
Dynamics-Regulated Kinematic Policy for
Egocentric Pose Estimation

Appendix

Zhengyi Luo1 Ryo Hachiuma 2 ∗ Ye Yuan1 Kris Kitani1
1 Carnegie Mellon University 2 Keio University

https://zhengyiluo.github.io/projects/kin_poly/

Summary

A Qualitative Results (Supplemantry Video) 1

B Dynamics-regulated Kinematic Policy 2

B.1 Evaluation Metrics Definition . 2

B.2 Fail-safe during evaluation . 2

B.3 Implementation Details . 3

B.4 Additional Experiments about Stochasticity . 3

B.5 Additional Analysis into low Per Joint Error . 3

C Universal Humanoid Controller 3

C.1 Implementation Details . 3

C.2 Evaluation on AMASS . 5

C.3 Evaluation on H36M . 6

D Additional Dataset Details 6

D.1 MoCap dataset. 6

D.2 Real-world dataset. 7

D.3 Dataset Diversity . 8

E Broader social impact. 8

A Qualitative Results (Supplemantry Video)

As motion is best seen in videos, we provide extensive qualitative evaluations in the supplementary
video. Here we list a timestamp reference for evaluations conducted in the video:

• Qualitative results from real-world videos (00:12).

• Comparison with the state-of-the-art methods on the MoCap dataset’s test split (01:27).

∗Work done at Carnegie Mellon University.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

https://zhengyiluo.github.io/projects/kin_poly/
https://zhengyiluo.github.io/projects/kin_poly/
https://zhengyiluo.github.io/projects/kin_poly/

• Comparison with the state-of-the-art methods on the real-world dataset (02:50).

• Failure cases for the dynamics-regulated kinematic policy (04:23).

• Qualitative results from the Universal Humanoid Controller (UHC) (4:39).

• Failure cases for the UHC (05:20).

B Dynamics-regulated Kinematic Policy
B.1 Evaluation Metrics Definition
Here we provide details about our proposed evaluation metrics:

• Root error: Eroot compares the estimated and ground truth root rotation and orientation,
measuring the difference in the respective 4× 4 transformation matrix (M t): 1

T

∑T
t=1 ‖I −

(M tM̂
−1
t)‖F . This metric reflects both the position and orientation tracking quality.

• Mean per joint position error: Empjpe (mm) is the popular 3D human pose metric [19, 18, 20]
and is defined as 1

J ‖j
pos − ĵ

pos
‖2 for J number of joints. This value is root-relative and is

computed after setting the root translation to zero.

• Acceleration error: Eacc (mm/frame2) measures the difference between the ground truth and

estimated joint position acceleration: 1
J ‖j̈

pos
− ̂̈jpos

‖2.

• Foot sliding: FS (mm) is computed similarly as in [22], i.e. FS = d
(
2− 2h/H

)
where d is

the foot displacement and h is the foot height of two consecutive poses. We use a height
threshold of H = 33 mm, the same as in [22].

• Penetration: PT (mm) is provided by the physics simulation. It measures the per-frame
average penetration distance between our simulated humanoid and the scene (ground and
objects). Notice that Mujoco uses a soft contact model where a larger penetration will result
in a larger repulsion force, so a small amount of penetration is expected.

• Camera trajectory error: Ecam is defined the same as the root error, and measures the camera
trajectory tracking instead of the root. To extract the camera trajectory from the estimated
pose qt, we use the head pose of the humanoid and apply a delta transformation based on
the camera mount’s vertical and horizontal displacement from the head.

• Human-object interaction success rate: Sinter measures whether the desired human-object
interaction is successful. If the humanoid falls down at any point during the sequence, the
sequence is deemed unsuccessful. The success rate is measured automatically by querying
the position, contact, and simulation states of the objects and humanoid. For each action:

– Sitting down: successful if the humanoid’s pelvis or the roots of both legs come in
contact with the chair at any point in time.

