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Abstract

Recent interest in learning large variational Bayesian Neural Networks (BNNs)
has been partly hampered by poor predictive performance caused by underÞtting,
and their performance is known to be very sensitive to the prior over weights.
Current practice often Þxes the prior parameters to standard values or tunes them
using heuristics or cross-validation. In this paper, we treat prior parameters in a
distributional way by extending the model and collapsing the variational bound with
respect to their posteriors. This leads to novel and tighter Evidence Lower Bounds
(ELBOs) for performing variational inference (VI) in BNNs. Our experiments show
that the new bounds signiÞcantly improve the performance of Gaussian mean-Þeld
VI applied to BNNs on a variety of data sets, demonstrating that mean-Þeld VI
works well even in deep models. We also Þnd that the tighter ELBOs can be good
optimization targets for learning the hyperparameters of hierarchical priors.

1 Introduction

There has been a lot of recent interest in developing methods for Bayesian Neural Networks (BNNs),
and variational methods provide computationally cheap approximations to the posterior over weights
when compared to alternatives like MCMC. Research on Variational Inference (VI) for BNNs has seen
multiple advances enabling optimization of the Evidence Lower Bound (ELBO) [29, 65, 24, 7, 38],
allowing for scaling to large neural networks and datasets [57, 63, 15, 16, 66]. However, the under-
conÞdence of mean-Þeld VI (MF-VI) in output-space has caused poor adoption of VI in applications,
especially in sequential decision making [9, 60, 69]. Although a lot of work has improved performance
by deriving better estimators of the gradient of the ELBO [29, 65, 24, 7, 38], this work has focused
on thevariational parametersof distributions over weights, with the prior over weights usually Þxed
to zero-mean isotropic Gaussians [55, 70, 74, 15, 20, 7, 40].

In this paper, we also apply inference to theprior parametersof Gaussian BNNs (e.g. means and
variances of a Gaussian prior over weights). We do this by using collapsed VI bounds [36, 43, 47, 64],
which analytically solve the inference over prior parameters and allow us to derive tighter ELBOs for
performing VI in BNNs. Many previous works argue that point estimates for parameters of Gaussian
prior in BNNs can be learned reliably by maximizing the ELBO [72, 52, 50, 31], although there
have also been arguments against such an approach [7]. Experiments using our derived ELBOs lead
to two Þndings: (i) MF-VI performs well in deep models where the prior parameters of Gaussian
distributions over weights have been learned, but severely under-Þts data in output space if the prior
over weights is Þxed and, (ii) the derived tighter ELBOs are good optimization targets to learn
the hyperparameters of hierarchical Gaussian priors, even in large networks. We provide the code
implementing the introduced algorithms athttps://github.com/marctom/collapsed_bnns .
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2 Collapsed Variational Bounds for Bayesian Neural Networks

We consider performing VI in a supervised learning scenario givenN data pointsD = { (x i , y i )}
N
i =1 .

We denote a neural network asf W , the observation model asp(y |f W (x )) , whereW denotes the
vectorized weights and biases of the network, and the likelihood of the weightsW asp(D|W ) =
! N

i =1 p(y i |f W (x i )) . We focus on Gaussian mean-Þeld priors (with non-zero means) over vectorized
network weightsp(W |µ p, ! 2

p) = N (W |µ p, ! 2
p) meaningw ! N (µp, ! 2

p) for any coordinatew in
W (bothµ p and! 2

p are also vectors in this notation). Similarly, we restrict our attention to mean-Þeld
Gaussian approximate posteriorsq(W |µ q, ! 2

q) = N (W |µ q, ! 2
q). VI Þnds an approximate posterior

q(W |µ q, ! 2
q) by minimizing the KL divergenceDKL (q(W |µ q, ! 2

q)||p(W |D, µ p, ! 2
p)) w.r.t. the

variational parametersµ q, ! 2
q. This is done by optimizing the Evidence Lower Bound (ELBO)

[28, 4]:

L (µ q, ! 2
q; µ p, ! 2

p) =
N"

i =1

E
q(W |µ q ,! 2

q )
logp

#
y i |f W (x i )

$
" DKL

#
q(W |µ q, ! 2

q)||p(W |µ p, ! 2
p)

$
.

(1)
We denote the Þrst term on RHS asL data (µ q, ! 2

q). As DKL (q(W |µ q, ! 2
q)||p(W |D, µ p, ! 2

p)) # 0,
the ELBO lower bounds log marginal likelihoodlogp(D|µ p, ! 2

p) # L (µ q, ! 2
q; µ p, ! 2

p). Previous
work [7, 38] introduces low variance updates for mean-Þeld VI by reparametrizing weightsW .
Bayesian predictions are approximated by integrating the learned variational posteriorq! (W |µ q, ! 2

q)
asp(y ! |x ! , D) $ Eq! (W |µ q ,! 2

q ) p(y ! |f W (x ! )) .

For BNNs, prior means are most often set to zeroµ p = 0, and prior variances are set to a constant
! 2

p = " 1 (often scaled by the size of a previous layer [55, 13]). We consider a more general setup
where the weights of a BNN are deÞned by a hierarchical modelp(W |µ p, ! 2

p)p(µ p)p(! 2) and aim
to perform inference over weightsW andµ p, ! 2

p. For clarity, we will refer toµ p, ! 2
p asprior

parameters, leaving the termhyperparametersfor any other free variables.

