roughly opposite tq Eq. (1) and causes weights
to be pruned tiN (0, 2$) (Figure[] right, wher& = 0.01). Weights pruned in this way do inBuence
the predictions for smaff and this bxes the excessive injection of noise by pruned weights, as we
show in Sectiofl4.

3 Related work

Performance of BNNSs is known to be sensitive to prior hyperparamé&dyg1, [31], but optimizing
hyperparameters in BNNs has not been widely adopted, although there are excdfljotg}. [

Some authors heuristically propose using a Gaussian centered on the MAP estimate as a prior for
BNNs [8,[39]. The Laplace approximation has been used for hyperparameter selection in BNNs
[49, 31, [61], but it does not use the ELBO. Hierarchical models in BNNs have been explored in
many works(R3,122, 146,133, 134,58, 13,112, 2]. The closest to our approach is learning a hierarchical
horseshoe prior over BNNs weigh&3]. However, their approach is computationally costly, does

not consider collapsed bounds to derive tighter ELBOs, and does not learn prior means. There is
an active discussion in the community as to whether the true BNN posterior provides satisfactory
predictions with work supporting the Bayesian approd&# (74, 32, [1] and arguing agains{Z[].
Similarly, there are conficting views on the performance of MF-VI in BNNs with Pxed Gaussian
priors as some authors claim it can work wdlF] and others arguing again®3,[19,[18]. A number

of problems of mean-pbeld VI BNNs have been exposed in shallow networks including over-pruning
[68] and poor uncertainty in output spad€[[18,[23]. To resolve under-btting of mean-beld BNNs,
previous work has re-weighted terms arising from the KL divergencele.g. [45].
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Figure 2: Top: Comparison of collapsed bounds with other algorithms on UCI regression data sets.
Bottom: CM-MF-VI (red) and standard MF-VI with a default isotropic Gaussian prior (blue) for
deeper networks, where CM-MF-VI avoids severe degradation of predictions.

4 Experiments

In this section we explore the predictive performance of the introduced variational bounds and
benchmark them together with other algorithms. We bnd that using the bounds|if Eq. (9) 4nd Eq. (10)
signibcantly improves the predictive performance of standard MF-VI BNNs (Pxed Gaussian priors).
We also Pnd that learning the prior means according to[q. (9) is more effective and gives sufbciently
good predictive performance, whereas learning prior variances[(Hq. (10)) mostly does not lead to
signibcant gains in the quality of predictions. We defer the details of the experimental setup to
Appendiq T and report additional experimental results in Appenglix D.

The algorithms we propose in this paper optimize various tighter ELBOs: CM-MF-VI optimizes
Lm from Eq. [9); CM-MF-VI OPT additionally optimize#eg using the tighter ELBO (Eq[ [9));
CV-MF-VI optimizes for just prior variances, using the boung, from Eq. @) whervo( 1 (prior
meany, Pxed to0); and CMV-MF-VI optimizes both prior means and variances from Eq. (10). We
compare to the following baselines: MF-VI LRT learns zero-mean mean-beld Gaussian priors with
bxed variance$l] (which we call standard MF-VI) using local reparametrizati8f]{ MF-VI FV

learns a mean-beld Gaussian posterior with bPxed variaf8gsvMF-VI BD is mean-peld Gaussian

VI while down-weighting KL penalty by.5; MF-VI EB learns prior means with ELBO gradient
updates/s1,[72]; BBB is Bayes by Backprop using the ADAM optimizer (as opposed to SGI]n [
MF-VI k-tied normal distribution [63]; ELRG/SLANG learn low rank posteriors|[66, 53].

(a) ‘ Wi wTx+b (b-l)lRemoving pruned posterior weights

—— MF-VI

______ ) 28
A\
i Pad @ activation -
[
/ : 0 10 20 30 40 50

removed units in last layer

Figure 3: (a.) Pruned weights in standard MF-VI contribute noise to predictions as noise leaks
through the activation function. (b.) Removing pruned weights from BNNigumoveperformance,
as the removed weights contribute only to the predictive variance and cause under-btting.