– Pushing a box: successful if the box is moved more than 10 cm during the sequence.
– Stepping on a box: successful if the humanoid’s root is raised at least 10 cm off the

ground and either foot of the humanoid has come in contact with the box.
– Avoiding an obstacle: successful if the humanoid has not come in contact with the

obstacle and the ending position of the root/camera is less than 50 cm away from the
desired position (to make sure the humanoid does not drift far away from the obstacle).

B.2 Fail-safe during evaluation

For methods that involve dynamics, the humanoid may fall down mid-episode and not complete
the full sequence. In order to compare all methods fairly, we incorporate the “fail-safe” mechanism
proposed in EgoPose [50] and use the estimated kinematic pose to restart the simulation at the
timestep of failure. Concretely, we measure point of failure by thresholding the difference between
the reference joint position j̃pos

t and the simulated joint position jpos
t . To reset the simulation, we use

the estimated kinematic pose q̃t to set the simulation state.

2

B.3 Implementation Details

The kinematic policy is implemented as a Gated Recurrent Unit (GRU) [6] based network with 1024
hidden units, followed by a three-layer MLP (1024, 512, 256) with ReLU activation. The value
function for training the kinematic policy through reinforcement learning is a two-layer MLP (512,
256) with ReLU activation. We use a fixed diagonal covariance matrix and train for 1000 epoches
using the Adam [?] optimizer. Hyperparameters for training can be found in Table. 3:

Table 1: Hyperparameters used for training the kinematic policy.
γ Batch Size Value Learning Rate Policy Learning Rate PPO clip ε Covariance Std

Value 0.95 10000 3× 10−4 5× 10−4 0.2 0.04

whp whq wgt
jr wgt

jv wdyna
jr wdyna

jp

Value 0.15 0.15 0.2 0.1 0.2 0.2

B.4 Additional Experiments about Stochasticity

Our kinematic policy is trained through physics simulation and samples a random sequence from
the MoCap dataset for each episode. Here we study the stochasticity that rises from this process.
We train our full pipeline with three different random seeds and report its results with error bars on
both the MoCap test split and the real-world dataset. As can be seen in Table 2, our method has very
small stochasticity and maintains high performance on both the MoCap test split and the real-world
dataset, demonstrating the robustness of our dynamics-regulated kinematic policy. Across different
random seeds, we can see that “stepping" is consistently the hardest action and “avoiding" is the
easiest. Intuitively, “stepping" requires precise coordination between the kinematic policy and the
UHC for lifting the feet and pushing up, while “avoiding" only requires basic locomotion skills.

B.5 Additional Analysis into low Per Joint Error

As discussed in the results section, we notice that our Mean Per Joint Position Error is relatively low
compared to third-person pose estimation methods, although egocentric pose estimation is arguably a
more ill-posed task. To provide an additional analysis of this observation, here we report the per-joint
positional errors for the four joints with the smallest and largest errors, in ascending order:

As can be seen in the results, the toes and hands have much larger errors. This is expected as inferring
hand and toe movements from only the egocentric view is challenging, and our network is able to
extrapolate their position based on physical laws and prior knowledge of the scene context. Different
from a third-person pose estimation setting, correctly estimating the torso area can be much easier
from an egocentric point of view since torso movement is highly correlated with head motion. In
summary, the low MPJPE reported on our MoCap dataset is the result of 1) only modeling a subset of
possible human actions and human-object interactions, 2) the nature of the egocentric pose estimation
task, 3) our network’s incorporation of physical laws and scene context, which reduces the number of
possible trajectories.

C Universal Humanoid Controller

C.1 Implementation Details

Proxy humanoid. The proxy humanoid we use for simulation is created automatically using the
mesh, bone and kinematic tree defined in the popular SMPL [23] human model. Similar to the
procedure in [52], given the SMPL body vertices V = 6890 and bones B = 25, we generate our
humanoid based on the skinning weight matrix W ∈ RV×B that defines the association between
each vertex and bone. The geometry of each bone’s mesh is defined by the convex hull of all vertices
assigned to the bone. The mass of each bone is in turn defined by the volume of the mesh. To simplify
the simulation process, we discard all body shape information from the AMASS [25] dataset, and use
the mean body shape of the SMPL model. Since AMASS and our MoCap dataset are recorded by
people with different height, we manually adjust the starting height of the MoCap pose to make sure
each of the humanoid’s feet are touching the ground at the starting point of the episode.