2.1 Deriving collapsed variational bounds

In this section, we develop an efÞcient optimization scheme for variational BNNs with weights
deÞned in a hierarchical fashion, where the inference over prior parameters is done analytically
and prior parameters are subsequently marginalized out. This deÞnes new learning objectives for
learning variational BNNs, which we show by providing speciÞc examples later in the text. More
speciÞcally, we apply collapsed variational bounds [36, 43, 47, 26] to BNNs, and present a general,
systematic way of deriving novel, tighter lower bounds on the model evidence which are useful for
learning variational posteriors over weights. The idea behind a collapsed bound is simple: Suppose
we maximizef (x, y) and we can derive the optimalx! (y) = argmaxx f (x, y). Substitutingx! into
f results inf (x! (y), y), which only depends ony, is easier to optimize, and has the property that
%y f (x! (y), y) # f (x, y). Collapsed variational bounds apply this reasoning to the ELBO with
factorized variational posteriors taking the roles ofx andy.

Inferring prior parameters in BNN. We consider inference over both network weightsW and
prior parametersµ p and! 2

p, which we treat as latent variables and subsequently discuss collapsing
the inference w.r.t. prior parametersµ p and! 2

p. We use the factorizationq(W , µ p, ! 2
p|µ q, ! 2

q) =
q(W |µ q, ! 2

q)q(µ p, ! 2
p), where we omit the variational parameters ofq(µ p, ! 2

p) for concise notation.
Learningq(µ p, ! 2

p) under this assumption does not complicate computing the BNNÕs predictive
distributionp(y |x , D), i.e. µ q, ! 2

q do not need to be sampled at the prediction time, since,

p(y |x , D) = Ep(W ,µ p ,! 2
p |D ) p(y |f W (x )) $ Eq(W ,µ p ,! 2

p ) p(y |f W (x )) = Eq(W |µ q ,! 2
q ) p(y |f W (x )) .

(2)
To apply inference, we invoke the variational principle which lower bounds the log marginal likelihood
logp(D) as:

logp(D) # Eq(W |µ q ,! 2
q )q(µ p ,! 2

p ) log
p(D, W , µ p, ! 2

p)

q(W |µ q, ! 2
q)q(µ p, ! 2

p)
= L q#

µ q, ! 2
q, q(µ p, ! 2

p)
$
. (3)

The bound in Eq. (3) reduces toL (µ q, ! 2
q) in Eq. (1) whenq(µ p, ! 2

p) = q(µ p)q(! 2
p) andq(µ p),

q(! 2
p) are delta functions. If we are able to analytically derive the distributionq! (µ p, ! 2

p) maximizing
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L q, we can substitute the resulting distribution into Eq. (3) to derive a tighter (collapsed) bound on
the marginal likelihood, saving the need to perform coordinate ascent or gradient updates to learn the
prior parameters:

logp(D) # Eq(W |µ q ,! 2
q )q! (µ p ,! 2

p ) log
p(D, W , µ p, ! 2

p)

q(W |µ q, ! 2
q)q! (µ p, ! 2

p)
= L ! (µ q, ! 2

q), (4)

whereL ! (µ q, ! 2
q) # L q(µ q, ! 2

q, q(µ p, ! 2
p)) andL ! depends only on the variational parameters

µ q, ! 2
q. Collapsed variational bounds are desirable as they have been shown to make learning

signiÞcantly more efÞcient [64]. The tighter bound in Eq. (4) has been also referred to as a KL
corrected bound [36] and marginal VI bound [43, 47].

Collapsing the variational bound for BNNs. We now provide a method to derive a collapsed
variational bound by maximizingL q(µ q, ! 2

q, q(µ p, ! 2
p)) w.r.t. the posterior over weights prior

parametersq(µ p, ! 2
p) in BNNs. We use the property that the BNN likelihood termlogp(y |x , f W (x ))

does not depend on the prior parametersµ p and! 2
p, i.e. p(D|W , µ p, ! 2

p) = p(D|W ). The bound
L q from Eq. (3) decomposes into three terms:

L q#
µ q, ! 2

q, q(µ p, ! 2
p)

$
= L data (µ q, ! 2

q) + !
#
µ q, ! 2

q, q(µ p, ! 2
p)

$
+ H[q(W |µ q, ! 2

q)], (5)

whereH[q(W |µ q, ! 2
q)] denotes the differential entropy, and we have deÞned

!
#
µ q, ! 2

q, q(µ p, ! 2
p)

$
= E

q(µ p ,! 2
p )

%

E
q(W |µ q ,! 2

q )
logp(W |µ p, ! 2

p)

&

" DKL
#
q(µ p, ! 2

p)||p(µ p)p(! 2
p)

$
.

(6)
Only ! depends on the posteriorq(µ p, ! 2

p), and therefore Þndingq! (µ p, ! 2
p) can be done by

maximizing!( µ q, ! 2
q, q(µ p, ! 2

p)) .