400 units 800 units

algorithm test NLL! test ER! test NLL! test ER!
CM-MF-VI 0.047+ 0.006 134+ 0.24% 0048+ 0.005 142+ 0.26%
CV-MF-VI 0.068+ 0.007 213% 0.34% 0066+ 0.003 209% 0.10%
CMV-MF-VI 0.049+ 0.005 145+ 0.25% 0052+ 0.004 160% 0.01%
CM-MF-VI (4000 batch) 0.041 + 0.002 1.31+ 0.04% 0.042 + 0.002 1.20 = 0.06%
MF-VI LRT [38] 0.094+ 0.002 242+ 0.28% 0099+ 0.001 258* 0.07%
MF-VI BD 0.092+ 0.002 243+ 0.06% 0099+ 0.004 256* 0.22%
MF-VI FV 0.052+ 0.001 167+ 0.13% 0053+ 0.004 158+ 0.26%
BBB ADAM [7] 0.095+ 0.008 248+ 0.45% 0097+ 0.007 249* 0.33%
ELRG-VIK =5 [66] 0.053+ 0.006 154+ 0.18% 0.058+ 0.005 168+ 0.17%
K-TIEDK =10 [63] 0.105+ 0.004 267+ 0.16% 0.108+ 0.004 261+ 0.17%

MF-VI SGD [7] " 1.82% " 1.99%

SLANG K=32 [53] 1.72% "

Table 1: Test NLL and error rate for vectorizBtNIST classibcation with two hidden layer BNN.
CM-MF-VI outperforms other algorithms and collapsed bounds improve upon standard MF-VI.
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Figure 4: Learning prior parameters in BNN Pxes under-ptting caused by over-pruning. In (c.),(d.),(e.)
and (f.) we show the distribution of statistics of variational posterior over weights in the prst layer.
The top row plots (c.) and (e.) the posterior means, where red is the means of the bias parameters,
and black is the means of the weight parameters into a hidden unit. The bottom row plots (d.) and
(f.) show posterior log variances instead of posterior means. Most weights have been pruned. In
CM-MF-VI, shown in (a.), units where posterior weights converge to prior have posterior biases set
to low value, which saturates the activation stopping them from infuencing the predictions. We see
this in (c.), where the pruned units all have biases with negative posterior means. This saturation is
made possible by weaker mean regularization in [Bg. (9) governégkpy In CMV-MF-VI, shown

in (b.), pruned units converge to spiked Gaussians. We see this in the (f.), where the posterior log
variances of pruned units are all very small.

UCI regression. We brst consider 20 train-test splits for 8 UCI regression data [&dts We

learn 2 hidden layer BNNs (results for 1 hidden layer in Appendix D) with 50 units and ReLU
activations 27, [21, 67), but we use a heteroscedastic observation mp@gf }, (x),f3 (x)) =

N (yIfd (x), exp(f3 (x))), wheref}, (x),f2 (x) are two heads of the network. We optimize
the objectives for 200K steps with the ADAM optimiz&7] with default settings. We report a
comparison of test log-likelihood in Figur¢ 2 (top). We observe that (i) the collapsed bounds CM-MF-
VI, CV-MF-VI, CMV-MF-VI outperform MF-VI on all data (only CMV-MF-VI is worse on wine),

(i) bounds learning prior means CM-MF-VI, CMV-MF-VI outperform or match the bound learning
only prior variances CV-MF-VI on all data sets, (iii) CM-MF-VI outperforms or matches MC-dropout
on all data sets except for boston and wine (the performance of dropout is unstableisiessed

per data set, e.g. it is poor on kin8nm and not shown). In addition, CM-MF-VI OPT matches the
performance of CM-MF-VI, showing that the ELBO can be used to learn hyperparafgjer

Next we report a comparison between CM-MF-VI and standard MF-VI as the depth of the network
increases in Figuifg 2 (bottom). We see standard MF-VI starts to rapidly under-perform on most data
sets (for larger data sets standard MF-VI performs well as it converges to MAP). Learning prior
means/variances by optimizing bounds in £§. (9) or Eq. (10) allows to mitigate rapid degradation of



predictions. We now explain why standard MF-VI performs badly, Pnding this is due to over-pruning
in BNNs. We investigate this effect and bnd that learning prior means and variances mitigates the
effect of pruned units on the predictive distribution.

