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S1 Hyperparameters

We provide the necessary hyperparameters to reproduce our experiments below. For each set of
experiments (Toy, Tabular, Images) we summarize the architecture of the unpruned model and relevant
hyperparameters pertaining to the training/pruning process. All experiments were repeated three
times with separate random seeds and average results are reported.

Table S1: Toy Dataset Hyperparameters.

Hyperparameters | GAUSSIANS  GAUSSIANSPIRAL  SPIRAL MOON
Layers 2 4 4 2
Architecture Hid'den.Size . 128 . . 64 . . 64 . 128
Activation Sigmoid Sigmoid Sigmoid Tanh
Divergence Hutchison Hutchison Hutchison  Hutchison
Type Dopri Dopri Dopri Dopri
Solver Rel. tol. 1.0e-5 1.0e-5 1.0e-5 1.0e-4
Abs. tol 1.0e-5 1.0e-5 1.0e-5 1.0e-4
Backprop. Adjoint Adjoint Adjoint Adjoint
Optimizer AdamW AdamW AdamW Adam
Epochs 100 100 100 50
Batch size 1024 1024 1024 128
(Re-)Training | LR 5.0e-3 5.0e-2 5.0e-2 1.0e-2
51 0.9 0.9 0.9 0.9
5o 0.999 0.999 0.999 0.999
Weight decay 1.0e-5 1.0e-2 1.0e-6 1.0e-4
Pruning \ PR \ 10% 10% 10% 10%
Table S2: Tabular Datasets Hyperparameters.
Hyperparameters | POWER GAS HEPMASS MINIBOONE Bsps300
Architecture | Please refer to Table 4, Appendix B.1 of Grathwohl et al. (2019).
Solver | Please refer to Appendix C of Grathwohl et al. (2019).
Optimizer Adam Adam Adam Adam Adam
Epochs 100 30 400 400 100
Batch size 10000 1000 10000 1000 10000
.. LR 1.0e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3
(Re-)Training | 1 gien 0.1@{90,97} 0.1@{25,28} 0.1@{250,295} 0.1@{300,350} 0.1@{96,99}
By 0.9 0.9 0.9 0.9 0.9
Ba 0.999 0.999 0.999 0.999 0.999
Weight decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6
Pruning | PR | 25% 25% 22% 22% 25%




Table S3: Image Datasets Hyperparameters.

Hyperparameters | MNIST CIFAR-10
Architecture \ Please refer to Appendix B.1 (multi-scale) of Grathwohl et al. (2019).
Solver | Please refer to Appendix C of Grathwohl et al. (2019).
Optimizer Adam Adam
Epochs 50 50
Batch size 200 200
(Re-)Training LR 1.0e-3 1.0e-3
LR step 0.1@{45} 0.1@{45}
51 0.9 0.9
Ba 0.999 0.999
Weight decay 0.0 0.0
Pruning | PR | 22% 22%

S2 Figure 6 Clarifications

In figure below, we show the distribution and vector field of learned FFJORD networks (unpruned
(top) and 70% pruned down). The area in the vector field declared with a black circle shows the
vector field structure around an actual mode in the dataset. We see that the vector field (which is
illustrated by black arrows) attracts samples towards the mean of this distribution in both pruned and
unpruned networks.

However, there is a drastic difference between the vector field structure in-between modes (annotated
by purple circles), between the unpruned and pruned network. In the unpruned network, the vector
field attracts samples in-between modes. In contrast, in the pruned network, the vector field is
repellent in-between modes. Correspondingly, this illustration shows how an unpruned network tends
to have samples in-between modes, while the pruned network avoids this shortcoming.

Unpruned

Vector field in this purple region (which

Vector field in this black region (that corresponds is in-between modes) attract points.

to an actual mode), does attract all samples

inward toward that specific mode.
Vector field in this purple region (which is in-
between modes) DOES NOT attract points. Arrows
direct samples to the actual models in the dataset.