We can signiÞcantly simplify this by noting that the objective in Eq. (6) is analogous to Eq. (1),
hence optimizing! takes the form of a nested VI problem: we want to inferq(µ p, ! 2

p) where the
ÒdataÓ distribution is replaced by the current variational posterior over weightsq(W |µ q, ! 2

q). This
implies the solutionsq! (µ p, ! 2

p) are straightforward to derive in closed-form for priors/approximate
posteriors from the exponential family [5, 6]. SpeciÞcally, we can write the maximizerq! (µ p, ! 2

p)
as:

logq! (µ p, ! 2
p) & logp(µ p) + log p(! 2

p) + Eq(W |µ q ,! 2
q ) logp(W |µ p, ! 2

p). (7)

Substituting the optimal variational posteriorq! (µ p, ! 2
p) into Eq. (6) gives us! ! , and we can substi-

tute this into Eq. (5) to give our Þnal collapsed boundL ! (µ q, ! 2
q) = L data + ! ! + H [q(W |µ p, ! 2

p)].
Furthermore, when calculating! ! , the inferred prior parametersq! (µ p, ! 2

p) can be analytically
integrated out in many cases, i.e. the outer expectation on the RHS in Eq. (6) can be solved in
closed-form (we provide examples in Section 2.2), leading to a concise optimization objective.

The Þnal optimization target to learn the variational posteriorq(W |µ q, ! 2
q) is given byL ! (µ q, ! 2

q).
Compared to gradient learning ofµ p and! 2

p, eliminatingµ p and! 2
p from L ! performs better (as

we show in Section 4), and halves both the memory requirement and time taken per update. It is
important to remember that optimizingL ! learns both the variational parametersµ q, ! 2

q and the
posterior over prior parametersq! (µ p, ! 2

p), but the latter is implicit as we express it as a function of
µ q, ! 2

q given by Eq. (7).

In summary, there are four steps to derive a collapsed boundL ! , which we directly use to learn the
variational posterior of a BNN. These steps are given in Algorithm 1. We next give two concrete
examples of collapsed bounds.

2.2 Examples of tighter ELBOs

Learn prior means, Þx prior variances. As an easier example, we Þrst consider Þxing the prior
variance of weights, and learning prior means. We follow the four steps of Algorithm 1 to derive our
collapsed bound. Detailed derivations are in Appendix B.

Step I: This step deÞnes a model and the family of variational approximations. We choose
p(W |µ p) = N (W |µ p, " 1) with a Gaussian priorp(µ p|#) = N (µ p|0, #1), where# and" are
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Algorithm 1 Deriving a collapsed boundL ! for BNN in four steps.

Step I: Choose priorsp(µ p), p(! 2
p), p(W |µ p, ! 2

p),
and approximate posteriorsq(µ p, ! 2

p), q(W |µ q, ! 2
q) over network weights.

Step II: Calculate optimal prior parametersq! (µ p, ! 2
p) using Eq. (7).

Step III : Form! ! and solveEq! (µ p ,! 2
p )

'
Eq(W |µ q ,! 2

q ) logp(W |µ p, ! 2
p)

(
in Eq. (6).

Step IV: The collapsed bound isL ! = L data + ! ! + H [q(W |µ q, ! 2
q)].

hyperparameters. We also employ a mean-Þeld Gaussian posteriorq(W |µ q, ! 2
q) and a Gaussian

posteriorq(µ p).

Step II: This step analytically Þnds the optimal variational distributionq! (µ p). Substituting our
distributions into Eq. (7) for every coordinateµp gives us

logq! (µp) & "
(µq " µp)2

2"
"

µ2
p

2#
. (8)

In this case the variational posteriorq! (µ p) matches the true posterior, as the above dependency
is equivalent Bayesian inference overµ p given Gaussian likelihood/prior and observationµ q, so
q! (µ p) = N (µ p| !

! + " µ q, !"
! + " 1).

Step III: This step forms! ! by calculating the divergences between optimal posteriorsq! and priors
and simpliÞes the derived optimization objective by marginalizing out approximate prior parameters.
The divergence between two GaussiansDKL (q! (µ p)||p(µ p)) is straightforward to compute. Next
we solve the integralI = Eq! (µ p ) [Eq(W |µ q ,! 2

q ) logp(W |µ p, ! 2
p)]:

I ! " E
N (µ p | !

! + " µ q , !"
! + " 1)

)
1T ! 2

q + ( µ q " µ p)T (µ q " µ p)

2"

*
! "

1T ! 2
q

2"
"

" µ T
q µ q

2(# + " )2 .

Step IV:This step forms a collapsed bound that will be used to learn variational posteriors. Substituting
the above intoL ! = L data + ! ! + H [q(W |µ p, ! 2

p)] results in our new bound:

L !
m (µ q, ! 2

q) ! L data (µ q, ! 2
q) "

1
2"

'
1T ! 2

q + #reg µ T
q µ q

(
+

1
2

1T log ! 2
q +

D
2

log#reg , (9)

where we have deÞned the hyperparameter#reg = "/ (" + #) ' (0, 1), and for Þxed" there is a
1-to-1 relation between# and#reg .

When# ( 0 (so#reg ( 1) we recover the standard expression for the ELBO given by Eq. (1) with
q(W |µ q, ! 2

q) and priorN (W |0, " 1). This corresponds to a dogmatic priorp(µ p) = N (µ p|0, #1)
converging to a delta spike at 0, and no inference ofµ p. When we allow for inference, the regulariza-
tion of the (approximate) posterior meanµ q decreases. When#reg ( 0 (uninformative prior) the
modeling can be prone to over-Þtting due to insufÞcient regularization in the model speciÞcation.
Note that this is reßected by the termD2 log#reg which can be interpreted as an OccamÕs Razor
penalty [59]: this term penalizes small#reg as it diverges to negative inÞnity when#reg ( 0. Since
#reg ' (0, 1), this enables Þnding well-performing values of#reg by evaluatingL !

m (without having
a validation set) [30], and we show this in our experiments in Section 4.