Test NLL Predictive entropy Entropy in-distribution Entropy out-of-distribution
12

[ CM-MF-VI
[ MF-VI

1w 3 MCdropout 08

100 §
—— CM-MF-VI a
MEF-VI
—— MC dropout
—— CMV-ME-VI

0.0 02 04 06 08 10 0.0 02 04 06 08 1.0 00 01 02 03 04 05 00 05 1.0 15 20

Figure 5: Comparison of standard MF-VI and collapsed bounds (CM-MF-VI, CV-MF-VI) for in-
distribution and out-of-distribution data. Left: replacipg of MNIST image with random bits.
Right: learning BNN orMNIST (in-distribution) and testing on fashidNIST (out-of-distribution).

Over-pruning in BNNs. Applying mean-peld VI to BNN prunes most of the posterior weights,

i.e. approximate posteriors converge to prigig8,[23,62]. While this is benebcial for compressing

the model, pruned weights contribute noise to predictions and make modeling data difbcult. With 1
hidden layer networks and the regular ELBO, output layer weights are set as clbae pmssible

[68], thereby reducing the noise from pruned weights in earlier layers. However, some noise
still leaks through, as output layer weights are not quite delta-functions. This noise is one of
the reasons for increasing under-conbdence in output space as the size of the network increases
(68,116,163 66,123,145]. In Figure[3 we highlight this problem for 1 hidden layer MF-VI BNN with 50
hidden units, ReLU activations, zero-mean Gaussian prior over weights and heteroscedastic Gaussian
likelihood learned witt200 randombostonregression data points. In Figyre 3 (right) we plot test

NLL as pruned hidden layerOs units are removed in ascending order of average KL penalties of
incoming weights (only last 4 units are modeling data). Removing pruned weights lowers test NLL,
meaning that pruned weights contribute only noise to predictions. This is schematically explained
in Figure[3 (a), which shows pruned posterior weights injecting noise. See Apgpégndix E for further
description of over-pruning.

Fixing under-btting caused by over-pruning in BNNs.We now explain why learning the hyperpa-
rameters of the Gaussian prior in the BNN mitigates problems arising from over-pruning. In short,
learning the means and variances of Gaussian priors mitigates the inBuence of network units that have
been pruned. These units otherwise cause under-btting by contributing only to predictive variance. In
Figure[4 we plot the distribution of learned mean-peld Gaussian posterior means and log variances
(middle and right) for units feeding into the output layer. We use a 1 hidden layer heteroscedastic
BNN with 50 hidden units and ReLU activations learned2@® data points fronbostonregression

data set. We see that CM-MF-VI sets means of posterior biases to lower V&lued) (o saturate

the activations for units where incoming weights converge to the prior. Saturated activations stop
the pruned weights from contributing variance into the predictions and result in better modeling of
data, as we schematically show in Figlife 4 (a). For CMV-MF-VI, posterior weights corresponding to
inactive units converge to delta spikes with very slightly negative means, in line with observations
made in Figur€]l, hence they do not infRuence predictions, shown in Figure 4 (b).

MNIST classibcation with MLP. Classifying vectorizedNIST images using two hidden layer
network with ReLU activation is a standard benchmark for BNF]s\\Ve demonstrate that collapsed
bounds give large improvements in test NLL compared to using standard MF-VI and provides the
best predictions across tested algorithms. We report test NLLs and test error rates (ER) averaged
over 5 random seeds in Talple 1. For 400 hidden units, CM-MF-VI/CMV-MF-VI achieve test NLL of
0.047, compared t®.094for standard MF-VI. CM-MF-VI (4000 batch) uses batches of 4000 images

for an optimization step and achieves the best performance across the tested models, showing the
developed algorithms can leverage low variance updates.

