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Abstract
The self-attention-based model, transformer, is recently becoming the leading
backbone in the field of computer vision. In spite of the impressive success made
by transformers in a variety of vision tasks, it still suffers from heavy computation
and intensive memory costs. To address this limitation, this paper presents an
Interpretability-Aware REDundancy REDuction framework (IA-RED2). We start
by observing a large amount of redundant computation, mainly spent on uncor-
related input patches, and then introduce an interpretable module to dynamically
and gracefully drop these redundant patches. This novel framework is then ex-
tended to a hierarchical structure, where uncorrelated tokens at different stages
are gradually removed, resulting in a considerable shrinkage of computational
cost. We include extensive experiments on both image and video tasks, where
our method could deliver up to 1.4× speed-up for state-of-the-art models like
DeiT [53] and TimeSformer [3], by only sacrificing less than 0.7% accuracy. More
importantly, contrary to other acceleration approaches, our method is inherently
interpretable with substantial visual evidence, making vision transformer closer
to a more human-understandable architecture while being lighter. We demonstrate
that the interpretability that naturally emerged in our framework can outperform
the raw attention learned by the original visual transformer, as well as those gener-
ated by off-the-shelf interpretation methods, with both qualitative and quantitative
results. Project Page: http://people.csail.mit.edu/bpan/ia-red/.

1 Introduction
Transformer, a self-attention-based architecture processing sequential input without any recurrent or
convolutional operations, has set off a storm in the computer vision literature recently. By dividing
the input image into a series of patches and then tokenizing them with linear transformation, the
transformer can effectively process the visual data in different modalities [13, 53, 54, 28, 3, 17, 66].
Despite its versatility, the transformer is always deeply troubled with inefficient computation and its
vague interpretability. The vision transformer suffers heavy computational costs, especially when
the input sequence is long. As the attention module in the vision transformer computes the fully-
connected relations among all of the input patches, the computational cost is then quadratic with
regard to the length of the input sequence. On the other hand, previous works [6, 8] have already
shown the vulnerable interpretability of the original vision transformer, where the raw attention
comes from the architecture sometimes fails to perceive the informative region of the input images.

Recently, more designs of vision transformer architecture [34, 65, 18, 56, 14, 9, 3] are proposed to
get higher accuracy with less computational cost. Although these methods anchor good trade-offs
between efficiency and accuracy, their compression makes the vision transformer even more lack
interpretability. Most of these methods assume that the input sequences are sampled from a regular
visual input in a fixed shape rule, and thus their network architectures are not flexible as well, which
makes the vision transformer (1) no longer able to process the input sequence with arbitrary length as
the architecture is designed for a specific input shape; (2) neither model-agnostic nor task agnostic
anymore; or (3) neglect the fact that the model redundancy is also input-dependant. We yet argue that
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Figure 1: Two examples of redundancy reduction in vision transformers. Our proposed multi-head
interpreters serve as a model-agnostic module which are built on top of the existing transformer-based
backbones for different tasks, including image recognition and video action recognition.

there is no inherent tension between efficiency and interpretability, and achieving them both does
not have to pay design flexibility as a price. Indeed, starting from the philosophy of Occam’s razor,
the law of parsimony, or always pursuing more compact solutions when possible, is always treated as
a rule-of-thumb for pursing interpretability, especially in complicated fitting problems [21].

This paper aims to seek the win-win between efficiency and interpretability while keeping the
flexibility and versatility of the original vision transformer. We propose a novel Interpretability-Aware
REDundancy REDuction (IA-RED2) framework for reducing the redundancy of vision transformers.
The key mechanism that IA-RED2 uses to increase efficiency is to dynamically drop some less
informative patches in the original input sequence so that the length of the input sequence could
be reduced. While the original vision transformer tokenizes all of the input patches, it neglects the
fact that some of the input patches are redundant and such redundancy is input-dependant (see from
Figure 1). As the computational complexity of the attention module is quadratically linear to the
input sequence length, the effect of reducing input sequence length would be magnified in the amount
of the computation. Motivated by this, we leverage the idea of dynamic inference [39, 37, 38, 61, 57],
and adopt a policy network (referred to as multi-head interpreter) to decide which patches are
uninformative and then discard them. Our proposed method is inherently interpretability-aware as
the policy network learns to discriminate which region is crucial for the final prediction results.