We Þnd that#reg ' (0.01, 0.1) signiÞcantly improves upon the predictions of MF-VI with Þxed Gaus-
sian priors. For existing implementations learning BNNs with Gaussian variational posterior/prior
we suggest the default setting#reg = 0 .05 in front of the mean regularization in the expression for
KL divergence to instantaneously improve the predictions (as opposed to down-weighting the whole
KL divergence term). Larger#reg increases the strength of the regularization of the model.

Learn both prior means and variances. We now discuss a scheme to learn hyperparameters of
both prior means and variances. We follow the same four steps from Algorithm 1. We again defer the
detailed derivations to Appendix B.

Step I: p(W |µ p, " p) = N (W |µ p, 1
" p

) andp(µ p|t" ) = N (µ p|0, 1
t " ), p(" ) = G(" |# , $ ). We

again consider posteriorsq(W |µ q, ! 2
q) = N (W |µ q, ! 2

q), q(µ p|" p) = N (µ p) andq(" p) = G(" p).
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Figure 1: Comparison of regularizing terms inL , L !
m andL !

mv scaled to unity. In the absence of
gradients fromL data (approximate) posteriors over weights converge to the blue region (red cross-
mark). OptimizingL prunes weights to prior Gaussians which still inßuence predictions causing
under-Þtting (see Section 4) and is opposite to optimizingL !

mv which prunes to spiked Gaussians.

Step II: The optimal posteriorsq! are given byq! (µ p) = N (µ p| 1
1+ t µ q, 1

(1+ t ) " p
) and q! (" p) =

G(" p|(# + 1
2 )1, $ + t

2(1+ t ) µ 2
q + 1

2 ! 2
q).

Steps III and IV: The boundL ! (µ q, ! 2
q) becomes,

L !
mv (µ q, ! 2

q) ! L data (µ q, ! 2
q) " (# +

1
2

)1T log
'
$1 +

%
2

µ 2
q +

1
2

! 2
q

(
+

1
2

1T log ! 2
q, (10)

where%= t/ (1 + t). Eq. (10) recovers the case of setting prior meanµ p = 0 and learning only prior
variances! 2

p when the prior precisiont" p overµ p goes to) , i.e. t ( ) . Setting% <1 in Eq. (10)
weakens the regularization of posterior meanµ q, allowing it to vary more. The regularizer in Eq. (10)
is a decreasing function ofµq, i.e. without gradients fromL data , the posterior meanµq of a weight
w converges to0. In Section 4 we show thatL !

mv outperforms standard MF-VI.

Comparison of regularizing terms. We compare the regularization terms onµ q and! 2
q in the

standard mean-Þeld ELBO in Eq. (1) and introduced ELBOs in Eq. (9) and Eq. (10) in Figure 1,
where we use prior thep(w) = N (w|0, 1). We consider what happens in the absence of gradients
from the data termL data to better understand the bounds. In Figure 1 (left) we see that Gaussian
posteriors (in the absence of data) optimized with Eq. (1) converge to their priorN (w|0, 1) [7, 68].
In Figure 1 (middle) we are down-weightingµ T

q µ q in Eq. (9), hence weakening the regularization of
µ q. This allows posterior means to vary more, and can be interpreted as scaling theµp axis in Figure
1 by

*
#. As we show in Section 4, this enables posterior meansµq to saturate activations and reduce

the noise from pruned weights. Optimizing Eq. (10) is roughly opposite to Eq. (1) and causes weights
to be pruned toN (0, 2$) (Figure 1 right, where$ = 0 .01). Weights pruned in this way do inßuence
the predictions for small$ and this Þxes the excessive injection of noise by pruned weights, as we
show in Section 4.

3 Related work

Performance of BNNs is known to be sensitive to prior hyperparameters [54, 71, 31], but optimizing
hyperparameters in BNNs has not been widely adopted, although there are exceptions [50, 72].
Some authors heuristically propose using a Gaussian centered on the MAP estimate as a prior for
BNNs [8, 39]. The Laplace approximation has been used for hyperparameter selection in BNNs
[49, 31, 61], but it does not use the ELBO. Hierarchical models in BNNs have been explored in
many works [23, 22, 46, 33, 34, 58, 3, 12, 2]. The closest to our approach is learning a hierarchical
horseshoe prior over BNNs weights [23]. However, their approach is computationally costly, does
not consider collapsed bounds to derive tighter ELBOs, and does not learn prior means. There is
an active discussion in the community as to whether the true BNN posterior provides satisfactory
predictions with work supporting the Bayesian approach [54, 74, 32, 1] and arguing against [70].
Similarly, there are conßicting views on the performance of MF-VI in BNNs with Þxed Gaussian
priors as some authors claim it can work well [17] and others arguing against [63, 19, 18]. A number
of problems of mean-Þeld VI BNNs have been exposed in shallow networks including over-pruning
[68] and poor uncertainty in output space [19, 18, 23]. To resolve under-Þtting of mean-Þeld BNNs,
previous work has re-weighted terms arising from the KL divergence e.g. [45].
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Figure 2: Top: Comparison of collapsed bounds with other algorithms on UCI regression data sets.
Bottom: CM-MF-VI (red) and standard MF-VI with a default isotropic Gaussian prior (blue) for
deeper networks, where CM-MF-VI avoids severe degradation of predictions.