Perturbed MNIST images. We now investigate if the in-domain improvements of CM-MF-
VI/CMV-MF-VI come at the cost of out-of-distribution (OOD) performance. We bnd this is not the
case: OOD performance is as good as before. To show this, we learn a 2 hidden layer BNN with
RelLU activations on vectorizgddNIST images as previously, but test it on the fasinbl ST data



test NLL! /ER! MNIST K-MNIST F-MNIST SVHN CIFAR10
CMV-MF-VI  0.021 + 0.001 0.152+ 0.006 0.253 + 0.006 0.313 + 0.006 0.807+ 0.005
CM-MF-VI 0.021 + 0.001 0.141 + 0.006 0.254 + 0.005 0.315 + 0.004 0.809+ 0.009
CV-MF-VI 0.038+ 0.003 0239+ 0.005 0317+ 0.006 0321+ 0.006 0821+ 0.005
CM-MF-VIOPT 0.024+ 0.001 0158+ 0.004 0258+ 0.003 0.314 + 0.004 0.789 * 0.005
MF-VI 0.061+ 0.001 0319+ 0.006 0371+ 0.003 0340+ 0.001 0848+ 0.009
MAP 0.048+ 0.007 0402+ 0.027 0336+ 0.001 0775+ 0.012 1134+ 0.065
MC dropout  0.027+ 0.001 0222+ 0.011 0326+ 0.007 0400+ 0.009 1018+ 0.017
MF-VI EB 0.060+ 0.001 0319+ 0.003 0372+ 0.003 0340+ 0.005 0843+ 0.010
CMV-MF-VI 0.73+ 0.02% 4.00+ 0.06% 8.90+ 0.22% 8.49% 0.20% 2776+ 0.37%
CM-MF-VI 0.67+ 0.04% 3.75%= 0.30% 9.05+ 0.31% 8.21+ 0.20% 27.63+ 0.48%
CV-MF-VI 1.24+ 0.12% 685% 0.10% 1147+ 0.13% 896+ 0.20% 2839+ 0.14%
CM-MF-VIOPT 0.72+ 0.05% 423+ 0.06% 933+ 0.07% 847+ 0.03% 26.80+ 0.41%
ME-VI 1.51+ 0.05% 917+ 0.25% 1296+ 0.28% 920+ 0.15% 2871+ 0.16%
MAP 116+ 0.11% 792+ 0.36% 1194+ 0.22% 1278+ 0.12% 3463+ 1.48%
MCdropout  0.81+ 0.05% 607+ 0.49% 1201+ 0.17% 978+ 0.22% 3386+ 0.42%
MF-VI EB 153+ 0.07% 918+ 0.19% 1296+ 0.08% 931+ 0.28% 2856+ 0.45%

Table 2: Image classibcation with LeNet CNN. Collapsed bounds visibly outperform standard MF-VI.
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Figure 6: Top: performance of CM-MF-VI for different settings of hyperparamiet@nd different
network architecturegf(= 1 is standard MF-VI). Setting = 0.01 visibly improves predictions
compared to standard MF-VI (Pxed Gaussian prior). Bottom: ELBQOcorrelates with test NLL.

set [73] and randomly perturbeMINIST images where every pixel is Ripped with probabilityWe
report test NLL, predictive entropy for perturb®NIST experiment in Figurg]5 (left). We see that
CM-MF-VI gives lower test NLL than MF-VI for any, but it also maintains growing entropy when

p ( 1i.e. when we transition to OOD data. In Figlife 5 (right) we plot histograms of predictive
entropy forMNIST in-distribution data and OOD data fashMiNIST. CM-MF-VI signibcantly
improves upon MF-VIOs under-conbdence without excessive reduction in uncertainty.