3

Table 2: Results of our dynamics-regulated kinematic policy on the test split of MoCap and real-world
datasets using different random seeds. The “loco" motion in the MoCap dataset corresponds to the
generic locomotion action, containing all sequences from the EgoPose [50] Dataset.

MoCap dataset

Sinter ↑ Eroot ↓ Empjpe ↓ Eacc ↓ FS ↓ PT ↓ Per class success rate Sinter ↑
Sit Push Avoid Step Loco

96.87%± 1.27% 0.21± 0.01 39.46± 0.52 6.27± 0.1 3.22± 0.11 0.69± 0.03 100% 97.20%± 3.96% 100% 86.70%± 4.71% 97.4%± 3.63%

Real-world dataset

Sinter ↑ Eroot ↓ FS ↓ PT ↓ Per class success rate Sinter ↑
Sit Push Avoid Step

92.17%± 1.41% 0.49± 0.01 2.72± 0.03 1.03± 0.16 94.7%± 4.20% 93.10%± 1.84% 100.0% 77.1%± 2.37%

Table 3: Per-joint error on the MoCap dataset

Torso Left_hip Right_hip Spine Left_toe Right_toe Right_hand Left_hand

7.099 8.064 8.380 15.167 65.060 66.765 74.599 77.669

Policy network architecture. Our Universal Humanoid Controller (UHC)’s workflow and archi-
tecture can be seen in Fig. 1. πUHC(at|st, q̂t+1) is implemented as a multiplicative compositional
policy (MCP) [?] with eight motion primitives, each being an MLP with two hidden layers (512,
256). The composer is another MLP with two hidden layers (300, 200) and outputs the multiplicative
weights w1:n

t for the n motion primitives. As studied in MCP [?], this hierarchical control policy
increases the model’s capacity to learn multiple skills simultaneously. The output at ∈ R75 is a
vector concatenation of the target angles of the PD controller mounted on the 23 no-root joints
(each has 3 DoF), plus the residual force [51]: ηt ∈ R6. Recall that each target pose q̂t ∈ R76,
q̂t , (r̂pos

t , r̂rot
t , ĵ

rot
t) consists of the root position r̂pos

t ∈ R3, root orientation in quaternions r̂rot
t ∈ R4

, and body joint angles in Euler angles ĵ
rot
t ∈ R69 of the human model. The use of quaternions and

Euler angles follows the specification of Mujoco [41]. As described in the main paper, our UHC first
transforms the simulation state to a feature vector using T AC

(
qt, q̇t, q̂t+1, Ddiff(q̂t+1, qt)

)
to output

a 640 dimensional vector that is a concatenation of the following values:

(h′qt , q
′
t, q̂
′
t, (qt − q̂t), q̇t, (ψt − ψ̂t),ĵ

′pos
t , (j′pos

t − ĵ
′pos
t), j′rot

t , (j′rot
t 	 ĵ

′rot
t))

= T AC(qt, q̇t, q̂t+1, Ddiff(q̂t+1, qt)).
(1)

It consists of: root orientation h′qt ∈ R4 in agent-centric coordinates; simulated pose q′t ∈ R74

(q′t , (r′zt , r
′rot
t , jrot

t), root height r′zt ∈ R1, root orientation r′rott ∈ R4, and body pose jrot
t ∈ R69

expressed in Euler angles) in agent-centric coordinates; target pose q̂′t ∈ R74 in agent-centric
coordinates; (qt − q̂t) ∈ R76 is the difference between the simulated and target pose (in world
coordinate), calculated as (qt − q̂t) , (r̂pos

t − r
pos
t , r̂rot

t 	 rrot
t , ĵ

rot
t − j

rot
t), where 	 calculates

the rotation difference; q̇t ∈ R75 is the joint velocity computed by Mujoco; (ψt − ψ̂t) ∈ R1

is the difference between the current heading (yaw) of the target and simulated root orientation;
ĵ
′pos
t ∈ R72 and (jpos

t − ĵ
pos
t) ∈ R72 are joint position differences, calculated in the agent-centric

space, respectively; ĵ
′rot
t ∈ R96 and (j′rot

t 	 ĵ
′rot
t) ∈ R96 are joint rotation differences in quaternions

(we first convert ĵ
′rot
t from Euler angles to quaternions), calculated in the global and agent-centric

space, respectively.