To summarize, the main contributions of our work includes: (1) We propose IA-RED2, the first
interpretability-aware redundancy reduction framework for vision transformer. (2) Our IA-RED2

framework is one of the first input-dependent dynamic inference framework for vision transformer,
which adaptively decides the patch tokens to compute per input instance. (3) IA-RED2 is both
model-agnostic and task-agnostic. We conduct experiments with IA-RED2 framework spanning
different tasks, including image recognition and action recognition, and different models, including
DeiT [53], TimeSformer [3]. (4) We attain promising interpretable results (shown in Figure 3) over
baselines, with a 1.4× acceleration over DeiT on image recognition tasks, and a 4× acceleration
over TimeSformer on video action recognition task while largely maintaining the accuracy. We
also provide both qualitative results regarding interpretability with heatmaps by our method and
those from other baseline methods like raw attention, MemNet [29]; as well as the quantitative
comparison with current state-of-the-art model interpretability methods, such as GradCAM [44], on
ImageNet-Segmentation [16] dataset with the weakly-supervised image segmentation task.

2 Related Work
Interpretability of Neural Networks. Besides improving the discrimination power of deep neural
networks, model interpretability has recently raised another significant and popular research question.
One of the important goals is to predict the heatmap visualization that precisely indicates the
objects or contexts of relevance. Simonyan et. al. [45] attempts to maximize the class score that
generates a saliency map for the given inputs. Dabkowski et al. [12] mask the salient parts of
the inputs to manipulate the scores of the classifier, which generalizes well to unseen images and
enables fast saliency detection. Khosla et al. [29] provide the largest annotated image memorability
dataset to benchmark the visualization and explanation of natural images. After that, gradient-
based methods [49, 46, 47] are proposed to generate precise heatmaps, by computing the gradient
with respect to input during the backpropagation. While all the above approaches are studying
the interpretability of convolutional neural networks (CNNs), only a few works contribute to the
visualization of the vision transformer. Chefer et al. shed some light on its visualization by assigning
the local relevance on Transformer layers. Caron et al. [6] demonstrate that a self-supervised trained
ViT produces explicit representation about the semantic location of a given object in natural images.
Different from all of them, our approach starts with a novel multi-head interpreter which is supervised
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by an ef�ciency-driven signal, and then bene�ts from this powerful interpreter by reducing the
redundancy of transformer, achieving a “win-win” between interpretability and ef�ciency.

Dynamic Networks. Neural networks are found as redundant regarding their huge computation
cost [19, 23, 35]. To overcame this issue, many adaptive computation methods are explored during
the inference stage [1, 2, 57, 15, 26, 58, 20]. These adaptive computation strategies help speed up the
inference time of convolutional neural networks (CNNs) [33], recurrent neural network (RNNs) [15],
and also self-attention based methods (BERT) [25]. Besides the model-level adaptation, others further
extend this idea to data-level adaptation, by either reducing the spatial redundancy [63] or focusing
on key area [59]. However, those methods are limited by the convolutional structure, where only 2D
data can be taken as input. Different from those approaches, our methods naturally bene�t from the
unstructured input taken by vision transformer, and thus can provide a much more precise glance at
the target object with the affection of background being eliminated.