Pruned 70%

Figure S1: Clarification of how unpruned networks led to mode-collapse and pruned networks did
not.



S3 Density Estimation on 2D Data with regular CNF

FFJORD is an efficient way to reparameterize continuous normalizing flows (CNFs) during the
backwards pass in order to avoid computing the full Hessian, which can be prohibitively expensive in
large-scale experiments. In this section, we validate whether our observations hold independent of
the method to compute the Hessian.

Specifically, we train regular CNFs with full Hessian computation on a multi-modal Gaussian
distribution, a multi-model set of Gaussian distributions placed orderly on a spiral as well as a spiral
distribution with sparse regions following the setup from Section 4.1.

Figure S2 illustrates that densely connected flows (prune ratio = 0%) might get stuck in sharp local
minima and thus exhibit unfavorable generalization performance in terms of the NLL. Once we
perform pruning, we observe that the quality of the density estimation in all tasks considerably
improves. If we continue sparsifying the flows, depending on the task at hand, the flows get disrupted
again. Notably, we find that the straightforward Hessian computation may lead to slight improvements
compared to using the FFJORD approximation, cf. results for the Spiral dataset using FFJORD
and regular CNF as shown in Figure 4(c) and S2(c), respectively. This may be expected in certain
cases as FFJORD replaces the exact Hessian computation with an approximation, thus potentially
destabilizing training.

Overall, we can experimentally validate that our observations hold regardless of the specific method
to compute the Hessian.
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Figure S2: Negative log likelihood of Sparse Flow as function of prune ratio. Sparse Flows were

trained using regular CNFs instead of the FFJORD approximation. The remaining experimental setup
follows Section 4.1.

S4 Tabularized Results for Density Estimation on Real Data - Tabular

Table S4: Negative test log-likelihood (NLL) in nats on POWER tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

POWER \ Loss (nats)

Prune ratio (%) \ Number of parameters \ Unstructured  Structured

0% 43.3K -0.34 -0.34
30% 30.3K -0.48 -0.41
47% 23.0K -0.50 -0.48
60% 17.4K -0.51 -0.45
70% 13.2K -0.55 -0.45
77% 9.95K -0.55 -0.44
82% 7.65K -0.52 -0.39
87% 5.81K -0.45 -0.25
90% 4.43K -0.39 0.04




Table S5: Negative test log-likelihood (NLL) in nats on GAS tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

GAS \ Loss (nats)

Prune ratio (%) \ Number of parameters \ Unstructured  Structured

0% 279K -8.64 -8.64
30% 194K -10.85 -10.63
47% 147K -11.15 -10.93
60% 112K -11.39 -10.69
70% 84.6K -11.59 -10.20
T7% 64.3K -11.47 -9.95
83% 48.6K -10.85 -9.85
87% 36.9K -10.73 -9.16
90% 28.0K -10.03 -7.58

Table S6: Negative test log-likelihood (NLL) in nats on HEPMASS tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

HEPMASS \ Loss (nats)

Prune ratio (%) \ Number of parameters \ Unstructured  Structured

0% 547K 17.54 17.54
20% 437K 16.90 16.91
38% 340K 16.56 16.54
52% 264K 16.22 16.39
63% 205K 16.00 16.21
71% 160K 15.80 16.48
77% 124K 15.67 16.48
82% 96.7K 15.58 16.35
86% 75.5K 15.59 16.97
89% 59.0K 15.62 16.92
92% 46.4K 15.99 17.34
93% 36.3K 15.90 17.80
95% 28.9K 16.04 18.77




Table S7: Negative test log-likelihood (NLL) in nats on MINIBOONE tabular dataset and correspond-
ing architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

MINIBOONE \ Loss (nats)