Reward function. The imitation reward function per timestep, similar to the reward defined in Yuan
et al. [51] is as follows:

rt = wjrrjr + wjprjp + wjvrjv + wresrres, (2)

where wjr, wjp, wjv, wres are the weights of each reward. The joint rotation reward rjr measures the

difference between the simulated joint rotation jrot
t and the target ĵrot

t in quaternion for each joint on
the humanoid. The joint position reward rjp computes the distance between each joint’s position

jpos
t and the target joint position ĵpos

t . The joint velocity reward rjv penalizes the deviation of the

4

Input: target pose

Simulation State:

Output: imitated pose

Input: target pose

Action

Simulated pose

Universal Humanoid
Controller

Input: state

......

......

Gating
FunctionNext-time state

Weights

Output: action

Action

Feature Extraction

Composer

Motion
Primitives

Computation
Module

Learnable
 Module

Data
Block

......

Output: imitated poses:

MLP MLP MLP

MLP MLP MLP

MLP

MLP

Physics
Simulation

Figure 1: Overview of our Universal Dynamics Controller. Given a frame of target pose and current
simulation state, our UHC πUHC can dirve the the humanoid to match the target pose.

estimated joint angular velocity j̇
rot
t from the target ̂̇jrot

t . The target velocity is computed from the
data via finite difference. All above rewards include every joint on the humanoid model (including
the root joint), and are calculated in the world coordinate frame. Finally, the residual force reward
rres encourages the policy to rely less on the external force and penalize for a large ηt:

rjr = exp
[
−2.0

(
‖jrot

t 	 ĵ
rot
t ‖2

)]
, rjp = exp

[
−5
(∥∥∥jpos

t − ĵ
pos
t

∥∥∥2)] ,
rjv = exp[−0.005

∥∥∥∥j̇rot
t 	

̂̇
j

rot

t

∥∥∥∥2], rres = exp
[
−
(
‖ηt‖

2
)]
.

(3)

We train our Universal Humanoid Controller for 10000 epoches, which takes about 5 days. Additional
hyperparameters for training the UHC can be found in Table 4:

Table 4: Hyperparameters used for training the Universal Humanoid Controller.
γ Batch Size Value Learning Rate Policy Learning Rate PPO clip ε Covariance Std

Value 0.95 50000 3× 10−4 5× 10−5 0.2 0.1

wjr wjp wjv wres Sampling Temperature

Value 0.3 0.55 0.1 0.05 2

Training data clearning We use the AMASS [25] dataset for training our UHC. The original
AMASS dataset contains 13944 high-quality motion sequences, and around 2600 of them contain
human-object interactions such as sitting on a chair, walking on a treadmill, and walking on a bench.
Since AMASS does not contain object information, we can not faithfully recreate and simulate
the human-object interactions. Thus, we use a combination of heuristics and visual inspection to
remove these sequences. For instance, we detect sitting sequences through finding combinations of
the humanoid’s root, leg, and torso angles that correspond to the sitting posture; we find walking-on-
a-bench sequences through detecting a prolonged airborne period; for sequences that are difficult to
detect automatically, we conduct manual visual inspection. After the data cleaning process, we obtain
11299 motion sequences that do not contain human-object interaction for our UHC to learn from.

C.2 Evaluation on AMASS

Table 5: Evaluation of motion imitation for
our UHC using target motion from the AMASS
dataset.