Vision Transformer. Transformer, as a self-attention based model, has been widely adopted in
natural language processing area before. The recent advance [13] shows that the transformer can
also achieve incredible performance on computer vision tasks. While vision transformer suffers from
the necessity large-scaled dataset [48], many recent works try to encode strong inductive prior by
either combining it with convolutional layer [60, 32, 64, 62] or introducing 2D-hierarchical structure
to vision transformer [34, 56, 14, 9]. Besides, transformer also shows strong power in other vision
tasks, including semantic segmentation [67], object detection [5, 68], image processing [10], and
image generation [28, 27]. These successes further suggest the potential of transformer to become
the universal model for general vision tasks. Some other works [40, 11, 51] also make meaningful
efforts on vision transformer ef�ciency. Different from those methods, the proposed method achieves
a “win-win” on both ef�ciency and interpretability.

3 Proposed Method

Our main goal is to reduce the redundancy in vision transformers by dynamically dropping less
informative patches in the original input sequence while classifying it correctly with the minimum
computation. Our method is built on top of vision transformer (ViT) [13]. We start from presenting a
brief overview of ViT, including the computational complexity of each module regarding the input
sequence length. We then describe our proposed IA-RED2 framework for hierarchically reducing the
redundant patch tokens at different layers of the vision transformer.

3.1 Overview of Vision Transformer

Vision transformer mainly consists of three main modules: (1) Multi-head Self Attention layer (MSA)
to learn relationships between every two different patches among all the input tokens. There areh
self-attention heads inside the MSA. In each self-attention head, the input tokenX i is �rst projected
to a queryQi , a keyK i , and a valueVi by three different linear transformations. Then, the queryQi
computes the dot products with all the keysK and these dot products will be scaled and normalized
by the softmax layer to get the attention weights. After that, it outputs the tokenYi by weighted
sum up all the valuesV with the obtained attention weights. Finally, the outputs from all heads are
concatenated and re-projected by a linear layer into an output token. (2) Feed-Forward Network
(FFN) which consists of two linear layers which are connected by the GeLU activation [24] function.
For each output tokenYi 2 RD from the precedent MSA layer, FFN processes it individually. The
�rst linear layer upgrades its dimension fromD to 4D, and the second linear layer downgrades its
dimension from4D to D. Both MSA and FFN are functioning as residual connection [22]. (3)
Linear Patch Embedding and Positional Encoding: For an image or a video clip, ViT �rst splits it into
several �xed-size patches and embeds them into input tokens with a linear layer. After transforming
the original image and video into a series of tokens, the network is no longer capable of being aware
of the positional information of the input tokens. Thus the positional embeddings are added to the
input tokens right after the patch embedding to learn the positional information of each token.

Computational Complexity. For an input sequenceN � D , whereN is the length of the input
sequence andD is the embedding dimension of each input token. The computation complexity of the
MSA is O(4ND 2 + 2N 2D). While for the FFN, the computational complexity isO(8ND 2). As
the computational complexity of patch embedding can be neglected compared with the MSA and
FFN, the total computational complexity of the ViT isO(12ND 2 + 2N 2D).
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Figure 2: Illustration of our proposed IA-RED2 framework. We divide the transformer intoD groups.
Each group contains a multi-head interpreter andL combinations of the MSA and FFN. Before input
to the MSA and FFN, the patch tokens will be evaluated by the multi-head interpreter to drop some
uninformative patches. The multi-head interpreters are optimized by reward considering both the
ef�ciency and accuracy. Best viewed in color.

3.2 Interpretability-Aware Redundancy Reduction

In this section, we introduce our multi-head interpreter in detail which uses a policy token to estimate
the importance of the input token. We also demonstrate how we hierarchically train the multi-head
interpreter based on a pre-trained vision transformer. Finally, we illustrate that how the interpretability
emerges in our IA-RED2 framework.