Prune ratio (%) \ Number of parameters \ Unstructured  Structured

0% 821K 10.38 10.38
20% 656K 10.83 10.87
38% 510K 11.11 10.93
52% 397K 10.50 11.09
62% 308K 10.77 11.10
71% 240K 10.51 11.40
7% 186K 10.64 11.07
82% 145K 10.46 11.50
86% 112K 10.37 11.35
89% 86.9K 10.44 11.11
92% 67.7K 10.60 10.93
94% 524K 10.27 10.75
95% 40.8K 10.05 10.41
96% 323K 9.90 11.26
97% 244K 10.15 12.09
98% 17.6K 10.72 14.92
99% 9.13K 13.61 39.01

Table S8: Negative test log-likelihood (NLL) in nats on BSDS300 tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

POWER \ Loss (nats)

Prune ratio (%) | Number of parameters | Unstructured  Structured

0% 6.70M -128.32 -128.32
30% 4.69M -145.54 -145.42
47% 3.55M -148.78 -148.70
60% 2.68M -149.96 -149.92
70% 2.03M -150.28 -150.66
77% 1.54M -151.11 -150.11
83% 1.16M -151.22 -149.41
87% 878K -151.13 -149.42
90% 662K -150.53 -148.59

S5 Tabularized Results for Density Estimation on Real Data - Vision

Below, we report the tabularized results on MNIST and CIFAR1O0 for Sparse Flow using unstructured
and structured pruning. Note that highly sparse networks can fail to converge beyond a certain prune
ratio. Moreover, structured pruning may not converge for lower prune ratios compared to unstructured
pruning since we prune away entire channels and neurons in the former.



Table S9: Negative test log-likelihood (NLL) in bits/dim on MNIST and corresponding architecture
size in number of parameters and prune ratio for Sparse Flow (based on FFJORD). Results for
unstructured and structured pruning are reported.

MNIST \ Loss (bits/dim)
Prune ratio (%) \ Number of parameters \ Unstructured  Structured
0% 801K 1.01 1.01
20% 641K 0.97 0.98
38% 499K 0.96 0.97
52% 387K 0.95 0.97
62% 302K 0.95 0.97
71% 234K 0.96 0.98
77% 182K 0.97 0.98
82% 141K 0.98 0.99
86% 109K 0.97 0.99
89% 84.5K 0.98 1.00

Table S10: Negative test log-likelihood (NLL) in bits/dim on CIFAR10 and corresponding architec-
ture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD). Results for
unstructured and structured pruning are reported. “N/A” indicates that Sparse Flow did not converge
for the given prune ratio.

CIFAR10 \ Loss (bits/dim)
Prune ratio (%) \ Number of parameters \ Unstructured  Structured
0% 1.36M 345 3.45
20% 1.09M 3.38 3.39
38% 845K 3.37 3.38
52% 657K 3.36 3.39
63% 510K 3.37 3.40
71% 395K 3.38 N/A
77% 308K 3.39 N/A
82% 239K 3.40 N/A
86% 186K 342 N/A
89% 144K 343 N/A
92% 112K 3.45 N/A
94% 86.7K 3.48 N/A
95% 67.4K 3.50 N/A

S6 More Hessian Analysis

We performed the following additional Hessian experiments. We observe that our conclusions on the
behavior of the Hessian is generalizable to other datasets as well.

Table S11: Gaussians - Hessian Analysis (Structured Pruning)
Model NLL  ne(H) w(H) k(H)

Unpruned FFJORD 1.173  0.0190  0.098 48.2k
Sparse Flows(PR=25%) 1.157  0.0110  0.076  2.76k
Sparse Flows(PR=67%) 1.148  0.0090  0.560 15.17k
Sparse Flows(PR=82%) 1.120  0.0065  0.058 22.75k
Sparse Flows(PR=90%) 1.136  0.0035  0.033 4.70k
Sparse Flows(PR=94%) 1.173  0.0069  0.033  3.94k
Sparse Flows(PR=96%) 1.244  0.0071 0.043  0.58k




Table S12: Gaussians-Spiral - Hessian Analysis (Structured Pruning)
Model NLL  Anee(H) tw(H) «&(H)