AMASS dataset

Method Sinter ↑ Eroot ↓ Empjpe ↓ Eacc ↓
DeepMimic 24.0% 0.385 61.634 17.938
UHC w/o MCP 95.0% 0.134 25.254 5.383
UHC 97.0% 0.133 24.454 4.460

To evaluate our Universal Humanoid Con-
troller’s ability to learn to imitate diverse hu-
man motion, we run our controller on the
full AMASS dataset (after removing sequences
that include human-object interactions) that we

5

trained on. After data cleaning, the AMASS
dataset contains 11299 high quality motion se-
quences, and contains challenging sequences
such as kickboxing, dancing, backflipping,
crawling, etc. We use a subset of metrics from
egocentric pose estimation to evaluate the mo-
tion imitation results of UHC. Namely, we report Sinter, Eroot, Empjpe, Eacc, where the human-object
interation Sinter indicates whether the humanoid has become unstable and falls down during the imita-
tion process. The baseline we compare against is the popular motion imitation method DeepMimic
[30]. Since our framework uses a different physics simulation (Bullet [?] vs Mujoco [41]), we use
an in-house implementation of DeepMimic. From the result of Table 5 we can see that our controller
can imitate a large collection (10956/11299, 96.964%) of realistic human motion with high fidelity
without falling. Our UHC also achieves very low joint position error on motion imitation and, upon
visual inspection, our controller can imitate highly dynamic motion sequences such as dancing and
kickboxing. Failure cases include some of the more challenging sequences such as breakdancing and
cartwheeling and can be found in the supplementary video.

C.3 Evaluation on H36M

To evaluate our Universal Humanoid Controller’s ability to generalize to unseen motion
sequences, we use the popular Human 3.6M (H36M) dataset [?]. We first fit the
SMPL body model to ground truth 3D keypoints similar to the process in [?] and
obtain motion sequences in SMPL parameters. Notice that this fitting process is imper-
fect and the resulting motion sequence is of less quality than original MoCap sequences.

Table 6: Evaluation of motion imitation for our
UHC using target motion from the H36M dataset.

H36M dataset

Method Sinter ↑ Eroot ↓ Empjpe ↓ Eacc ↓
DeepMimic 0.0% 0.609 107.895 28.881
UHC w/o MCP 89.3% 0.200 36.972 4.723
UHC 92.0% 0.194 40.424 3.672

These sequences are also never seen by our UHC
during training. As observed in Moon et al. [?
], the fitted SMPL poses have a mean per joint
position error of around 10mm. We use the train
split of H36M (150 unique motion sequences)
as the target pose for our UHC to mimic. From
the results shown in Table 6, we can see that our
UHC can imitate the unseen motion in H36M
with high accuracy and success rate, and outper-
forms the baseline method significantly. Upon
visual inspection, we can see that the failure
cases often result from losing balance while the humanoid is crouching down or starts running
suddenly. Since our controller does not use any sequence level information, it has no way of knowing
the upcoming speedup of the target motion and can result in instability. This indicates the importance
of the kinematic policy adjusting its target pose based on the current simulation state to prevent the
humanoid from falling down, and signifies that further investigation is needed to obtain a better
controller. For visual inspection of motion imitation quality and failure cases, please refer to our
supplementary video.

D Additional Dataset Details

D.1 MoCap dataset.

Our MoCap dataset (202 training sequences, 64 testing sequences, in total 148k frames) is captured
in a MoCap studio with three different subjects. Each motion clip contains paired first-person
footage of a person performing one of the five tasks: sitting down and (standing up from) a chair,
avoiding an obstacle, stepping on a box, pushing a box, and generic locomotion (walking, running,
crouching). Each action has around 50 sequences. The locomotion part of our dataset is merged
from the egocentric dataset from EgoPose [49] since the two datasets are captured using a compatible
system. MoCap markers are attached to the camera wearer and the objects to get the 3D full-body
human pose and 6DoF object pose. To diversify the way actions are performed, we instruct the actors
to vary their performance for each action (varying starting position and facing gait, speed etc.). We
followed the Institutional Review Board’s guidelines and obtained approval for the collection of this
dataset. To study the diversity of our MoCap dataset, we plot the trajectory taken by the actors in
Fig. 2. We can see that our trajectories are diverse and are spread out around a circle with varying
distance from the objects. Table 7 shows the speed statistics for our MoCap dataset.

