
Supplementary Material: Photonic Differential
Privacy with Direct Feedback Alignment

A Complete proof of the Differential Privacy parameters

A.1 Extended proof of Proposition 3

As a reminder, we would like to compute the Rényi divergence of the following Gaussian mechanism,
where all the quantities are clipped as in Eq. 8:
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main text, we will focus on column k and will drop the k indices. The proposition we want to prove
is the following:
Proposition 3 (Photonic Differential Privacy parameters). Given two probability distributions P ∼
N (f(D),Σ) and Q ∼ N (f(D′),Σ′) corresponding to the Gaussian mechanisms depicted in (1)
on neighboring datasets D and D′, the Rényi divergence of order α between these mechanisms is:
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Our mechanism is therefore (α, TεPDFA)-RDP with T the number of training epochs. We can deduce
that the mechanism on the weight matrix with nℓ−1 columns is (α, Tnℓ−1εPDFA)-RDP. Then the
mechanism of the whole network composed of L layers is (α,LTnℓ−1εPDFA)-RDP. We can then
convert our bound to DP parameters using Theorem 2 to obtain a (LTnℓ−1εPDFA + log 1/δ

α−1 , δ)-DP
mechanism for all δ ∈ (0, 1).

Proof. In the following, the variables with a prime correspond to the ones built upon dataset D′.
According to Eq. 13, the covariance matrices Σ and Σ′ are diagonal and any of their weighted sum
is diagonal, as well as their inverse. Moreover, the determinant of a diagonal matrix is the product of
its diagonal elements. Using this in Eq. 7 yields:
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Using the fact that we are studying neighboring datasets, the sums composing aj and a′j differ by
only one element at element i = I . This implies that

αa′2j + (1− α)a2j = α.
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where ϕ̃′
Ij and h̃2

Ik are taken on dataset D′. Inserting this in the Rényi divergence yields:
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By choosing D and D′ such that [(ϕ̃′
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2)] ≥ 0, the Rényi divergence is upper
bounded as follow:
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where we used the upper bounds on the sensitivity ∆2
f and a′2j . This is the result of Proposition 3.

Note that an alternative expression is:
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A.2 Equal covariance matrices

First, we can notice that when the covariance matrices are equal, i.e. Σ = Σ′ = σ2

m2 diag(ak)
2, the

log-term in Eq. 7 is equal to 0. Then, we have:
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A.3 Equal saturating covariance matrices
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B Additional numerical results on MNIST and CIFAR-10

MNIST – We provide below results on MNIST, obtained with the same code, procedure, and hyper-
parameters as for the FashionMNIST experiments. These results are in line with Table 1 of our
paper, with photonics results always close to ternarized ones. We notice that this "default" choice of
hyper-parameters on MNIST results in ternarized DFA outperforming vanilla DFA. (We only lightly
tune hyperparameters on BP, to demonstrate that our approach does not require any specific expensive
fine-tuning search.)

σ non-private 0.01 0.05 0.1
τf 1
BP 97,94 62,63 58,42 48,33
DFA 96,36 92,99 92,68 92,45
TDFA 97,09 93,67 93,57 93,28
PDFA 96,95 93,60 93,57 93,12

Table 1: Test accuracy on MNIST with our DP mechanism. We find our approach to be robust
to increasing DP noise σ. In particular, photonic DFA results (PDFA) are always within 1% of the
corresponding DFA run.

CIFAR-10 – We chose to use a pre-trained network on ImageNet and extract its trained convolutional
layers. Since these convolutions can be seen as feature extractors of the images and are not re-trained,
they do not need to be taken into account into the Differential Privacy mechanism. We fine-tune only
the fully-connected layers of the classifier using our Photonic DFA+DP mechanism.

We choose this expreiment to demonstrate the scalability of our scheme. We do not seek to achieve
state-of-the-art performance or to exhaustively explore the dynamics/impact of different differentially
private configuration (as we did with MNIST), but simply to show our scheme can scale to such
harder tasks.

We used a VGG16 network pre-trained on ImageNet. We leave the convolutions untouched, and
fine-tune the classifier layers (25088 –> 4096 –> 4096 –> 10) with differentially private photonic
training. We do not use any data augmentation, and simply resize the CIFAR-10 images to 224x224.
We fine-tune for 15 epochs, using SGD with learning rate 5.10−3, momentum 0.9, and batch size
256. Hyperparameters are kept identical across all methods and hardware. We obtain results both in a
vanilla (no DP) setting as a comparison baseline, and in a differentially private setting yielding the
following accuracies:
Vanilla (no differential privacy): 83.17% (BP), 81.34% (DFA), 83.36% (TDFA).
DP (σ = 0.05, τf = 1): 60.45% (BP), 79.68% (DFA), 79.33% (TDFA), 78.64% (PDFA).

We note that this result shows good scalability, with performance in line with our
MNIST/FashionMNIST results. Over all the experiments we have performed, the DFA algorithms
seem much more resilient to adding noise and clipping (i.e. the DP alogirithmical modification) than
Backpropagation, which could open new research directions.
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