Limitations of the algorithm: adjusting hyperparameters. The bounds in Eq[{9) and E¢. (10)

have hyperparameters, corresponding to the choice of hyper-prior. These additional parameters are
the main limitation of the derived algorithms. For example, CM-MF-VI has one hyperparathgjer

which allows us to control the strength of regularization of the model. We analyze the test predictive
performance for different settings #feq for CM-MF-VI in Figure[§ (top) averaged over 5 random
seeds. We found the settitfigeg = 0.075works well across many different problems and is robust

to the choice of size/depth of the network. Increaging to 0.2 provides strong regularization and



model testNLI+/ER+ CMV-MF-VI CM-MF-VI CV-MF-VI MF-VI MC dropout MAP

RESNET18  STL10 1.04+ 0.00 1.10+ 0.02 157+ 0.01 161+ 0.01 117+ 0.05 164+ 0.03
SVHN 0.15+ 0.00 0.14 + 0.00 0.20+ 0.01 022+ 0.00 018+ 0.00 035+ 0.01

CIFAR100 143+ 0.01 1.53+ 0.00 200+ 0.01 223+ 0.03 175+ 0.00 425+ 0.05

CIFAR10 0.41+ 0.00 0.39+ 0.00 0.59+ 0.00 068+ 0.02 049+ 0.00 093+ 0.02
SHUFFLENET STL10 0.96 + 0.01 0.99+ 0.02 122+ 0.05 170+ 0.08 128+ 0.01 178+ 0.08
SVHN 0.27+ 0.01 0.26+ 0.01 031+ 0.01 031+ 0.01 111+ 0.01 032+ 0.00

CIFAR100 2.03+ 0.01 1.99 + 0.02 221+ 0.06 228+ 0.02 308+ 0.01 448+ 0.03

CIFAR10 0.65+ 0.00 0.65+ 0.00 0.71+ 0.01 072+ 0.01 124+ 0.00 110+ 0.02

ALEXNET STL10 150+ 0.07 148+ 0.04 180+ 0.07 186+ 0.03 1.07+ 0.06 1.80+ 0.32
SVHN 0.30+ 0.00 0.28 + 0.00 042+ 0.01 051+ 0.01 038+ 0.01 Q072+ 0.06

CIFAR100 2.24+ 0.02 2.16 £ 0.06 2.62+ 0.02 295+ 0.04 219+ 0.01 7.03+ 0.14

CIFAR10 0.72+ 0.01 0.69+ 0.01 0.99+ 0.01 119+ 0.01 Q74+ 0.01 179+ 0.06

RESNET18  STL10 37.69+ 0.25% 3975+ 0.53% 6488+ 0.54% 6658+ 0.63% 2998+ 1.17% 29.30 + 0.56%
SVHN 3.76 £ 0.02% 3.75%* 0.02% 526+ 0.21% 573+ 0.09% 411+ 0.15% 494+ 0.07%

CIFAR100 39.41+ 0.39% 4039+ 0.37% 5378+ 0.54% 5946+ 0.72% 4551+ 0.36% 4792+ 0.34%

CIFAR10 1375+ 0.06% 13.34 + 0.24% 2022+ 0.30% 2292+ 1.14% 1636+ 0.28% 1531+ 0.35%
SHUFFLENET STL10 34.48 + 0.18% 3479+ 0.78% 4643+ 2.83% 7374+ 5.67% 4772+ 1.12% 4141+ 1.13%
SVHN 7.85+ 0.32% 7.31+ 0.27% 890+ 0.15% 887+ 0.21% 2619+ 0.69% 828+ 0.19%