6

https://zhengyiluo.github.io/projects/kin_poly/

Table 7: Speed analysis of our MoCap dataset and real-world dataset. Unit: (meters/second)
MoCap dataset

Action Mean Min Max Std

Sit 0.646 0.442 0.837 0.098
Push 0.576 0.320 0.823 0.119
Avoid 0.851 0.567 1.084 0.139
Step 0.844 0.576 1.029 0.118

Real-world dataset

Action Mean Min Max Std

Sit 0.556 0.227 0.891 0.171
Push 0.526 0.234 0.762 0.127
Avoid 0.668 0.283 0.994 0.219
Step 0.729 0.395 1.092 0.196

D.2 Real-world dataset.

Our real world dataset (183 testing sequences, in total 55k frames) is cap-
tured in everyday settings (living room and hallway) with an additional subject.

Figure 3: Our real-world dataset
capturing equipment.

It contains the same four types of interactions as our MoCap
dataset and is captured from a head-mounted iPhone using a
VR headset (demonstrated in Fig.3). Each action has around
40 sequences. As can be seen in the camera trajectory in Fig.
2, the real-world dataset is more heterogeneous than the Mo-
Cap dataset, and has more curves and banks overall. Speed
analysis in Table 7 also shows that our real-world dataset has
a larger standard deviation in terms of walking velocity and
has a larger overall spread than the MoCap dataset. In all, our
real-world dataset has more diverse trajectories and motion
patterns than our MoCap dataset, and our dynamics-regulated
kinematic policy can still estimate the sequences recorded in
this dataset.

Notice that our framework is starting position and orientation
invariant, since all of our input features are transformed into
the agent-centric coordinate system using the transformation function T AC.

Real-world Dataset:

Mocap Dataset:

m
et

er
s

m
et

er
s

meters

meters

Starting point

Starting point

Figure 2: Trajectory analysis on our MoCap and real-world datasets. Here we recenter each
trajectory using the object position and plot the camera trajectory, the objects are positioned
differently across trajectories. The starting point is marked as a red dot.

7

D.3 Dataset Diversity

E Broader social impact.

Our overall framework can be used in extracting first-person camera wearer’s physically-plausible
motion and our humanoid controller can be a plug-and-play model for physics-based humanoid
simulation, useful in the animation and gaming industry for creating physically realistic characters.
There can be also negative impact from this work. Our humanoid controller can be used as a
postprocessing tool to make computer generated human motion physically and visually realistic
and be misused to create fake videos using Deepfake-like technology. Improved egocentric pose
estimation capability can also mean additional privacy concerns for smart glasses and bodycam
users, as the full-body pose can now be inferred from front-facing cameras only. As the realism of
motion estimation and generation methods improves, we encourage future research in this direction
to investigate more in detecting computer generated motion [?].

References
[1] Kevin Bergamin, Simon Clavet, Daniel Holden, and J. Forbes. Drecon. ACM Transactions on Graphics

(TOG), 38:1 – 11, 2019.

[2] Federica Bogo, A. Kanazawa, Christoph Lassner, P. Gehler, J. Romero, and Michael J. Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a single image. In The European Conference on
Computer Vision (ECCV), 2016.

[3] M. Brubaker, L. Sigal, and David J. Fleet. Estimating contact dynamics. 2009 IEEE 12th International
Conference on Computer Vision, pages 2389–2396, 2009.

[4] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng. Learning to sit: Synthesizing human-chair
interactions via hierarchical control. ArXiv, abs/1908.07423, 2019.

[5] N. Chentanez, M. Müller, M. Macklin, Viktor Makoviychuk, and S. Jeschke. Physics-based motion capture
imitation with deep reinforcement learning. Proceedings of the 11th Annual International Conference on
Motion, Interaction, and Games, 2018.

[6] Kyunghyun Cho, B. V. Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. ArXiv, abs/1406.1078, 2014.

[7] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular camera. In IEEE
International Conference on Computer Vision (ICCV), pages 1449–1456, Los Alamitos, CA, USA, Dec.
2013. IEEE Computer Society.