4 Experiments

In this section we explore the predictive performance of the introduced variational bounds and
benchmark them together with other algorithms. We Þnd that using the bounds in Eq. (9) and Eq. (10)
signiÞcantly improves the predictive performance of standard MF-VI BNNs (Þxed Gaussian priors).
We also Þnd that learning the prior means according to Eq. (9) is more effective and gives sufÞciently
good predictive performance, whereas learning prior variances (Eq. (10)) mostly does not lead to
signiÞcant gains in the quality of predictions. We defer the details of the experimental setup to
Appendix C and report additional experimental results in Appendix D.

The algorithms we propose in this paper optimize various tighter ELBOs: CM-MF-VI optimizes
L m from Eq. (9); CM-MF-VI OPT additionally optimizes#reg using the tighter ELBO (Eq. (9));
CV-MF-VI optimizes for just prior variances, using the boundL mv from Eq. (10) when%( 1 (prior
meanµ p Þxed to0); and CMV-MF-VI optimizes both prior means and variances from Eq. (10). We
compare to the following baselines: MF-VI LRT learns zero-mean mean-Þeld Gaussian priors with
Þxed variances [55] (which we call standard MF-VI) using local reparametrization [38]; MF-VI FV
learns a mean-Þeld Gaussian posterior with Þxed variances [68]; MF-VI BD is mean-Þeld Gaussian
VI while down-weighting KL penalty by0.5; MF-VI EB learns prior means with ELBO gradient
updates [51, 72]; BBB is Bayes by Backprop using the ADAM optimizer (as opposed to SGD in [7]);
MF-VI k-tied normal distribution [63]; ELRG/SLANG learn low rank posteriors [66, 53].

Figure 3: (a.) Pruned weights in standard MF-VI contribute noise to predictions as noise leaks
through the activation function. (b.) Removing pruned weights from BNN canimproveperformance,
as the removed weights contribute only to the predictive variance and cause under-Þtting.
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400 units 800 units

algorithm test NLL! test ER! test NLL ! test ER!

CM-MF-VI 0.047± 0.006 1.34 ± 0.24% 0.048± 0.005 1.42 ± 0.26%
CV-MF-VI 0.068± 0.007 2.13 ± 0.34% 0.066± 0.003 2.09 ± 0.10%

CMV-MF-VI 0.049± 0.005 1.45 ± 0.25% 0.052± 0.004 1.60 ± 0.01%
CM-MF-VI (4000 batch) 0.041 ± 0.002 1 .31 ± 0.04% 0.042 ± 0.002 1 .20 ± 0.06%

MF-VI LRT [38] 0.094± 0.002 2.42 ± 0.28% 0.099± 0.001 2.58 ± 0.07%
MF-VI BD 0.092± 0.002 2.43 ± 0.06% 0.099± 0.004 2.56 ± 0.22%
MF-VI FV 0.052± 0.001 1.67 ± 0.13% 0.053± 0.004 1.58 ± 0.26%

BBB ADAM [7] 0.095± 0.008 2.48 ± 0.45% 0.097± 0.007 2.49 ± 0.33%
ELRG-VI K = 5 [66] 0.053± 0.006 1.54 ± 0.18% 0.058± 0.005 1.68 ± 0.17%
K-TIED K = 10 [63] 0.105± 0.004 2.67 ± 0.16% 0.108± 0.004 2.61 ± 0.17%

MF-VI SGD [7] " 1.82% " 1.99%
SLANG K=32 [53] " 1.72% " "

Table 1: Test NLL and error rate for vectorizedMNIST classiÞcation with two hidden layer BNN.
CM-MF-VI outperforms other algorithms and collapsed bounds improve upon standard MF-VI.

Figure 4: Learning prior parameters in BNN Þxes under-Þtting caused by over-pruning. In (c.),(d.),(e.)
and (f.) we show the distribution of statistics of variational posterior over weights in the Þrst layer.
The top row plots (c.) and (e.) the posterior means, where red is the means of the bias parameters,
and black is the means of the weight parameters into a hidden unit. The bottom row plots (d.) and
(f.) show posterior log variances instead of posterior means. Most weights have been pruned. In
CM-MF-VI, shown in (a.), units where posterior weights converge to prior have posterior biases set
to low value, which saturates the activation stopping them from inßuencing the predictions. We see
this in (c.), where the pruned units all have biases with negative posterior means. This saturation is
made possible by weaker mean regularization in Eq. (9) governed by#reg . In CMV-MF-VI, shown
in (b.), pruned units converge to spiked Gaussians. We see this in the (f.), where the posterior log
variances of pruned units are all very small.

UCI regression. We Þrst consider 20 train-test splits for 8 UCI regression data sets [14]. We
learn 2 hidden layer BNNs (results for 1 hidden layer in Appendix D) with 50 units and ReLU
activations [27, 21, 67], but we use a heteroscedastic observation modelp(y |f 1