CIFAR100 54.04+ 0.07% 52.66 + 0.36% 5895+ 1.08% 6084+ 0.54% 7396+ 0.19% 6352+ 0.22%

CIFAR10 22.71+ 0.61% 22.68 + 0.14% 2466+ 0.53% 2501+ 0.47% 4254+ 0.08% 2819+ 0.59%

ALEXNET STL10 56.59+ 4.82% 5597+ 2.99% 7438+ 570% 7828+ 1.32% 3733+ 0.99% 35.74 + 0.67%
SVHN 792+ 0.20% 7.41+ 0.13% 1161+ 0.13% 1317+ 0.20% 887+ 0.19% 1035+ 0.71%

CIFAR100 5814+ 0.83% 54.91+ 1.07% 6682+ 0.64% 7317+ 1.39% 55.39 + 0.23% 6014+ 0.19%

CIFAR10 24.35+ 0.30% 23.40+ 0.20% 3473+ 0.34% 4163+ 0.31% 2474% 0.43% 2604+ 0.66%

Table 3: Test NLL and error rates (ER) for the collapsed bounds on large scale CNN experiments.
CMV-MF-VI, CM-MF-VI bounds provide visibly better predictions than MF-VI, which under-bts.

works well for data sets very prone to over-ptting. For models/data prone to under-ptting, setting
#reg » 0.025can give even better predictive performance. In Figlire 6 (bottom) we show normalized
values of ELBO tdogp(D, #eq ) With prior #,¢q ! Exp(5D), whereD is the number of network
parameters, and test NLL for different valuggy . This has an important practical implication:
approximately tuningf,eg can be guided by the ELBO. Figyrg 6 (bottom) can be compared with
Fig 6 in [35] showing the same property using approximatiotogfp(D), as opposed to using ELBO.

Image classibcation LeNetWe now consider image classibcation with the LeNet architectidie [

on 6 data setsMINIST, fashiotMNIST, K-MNIST [10], CIFAR10, CIFAR1Q0 [41] and SVHN

[56]. We optimize the objectives f@00epochs (except MAP fds0 epochs and MC dropout far00

epochs as they tend to overbt) using batch Sizgand ADAM optimizer with default parameters. We

report test NLL and test error rates (ER) averaged over 3 random seeds and standard deviation error
bars in Tabl¢ . We again observe the introduced bounds CM-MF-VI, CV-MF-VI and CMV-MF-VI
outperform standard MF-VI in both test NLL and test error rate. CM-MF-VI performs slightly
better than CMV-MF-VI, but the differences are not statistically signibcant. Both CM-MF-VI and
CMV-MF-VI outperform MAP, CV-MF-VI and MC dropout in test NLL and test ER.

Image classibcation large CNNsWe follow by experimenting with larger CNNs: ResNetPFj
ShufBeNei#8] and AlexNetl2]. We useCIFAR10, CIFAR100, STL10[11] andSVHN. We again
compare CMV-MF-VI, CV-MF-VI and CM-MF-VI to MF-VI, MC dropout and MAP. We optimize

the objectives for 800 epochs (MAP and MC dropout early stopped at 200) with the default ADAM
optimizer and the same data augmentation aSih pnd average results over 3 random seeds. We
gather the results in TabJé 3. Experiments with large CNNs conbrm our bPndings from previous
experiments: (i) CM-MF-VI/CMV-MF-VI always outperform standard MF-VI by a visible margin
and result in good predictive performance (e.g. outperforming SOTA VCGBIN, [(ii) learning prior
means CM-MF-VI/CMV-MF-VI outperforms learning just prior variances (CV-MF-VI).

5 Conclusions

We developed a family of algorithms optimizing variational posteriors in BNNs based on collapsed
variational bounds. We demonstrated that learning the prior parameters of BNN weights bxes their
predictive under-conbdence resulting in good empirical performance and robustness to over-btting.
The developed algorithms allowed us to demonstrate that the ELBO can be a suitable optimization
target for learning hyperparameters of BNNs. Importantly, the introduced algorithms do not incur
additional computational cost compared to applying MF-VI to BNNs and can be readily applied to
improve the predictive performance of existing implementations. We hope that our approach will
enable the practical use of VI based approximate inference in large network architectures.
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