[8] Georgios V. Georgakis, Ren Li, Srikrishna Karanam, Terrence Chen, Jana Kosecka, and Ziyan Wu.
Hierarchical kinematic human mesh recovery. ArXiv, abs/2003.04232, 2020.

[9] Riza Alp Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human pose estimation in the wild.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7297–7306, 2018.

[10] I. Habibie, W. Xu, D. Mehta, G. Pons-Moll, and C. Theobalt. In the wild human pose estimation using
explicit 2d features and intermediate 3d representations. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10897–10906, Jun. 2019.

[11] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[12] Mir Rayat Imtiaz Hossain and J. Little. Exploiting temporal information for 3d human pose estimation. In
The European Conference on Computer Vision (ECCV), 2018.

[13] Soo hwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and J. Lee. Learning predict-and-simulate
policies from unorganized human motion data. ACM Transactions on Graphics (TOG), 38:1 – 11, 2019.

[14] Apple Inc. Estimating camera pose with arkit. https://developer.apple.com/documentation/
arkit/arcamera, 2021. Accessed: 2021-03-16.

[15] Apple Inc. Scanning and detecting 3d objects with arkit. https://developer.apple.com/
documentation/arkit/content_anchors/scanning_and_detecting_3d_objects, 2021. Ac-
cessed: 2021-03-16.

8

https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects

[16] Mariko Isogawa, Ye Yuan, Matthew O’Toole, and Kris M Kitani. Optical non-line-of-sight physics-based
3d human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7013–7022, 2020.

[17] Hao Jiang and Kristen Grauman. Seeing invisible poses: Estimating 3d body pose from egocentric video.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3501–3509, Jun. 2016.

[18] A. Kanazawa, Michael J. Black, D. Jacobs, and Jitendra Malik. End-to-end recovery of human shape and
pose. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7122–7131, 2018.

[19] Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. Vibe: Video inference for human body
pose and shape estimation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5252–5262, 2020.

[20] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and Kostas Daniilidis. Learning to reconstruct
3d human pose and shape via model-fitting in the loop. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2252–2261, 2019.

[21] Sijin Li and Antoni B. Chan. 3d human pose estimation from monocular images with deep convolutional
neural network. In ACCV, 2014.

[22] Hung Yu Ling, Fabio Zinno, George H. Cheng, and M. V. D. Panne. Character controllers using motion
vaes. ACM Transactions on Graphics (TOG), 39:40:1 – 40:12, 2020.

[23] M. Loper, Naureen Mahmood, J. Romero, Gerard Pons-Moll, and Michael J. Black. Smpl: a skinned
multi-person linear model. ACM Trans. Graph., 34:248:1–248:16, 2015.

[24] Zhengyi Luo, S. Alireza Golestaneh, and Kris M. Kitani. 3d human motion estimation via motion
compression and refinement. In Proceedings of the Asian Conference on Computer Vision (ACCV),
November 2020.

[25] Naureen Mahmood, N. Ghorbani, N. Troje, Gerard Pons-Moll, and Michael J. Black. Amass: Archive of
motion capture as surface shapes. 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 5441–5450, 2019.

[26] J. Merel, S. Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham, T. Erez, Greg
Wayne, and N. Heess. Reusable neural skill embeddings for vision-guided whole body movement and
object manipulation. ArXiv, abs/1911.06636, 2019.

[27] Gyeongsik Moon, Juyong Chang, and Kyoung Mu Lee. Camera distance-aware top-down approach for 3d
multi-person pose estimation from a single rgb image. In IEEE Conference on International Conference
on Computer Vision (ICCV), pages 10113–10142, Oct. 2019.

[28] Evonne Ng, Donglai Xiang, Hanbyul Joo, and Kristen Grauman. You2me: Inferring body pose in
egocentric video via first and second person interactions. CoRR, abs/1904.09882, 2019.

[29] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3d human pose estimation in
video with temporal convolutions and semi-supervised training. In Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2019.

[30] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-guided
deep reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4):143:1–143:14, 7
2018.

[31] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. Sfv: Reinforcement
learning of physical skills from videos. ACM Trans. Graph., 37(6), November 2018.