Multi-head Interpreter. We borrow the idea from the architecture of the MSA layer to devise our
policy module, named multi-head interpreter. Given a sequence of patch tokensX 2 RN � d which
already contain the positional information, we drop the uninformative patch tokens by using the
multi-head interpreter. We �rst divide the original ViT evenly intoD groups, each group contains a
multi-head interpreter andL blocks which consists of one MSA layer and one FFN. Inside each group,
before inputting to the blocks, the patch tokens will �rst be evaluated by the multi-head interpreter
for the informative scoreI ij , wherei andj represent the position of the input token and the group
respectively. IfI ij is below the threshold 0.5, the patchX i will be completely discarded atj th group
and will not be available in the subsequent groups. TheI ij is obtained by:

I ij =
1
H

X

h

� (F h
q (X i ) � F h

k (Pj )) ; (1)

wherePj is the policy token in thej th multi-head interpreter,H is the number of the heads in the
multi-head interpreter,F h

q andF h
k are the linear layer athth head for the patch tokens and the policy

token respectively,� represents the dot product and� the sigmoid activation function.

Hierarchical Training Scheme. Our hierarchical training scheme is built on top of a well-trained
ViT. In our IA-RED2 framework, all of the MSA-FFN blocks in the original vision transformer
will be evenly assigned into D groups in our IA-RED2 framework, where each group contains L
MSA-FFN blocks and one multi-head interpreter. We �x the parameters of the patch embedding
layer, positional encoding, and the class token during the training, and only focus on the parameters
inside each group. The network groups are optimized in a curriculum learning manner. For example,
if the number of groups D is 3, we will �rst optimize groups 1 to 3, then 2 to 3, and �nally, we
optimize the third group. Intuitively, we hope the interpreter at the early stage could learn to select
the patches containing all of the necessary contextual information for the correct �nal prediction,
while the interpreter at later stages could focus more on the part-level information since now each
token's information has already gone through global interaction and fusion. The pseudo-code for the
above optimization pipeline can be referred in supplementary materials. We optimize the multi-head
interpreters by using the REINFORCE method where the reward considers both the ef�ciency and
accuracy, and �netune the MSA-FFN blocks with gradients computed based on cross-entropy loss.
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Formally, during the training phase, given a sequence of patch tokensX 2 RN � d input to the
j th multi-head interpreter, the multi-head interpreter will generate policies for each input token of
dropping or keeping it as Bernoulli distribution by:� W (ui jX i ) = I u i

ij � (1 � I ij )1� u i ; whereui = 1
means to keep the token andui = 0 means to discard the token,I ij is de�ned in the Eq. 1 andX i

denotes thei th token in the token sequenceX . We associate these actions with the reward function:

R(u) =

8
<

:
1 � (

juj0
N

)2 if correct

� � otherwise
; (2)

where( j u j0

N )2 measures the percentage of the patches kept, and� is the value of penalty for the error
prediction which controls the trade-off between the ef�ciency and the accuracy of the network. This
reward function encourages the multi-head interpreter to predict the correct results with as few patch
tokens as possible. Then we optimize the multi-head interpreter individually by the expected gradient:

r W j J = Eu� � [Ar W j

NX

i =1

log[I ij ui + (1 � I ij )(1 � ui )]]; A = R(u) � R(û); (3)

whereJ = Eu� � [R(u)] is the expected reward to compute the policy gradient [50], Wj denotes
the parameters of thej th multi-head interpreter. We use the self-critical baselineR(û) in [41] to
reduce the variance of optimization, whereû denotes the maximally probable con�guration under
the current policy: i.e.,ui = 1 if I ij > 0:5, andui = 0 otherwise. As the computation of the
j th multi-head interpreter is based on the output tokens of(j � 1)th group, we optimize the entire
network in a curriculum learning manner. We �rst train the interpreter in the earlier layer, and then
�x the interpreter and �netune all of the subsequent MSA-FFN blocks. Let's take thej th group
for example. For thej th group, we �rst only train the multi-head interpreter and then �x it while
optimizing the subsequent MSA-FFN modules in thej th , ... ,D th groups. When we optimize the
j th group, the multi-head interpreter in the latter groups will be masked and keep all of the tokens.