Unpruned FFJORD 0.880  0.0130 0.121  0.34k
Sparse Flows(PR=25%) 0.692  0.0076 0.058 0.76k
Sparse Flows(PR=48%) 0.634  0.0049 0.047 0.22k
Sparse Flows(PR=67%) 0.646  0.0052 0.051 0.75k
Sparse Flows(PR=82%) 0.657 0.0053 0.053 1.69k
Sparse Flows(PR=94%) 0.740  0.0086 0.070 0.11k
Sparse Flows(PR=96%) 0.986  0.0100 0.095 0.23k

S7 Ablation Study

We have prepared our systematic ablation study with results provided as part of the supplementary
material. In our ablation we study different types of features of neural ODE models.

Please find the detailed description of this ablation study in the README. txt file. We include this
file’s description here as well.

Overview

We test different configurations by applying Sparse Flows (Algorithm 1) to investigate what type of
network configurations are most stable and robust with respect to pruning. For each type of sweep
(ablation), we highlight one key study and one key result.

Sweep over Optimization Parameters

Setup. We study the stability of different configurations for the optimizer and how the different
configurations affect the generalization performance during pruning.

Key observation. = We can find the most stable parameter configuration for the optimizer by
considering sparsifying the flow and thus inducing additional regularization. The most stable
optimizer configuration is the one for which we can achieve the most pruning.

Sweep over Model Sizes - Depth vs. Width

Setup.  We study different network configurations with (approximately) the same number of
parameters. The networks differ in the depth vs. width configuration. We test deep and narrow vs.
shallow and wide.

Key observation. Increasing the depth of the network while reducing the width of the network, in
general, does not help improve the generalization performance of the network over different prune
ratios. Specifically, one should pick the minimal depth of the RHS that ensures convergence. Usually,
any depth beyond that does not help improve the generalization performance of the flow.

Sweep over Activations

Setup. We study the same network configurations for the same amount of pruning and vary the
activation function of the neural network on the RHS. As we prune, we hope to unearth which
activation function is most robust to pruning and consequently to changes in the architecture.

Key observation. ReLU is usually not a very useful activation function. Rather, some Lipschitz
continuous activation functions are most useful. Generally, we found tanh and sigmoid to be most
useful, although sigmoid was probably the most robust single configuration across all experiments

Sweep over ODE Solvers

Setup. We study the same network configurations for the same amount of pruning and vary the
ODE solver of the neural ODE flow. As we prune, we hope to unearth which solver is most robust to
pruning and consequently to changes in the architecture.



Key observation. Generally, we found adaptive step size solvers (dopri5) superior to fixed step
size solvers (rk4, Euler). Moreover, we found backpropagation through time (BPTT) to be slightly
more stable than the adjoint method. Interestingly enough, we could oftentimes only observe the
differences between the robustness of the different solvers after we start pruning and sparsifying the
flows.

S8 More on Pruning Configurations

Iterative learning rate rewinding: We use learning rate rewinding (LRR) which is a hyperparameter
schedule for training/pruning/retraining of neural nets (Renda et al., 2020) (see Algorithm 1).

Pre-defined pruning threshold: We pick a desired prune ratio and prune the weights with the smallest
magnitudes until we obtain it. The largest weight that is being pruned constitutes the pre-defined
threshold for pruning.

What kinds of structures are being considered in structured pruning? We consider neurons in fully-
connected layers and channels with their corresponding filters in convolutional layers for structured
pruning. The corresponding pruning score is the norm of the neuron/channel weights as specified in
Table 1.

S9 Reproducibility Matters

All code and data which contains the details of the hyperparameters used in all experiments are openly
accessible online at: https://github.com/lucaslie/torchprune For the experiments on the
toy datasets, we based our code on the TorchDyn library (Poli et al., 2020a). For the experiments
on the tabular datasets and image experiments, we based our code on the official code repository of
FFJORD (Grathwohl et al., 2019).
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