[32] Davis Rempe, L. Guibas, Aaron Hertzmann, Bryan C. Russell, R. Villegas, and Jimei Yang. Contact and
human dynamics from monocular video. In SCA, 2020.

[33] Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad Shafiei, Hans-Peter Seidel,
Bernt Schiele, and Christian Theobalt. Egocap: Egocentric marker-less motion capture with two fisheye
cameras. ACM Trans. Graph., 35(6), November 2016.

[34] Grégory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. LCR-Net++: Multi-person 2D and 3D Pose
Detection in Natural Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

[35] John Schulman, F. Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. ArXiv, abs/1707.06347, 2017.

9

[36] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Patrick Pérez, and Christian Theobalt. Neural monocular
3d human motion capture. ACM Transactions on Graphics, 40(4), aug 2021.

[37] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and C. Theobalt. Physcap: Physically plausible
monocular 3d motion capture in real time. ACM Trans. Graph., 39:235:1–235:16, 2020.

[38] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2018.

[39] J. Tan, K. Liu, and G. Turk. Stable proportional-derivative controllers. IEEE Computer Graphics and
Applications, 31(4):34–44, Jul. 2011.

[40] Bugra Tekin, Isinsu Katircioglu, M. Salzmann, Vincent Lepetit, and P. Fua. Structured prediction of 3d
human pose with deep neural networks. ArXiv, abs/1605.05180, 2016.

[41] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5026–5033, Oct. 2012.

[42] Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. xr-egopose: Egocentric 3d human pose
from an hmd camera. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 7728–7738, Oct. 2019.

[43] M. Vondrak, L. Sigal, J. Hodgins, and O. C. Jenkins. Video-based 3d motion capture through biped control.
ACM Transactions on Graphics (TOG), 31:1 – 12, 2012.

[44] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: Towards end-to-end visual odometry with deep
recurrent convolutional neural networks. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2043–2050, May 2017.

[45] Tingwu Wang, Yunrong Guo, Maria Shugrina, and S. Fidler. Unicon: Universal neural controller for
physics-based character motion. ArXiv, abs/2011.15119, 2020.

[46] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A scalable approach to control diverse behaviors
for physically simulated characters. ACM Trans. Graph., 39(4), 2020.

[47] Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Pascal Fua, Hans-Peter Seidel, and
Christian Theobalt. Mo2Cap2 : Real-time mobile 3d motion capture with a cap-mounted fisheye camera.
IEEE Transactions on Visualization and Computer Graphics, pages 1–1, 2019.

[48] Yuanlu Xu, S. Zhu, and Tony Tung. Denserac: Joint 3d pose and shape estimation by dense render-
and-compare. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 7759–7769,
2019.

[49] Ye Yuan and Kris Kitani. 3d ego-pose estimation via imitation learning. In The European Conference on
Computer Vision (ECCV), Sep. 2018.

[50] Ye Yuan and Kris Kitani. Ego-pose estimation and forecasting as real-time pd control. In IEEE International
Conference on Computer Vision (ICCV), pages 10082–10092, Oct. 2019.

[51] Ye Yuan and Kris Kitani. Residual force control for agile human behavior imitation and extended motion
synthesis. In Advances in Neural Information Processing Systems, 2020.

[52] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason Saragih. Simpoe: Simulated character control
for 3d human pose estimation. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[53] Hongwen Zhang, Jie Cao, Guo Lu, Wanli Ouyang, and Z. Sun. Learning 3d human shape and pose from
dense body parts. ArXiv, abs/1912.13344, 2019.

10

	Qualitative Results (Supplemantry Video)
	Dynamics-regulated Kinematic Policy
	Evaluation Metrics Definition
	Fail-safe during evaluation
	Implementation Details
	Additional Experiments about Stochasticity
	Additional Analysis into low Per Joint Error

	Universal Humanoid Controller
	Implementation Details
	Evaluation on AMASS
	Evaluation on H36M

	Additional Dataset Details
	MoCap dataset.
	Real-world dataset.
	Dataset Diversity

	Broader social impact.