W (x ), f 2
W (x )) =

N (y |f 1
W (x ), exp(f 2

W (x ))) , wheref 1
W (x ), f 2

W (x ) are two heads of the network. We optimize
the objectives for 200K steps with the ADAM optimizer [37] with default settings. We report a
comparison of test log-likelihood in Figure 2 (top). We observe that (i) the collapsed bounds CM-MF-
VI, CV-MF-VI, CMV-MF-VI outperform MF-VI on all data (only CMV-MF-VI is worse on wine),
(ii) bounds learning prior means CM-MF-VI, CMV-MF-VI outperform or match the bound learning
only prior variances CV-MF-VI on all data sets, (iii) CM-MF-VI outperforms or matches MC-dropout
on all data sets except for boston and wine (the performance of dropout is unstable unlessp is tuned
per data set, e.g. it is poor on kin8nm and not shown). In addition, CM-MF-VI OPT matches the
performance of CM-MF-VI, showing that the ELBO can be used to learn hyperparameter#reg .
Next we report a comparison between CM-MF-VI and standard MF-VI as the depth of the network
increases in Figure 2 (bottom). We see standard MF-VI starts to rapidly under-perform on most data
sets (for larger data sets standard MF-VI performs well as it converges to MAP). Learning prior
means/variances by optimizing bounds in Eq. (9) or Eq. (10) allows to mitigate rapid degradation of
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predictions. We now explain why standard MF-VI performs badly, Þnding this is due to over-pruning
in BNNs. We investigate this effect and Þnd that learning prior means and variances mitigates the
effect of pruned units on the predictive distribution.

Figure 5: Comparison of standard MF-VI and collapsed bounds (CM-MF-VI, CV-MF-VI) for in-
distribution and out-of-distribution data. Left: replacingp% of MNIST image with random bits.
Right: learning BNN onMNIST (in-distribution) and testing on fashionMNIST (out-of-distribution).

Over-pruning in BNNs. Applying mean-Þeld VI to BNN prunes most of the posterior weights,
i.e. approximate posteriors converge to prior [7, 68, 23, 62]. While this is beneÞcial for compressing
the model, pruned weights contribute noise to predictions and make modeling data difÞcult. With 1
hidden layer networks and the regular ELBO, output layer weights are set as close to0 as possible
[68], thereby reducing the noise from pruned weights in earlier layers. However, some noise
still leaks through, as output layer weights are not quite delta-functions. This noise is one of
the reasons for increasing under-conÞdence in output space as the size of the network increases
[68, 16, 63, 66, 23, 45]. In Figure 3 we highlight this problem for 1 hidden layer MF-VI BNN with 50
hidden units, ReLU activations, zero-mean Gaussian prior over weights and heteroscedastic Gaussian
likelihood learned with200randombostonregression data points. In Figure 3 (right) we plot test
NLL as pruned hidden layerÕs units are removed in ascending order of average KL penalties of
incoming weights (only last 4 units are modeling data). Removing pruned weights lowers test NLL,
meaning that pruned weights contribute only noise to predictions. This is schematically explained
in Figure 3 (a), which shows pruned posterior weights injecting noise. See Appendix E for further
description of over-pruning.

Fixing under-Þtting caused by over-pruning in BNNs.We now explain why learning the hyperpa-
rameters of the Gaussian prior in the BNN mitigates problems arising from over-pruning. In short,
learning the means and variances of Gaussian priors mitigates the inßuence of network units that have
been pruned. These units otherwise cause under-Þtting by contributing only to predictive variance. In
Figure 4 we plot the distribution of learned mean-Þeld Gaussian posterior means and log variances
(middle and right) for units feeding into the output layer. We use a 1 hidden layer heteroscedastic
BNN with 50hidden units and ReLU activations learned on200data points frombostonregression
data set. We see that CM-MF-VI sets means of posterior biases to lower values ($ " 2) to saturate
the activations for units where incoming weights converge to the prior. Saturated activations stop
the pruned weights from contributing variance into the predictions and result in better modeling of
data, as we schematically show in Figure 4 (a). For CMV-MF-VI, posterior weights corresponding to
inactive units converge to delta spikes with very slightly negative means, in line with observations
made in Figure 1, hence they do not inßuence predictions, shown in Figure 4 (b).

MNIST classiÞcation with MLP. Classifying vectorizedMNIST images using two hidden layer
network with ReLU activation is a standard benchmark for BNNs [7]. We demonstrate that collapsed
bounds give large improvements in test NLL compared to using standard MF-VI and provides the
best predictions across tested algorithms. We report test NLLs and test error rates (ER) averaged
over 5 random seeds in Table 1. For 400 hidden units, CM-MF-VI/CMV-MF-VI achieve test NLL of
0.047, compared to0.094for standard MF-VI. CM-MF-VI (4000 batch) uses batches of 4000 images
for an optimization step and achieves the best performance across the tested models, showing the
developed algorithms can leverage low variance updates.

Perturbed MNIST images. We now investigate if the in-domain improvements of CM-MF-
VI/CMV-MF-VI come at the cost of out-of-distribution (OOD) performance. We Þnd this is not the
case: OOD performance is as good as before. To show this, we learn a 2 hidden layer BNN with
ReLU activations on vectorizedMNIST images as previously, but test it on the fashionMNIST data
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test NLL ! / ER ! MNIST K-MNIST F-MNIST SVHN CIFAR10

CMV-MF-VI 0.021 ± 0.001 0.152± 0.006 0.253 ± 0.006 0 .313 ± 0.006 0.807± 0.005
CM-MF-VI 0.021 ± 0.001 0 .141 ± 0.006 0 .254 ± 0.005 0 .315 ± 0.004 0.809± 0.009
CV-MF-VI 0.038± 0.003 0.239± 0.005 0.317± 0.006 0.321± 0.006 0.821± 0.005