Emergence of Interpretability. By visualizing the informative scores predicted by the multi-
head interpreters in different network groups, we can see the redundancy of the input patches is
hierarchically reduced at different levels clearly. For those patches that are removed in the precedent
groups, we treat the informative score of them as zero. Thus we can obtain a sequence of the
informative scores from each network group whose length equals the original input sequence length.
We rearrange this score sequence and interpolate it back to the size of the input vision content (e.g.
image or video). As the range of the informative score is from 0 to 1, we can draw a heatmap for
each network group which interprets that what is redundant for this network group.

4 Experiments

Datasets and Metrics.We conduct image recognition experiments on the ImageNet-1k classi�cation
dataset [31]. The performance of our models on ImageNet-1k is measured with the metrics of top-1
and top-5 accuracy rates. For weakly-supervised image segmentation experiments, we adopt the
ImageNet-Segmentation dataset [16] to evaluate the heatmaps we generate. We report three metrics:
pixel accuracy, mean accuracy (mAcc), and mean IoU (mIoU) to re�ect the segmentation performance.
Finally, for video action recognition, we conduct our experiments on Kinetics-400 dataset [7], which
contains 240k training videos and 10K videos for testing across 400 classes. We report the metrics of
clip-1 and video-1 error of video models, which denotes the error rate of evaluating the model with
the single clip and the Left-Center-Right three clips, respectively.

Model Architectures. We build our image model on top of DeiT [53] which adopts the architecture
of the ViT [13] by modifying the depth and width. Compared to the original ViT [13], DeiT has a
distillation token that is in charge of distilling the knowledge from the teacher CNN network. DeiT
is trained and evaluated on ImageNet-1k [31], without large-scale pre-training. We choose DeiT-S
and DeiT-B as our base models, where DeiT-B is 4� larger than DeiT-S in terms of FLOPs. For the
video model, we construct our model based on TimeSformer [3]. There are several different attention
mechanisms introduced in [3]. Here we adopt the TimeSformer with the JointST attention method,
which keeps the architecture of the vanilla ViT and takes all of the input patches as one sequence. Our
model samples 8 frames in one video clip and splits them into 1568 frame patches. During inference,
our model evenly crops 3 views from the video clip, each view of them has 8 frames.
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Figure 3: We visualize the heatmaps which highlight the informative region of the input images
of MemNet, raw attention at the second block, and our method with DeiT-S model. We �nd that
our method can obviously better interpret the part-level stuff of the objects of interest. Here the
visualization results are randomly chosen. Best viewed in color.

Table 1: Results of weakly-supervised image segmentation on ImageNet-segmentation [16]. We use
our method based on the training with DeiT-S model. Higher is better.

Metrics raw attention LIME [42] MemNet [29] GradCAM [44] LRP [4] Ours

pixel accuracy 67.87 67.32 52.81 65.91 50.7270.36

mAcc 61.77 47.80 53.70 55.04 50.62 64.86

mIoU 46.37 33.94 34.66 41.31 32.62 49.42

Implementation Details. For the image recognition task, we divide the vision transformer back-
bone [53] into 3 (D = 3 ) groups, where each group contains 4 (L = 4 ) MSA-FFN modules and one
multi-head interpreter. We optimize the entire framework forD � 30epochs. During every 30 epochs,
we optimize the multi-head interpreter for 10 epochs and all of the subsequent MSA-FFN modules
for 20 epochs. We use a mini-batch size of 32 images per GPU and adopt Adam [30] optimizer with
an initial learning rate of 4e-5, which decays by cosine strategy [36] to train all our models. For the
video understanding task, we setD = 1 , i.e., we only select the informative patches at the input level.
And we train the multi-head interpreter for 5 epochs and then �netune the backbone network for 1
epoch, mainly following the settings listed in the original paper [3]. We use a mini-batch size of 8
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