CM-MF-VI OPT 0.024± 0.001 0.158± 0.004 0.258± 0.003 0.314 ± 0.004 0 .789 ± 0.005
MF-VI 0.061± 0.001 0.319± 0.006 0.371± 0.003 0.340± 0.001 0.848± 0.009
MAP 0.048± 0.007 0.402± 0.027 0.336± 0.001 0.775± 0.012 1.134± 0.065

MC dropout 0.027± 0.001 0.222± 0.011 0.326± 0.007 0.400± 0.009 1.018± 0.017
MF-VI EB 0.060± 0.001 0.319± 0.003 0.372± 0.003 0.340± 0.005 0.843± 0.010

CMV-MF-VI 0.73 ± 0.02% 4.00 ± 0.06% 8.90 ± 0.22% 8.49 ± 0.20% 27.76 ± 0.37%
CM-MF-VI 0.67 ± 0.04% 3.75 ± 0.30% 9.05 ± 0.31% 8.21 ± 0.20% 27.63 ± 0.48%
CV-MF-VI 1.24 ± 0.12% 6.85 ± 0.10% 11.47 ± 0.13% 8.96 ± 0.20% 28.39 ± 0.14%

CM-MF-VI OPT 0.72 ± 0.05% 4.23 ± 0.06% 9.33 ± 0.07% 8.47 ± 0.03% 26.80 ± 0.41%
MF-VI 1.51 ± 0.05% 9.17 ± 0.25% 12.96 ± 0.28% 9.20 ± 0.15% 28.71 ± 0.16%
MAP 1.16 ± 0.11% 7.92 ± 0.36% 11.94 ± 0.22% 12.78 ± 0.12% 34.63 ± 1.48%

MC dropout 0.81 ± 0.05% 6.07 ± 0.49% 12.01 ± 0.17% 9.78 ± 0.22% 33.86 ± 0.42%
MF-VI EB 1.53 ± 0.07% 9.18 ± 0.19% 12.96 ± 0.08% 9.31 ± 0.28% 28.56 ± 0.45%

Table 2: Image classiÞcation with LeNet CNN. Collapsed bounds visibly outperform standard MF-VI.

Figure 6: Top: performance of CM-MF-VI for different settings of hyperparameter# and different
network architectures (# = 1 is standard MF-VI). Setting# = 0 .01 visibly improves predictions
compared to standard MF-VI (Þxed Gaussian prior). Bottom: ELBOL !

m correlates with test NLL.

set [73] and randomly perturbedMNIST images where every pixel is ßipped with probabilityp. We
report test NLL, predictive entropy for perturbedMNIST experiment in Figure 5 (left). We see that
CM-MF-VI gives lower test NLL than MF-VI for anyp, but it also maintains growing entropy when
p ( 1 i.e. when we transition to OOD data. In Figure 5 (right) we plot histograms of predictive
entropy forMNIST in-distribution data and OOD data fashionMNIST. CM-MF-VI signiÞcantly
improves upon MF-VIÕs under-conÞdence without excessive reduction in uncertainty.

Limitations of the algorithm: adjusting hyperparameters. The bounds in Eq. (9) and Eq. (10)
have hyperparameters, corresponding to the choice of hyper-prior. These additional parameters are
the main limitation of the derived algorithms. For example, CM-MF-VI has one hyperparameter#reg
which allows us to control the strength of regularization of the model. We analyze the test predictive
performance for different settings of#reg for CM-MF-VI in Figure 6 (top) averaged over 5 random
seeds. We found the setting#reg = 0 .075works well across many different problems and is robust
to the choice of size/depth of the network. Increasing#reg to 0.2 provides strong regularization and
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model test NLL+ / ER+ CMV-MF-VI CM-MF-VI CV-MF-VI MF-VI MC dropout MAP

RESNET18 STL10 1.04 ± 0.00 1.10± 0.02 1.57± 0.01 1.61± 0.01 1.17± 0.05 1.64± 0.03
SVHN 0.15± 0.00 0.14 ± 0.00 0.20± 0.01 0.22± 0.00 0.18± 0.00 0.35± 0.01

CIFAR100 1.43 ± 0.01 1.53± 0.00 2.00± 0.01 2.23± 0.03 1.75± 0.00 4.25± 0.05
CIFAR10 0.41± 0.00 0.39 ± 0.00 0.59± 0.00 0.68± 0.02 0.49± 0.00 0.93± 0.02

SHUFFLENET STL10 0.96 ± 0.01 0.99± 0.02 1.22± 0.05 1.70± 0.08 1.28± 0.01 1.78± 0.08
SVHN 0.27 ± 0.01 0.26 ± 0.01 0.31± 0.01 0.31± 0.01 1.11± 0.01 0.32± 0.00

CIFAR100 2.03± 0.01 1.99 ± 0.02 2.21± 0.06 2.28± 0.02 3.08± 0.01 4.48± 0.03
CIFAR10 0.65 ± 0.00 0.65 ± 0.00 0.71± 0.01 0.72± 0.01 1.24± 0.00 1.10± 0.02

ALEXNET STL10 1.50± 0.07 1.48± 0.04 1.80± 0.07 1.86± 0.03 1.07 ± 0.06 1.80± 0.32
SVHN 0.30± 0.00 0.28 ± 0.00 0.42± 0.01 0.51± 0.01 0.38± 0.01 0.72± 0.06

CIFAR100 2.24± 0.02 2.16 ± 0.06 2.62± 0.02 2.95± 0.04 2.19 ± 0.01 7.03± 0.14
CIFAR10 0.72± 0.01 0.69 ± 0.01 0.99± 0.01 1.19± 0.01 0.74± 0.01 1.79± 0.06

RESNET18 STL10 37.69± 0.25% 39.75± 0.53% 64.88± 0.54% 66.58± 0.63% 29.98± 1.17% 29.30 ± 0.56%
SVHN 3.76 ± 0.02% 3.75 ± 0.02% 5.26± 0.21% 5.73± 0.09% 4.11± 0.15% 4.94± 0.07%

CIFAR100 39.41 ± 0.39% 40.39± 0.37% 53.78± 0.54% 59.46± 0.72% 45.51± 0.36% 47.92± 0.34%
CIFAR10 13.75± 0.06% 13.34 ± 0.24% 20.22± 0.30% 22.92± 1.14% 16.36± 0.28% 15.31± 0.35%

SHUFFLENET STL10 34.48 ± 0.18% 34.79± 0.78% 46.43± 2.83% 73.74± 5.67% 47.72± 1.12% 41.41± 1.13%
SVHN 7.85± 0.32% 7.31 ± 0.27% 8.90± 0.15% 8.87± 0.21% 26.19± 0.69% 8.28± 0.19%

CIFAR100 54.04± 0.07% 52.66 ± 0.36% 58.95± 1.08% 60.84± 0.54% 73.96± 0.19% 63.52± 0.22%
CIFAR10 22.71 ± 0.61% 22.68 ± 0.14% 24.66± 0.53% 25.01± 0.47% 42.54± 0.08% 28.19± 0.59%

ALEXNET STL10 56.59± 4.82% 55.97± 2.99% 74.38± 5.70% 78.28± 1.32% 37.33± 0.99% 35.74 ± 0.67%
SVHN 7.92± 0.20% 7.41 ± 0.13% 11.61± 0.13% 13.17± 0.20% 8.87± 0.19% 10.35± 0.71%

CIFAR100 58.14± 0.83% 54.91 ± 1.07% 66.82± 0.64% 73.17± 1.39% 55.39 ± 0.23% 60.14± 0.19%
CIFAR10 24.35± 0.30% 23.40 ± 0.20% 34.73± 0.34% 41.63± 0.31% 24.74± 0.43% 26.04± 0.66%

Table 3: Test NLL and error rates (ER) for the collapsed bounds on large scale CNN experiments.
CMV-MF-VI, CM-MF-VI bounds provide visibly better predictions than MF-VI, which under-Þts.

works well for data sets very prone to over-Þtting. For models/data prone to under-Þtting, setting
#reg , 0.025can give even better predictive performance. In Figure 6 (bottom) we show normalized
values of ELBO tologp(D, #reg ) with prior #reg ! Exp(5D), whereD is the number of network
parameters, and test NLL for different values#reg . This has an important practical implication:
approximately tuning#reg can be guided by the ELBO. Figure 6 (bottom) can be compared with
Fig 6 in [35] showing the same property using approximation oflogp(D), as opposed to using ELBO.

Image classiÞcation LeNet.We now consider image classiÞcation with the LeNet architecture [44]
on 6 data sets:MNIST, fashionMNIST, K-MNIST [10], CIFAR10, CIFAR100 [41] and SVHN
[56]. We optimize the objectives for800epochs (except MAP for50epochs and MC dropout for100
epochs as they tend to overÞt) using batch size512and ADAM optimizer with default parameters. We
report test NLL and test error rates (ER) averaged over 3 random seeds and standard deviation error
bars in Table 2. We again observe the introduced bounds CM-MF-VI, CV-MF-VI and CMV-MF-VI
outperform standard MF-VI in both test NLL and test error rate. CM-MF-VI performs slightly
better than CMV-MF-VI, but the differences are not statistically signiÞcant. Both CM-MF-VI and
CMV-MF-VI outperform MAP, CV-MF-VI and MC dropout in test NLL and test ER.

Image classiÞcation large CNNs.We follow by experimenting with larger CNNs: ResNet18 [25],
ShufßeNet[48] and AlexNet[42]. We useCIFAR10, CIFAR100, STL10[11] andSVHN. We again
compare CMV-MF-VI, CV-MF-VI and CM-MF-VI to MF-VI, MC dropout and MAP. We optimize
the objectives for 800 epochs (MAP and MC dropout early stopped at 200) with the default ADAM
optimizer and the same data augmentation as in [57], and average results over 3 random seeds. We
gather the results in Table 3. Experiments with large CNNs conÞrm our Þndings from previous
experiments: (i) CM-MF-VI/CMV-MF-VI always outperform standard MF-VI by a visible margin
and result in good predictive performance (e.g. outperforming SOTA VOGN [57]), (ii) learning prior
means CM-MF-VI/CMV-MF-VI outperforms learning just prior variances (CV-MF-VI).

5 Conclusions

We developed a family of algorithms optimizing variational posteriors in BNNs based on collapsed
variational bounds. We demonstrated that learning the prior parameters of BNN weights Þxes their
predictive under-conÞdence resulting in good empirical performance and robustness to over-Þtting.
The developed algorithms allowed us to demonstrate that the ELBO can be a suitable optimization
target for learning hyperparameters of BNNs. Importantly, the introduced algorithms do not incur
additional computational cost compared to applying MF-VI to BNNs and can be readily applied to
improve the predictive performance of existing implementations. We hope that our approach will
enable the practical use of VI based approximate inference in large network architectures.
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