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Abstract

Learning an unknown n-qubit quantum state ρ is a fundamental challenge in quan-
tum computing. Information-theoretically, it is known that tomography requires
exponential in n many copies of ρ to estimate its entries. Motivated by learning the-
ory, Aaronson et al. introduced many (weaker) learning models: the PAC model of
learning states (Proc. of Royal Society A’07), shadow tomography (STOC’18) for
learning “shadows" of a state, a model that also requires learners to be differentially
private (STOC’19) and the online model of learning states (NeurIPS’18). In these
models it was shown that ρ can be learned “approximately" using linear in n many
copies of ρ. But is there any relationship between these models? In this paper we
prove a sequence of (information-theoretic) implications from differentially-private
PAC learning to online learning and then to quantum stability. Our main result
generalizes the recent work of Bun, Livni and Moran (Journal of the ACM’21)
who showed that finite Littlestone dimension (of Boolean-valued concept classes)
implies PAC learnability in the (approximate) differentially private (DP) setting.
We first extend their work to the real-valued setting, and further extend to the
setting of learning quantum states. Key to our results is our generic quantum
online learner, Robust Standard Optimal Algorithm (RSOA), which is robust to
adversarial imprecision. We then show information-theoretic equivalences between
DP learning quantum states in the PAC model, learnability of quantum states in
the one-way communication model, online learning of quantum states, quantum
stability, various combinatorial parameters and give further applications to gentle
shadow tomography and noisy quantum state learning.

1 Introduction

Learning an unknown quantum state ρ, given copies of the state is a fundamental task in quantum
computing, often referred to as tomography. Tomography is of great practical interest since it helps
in tasks such as verifying entanglement, understanding correlations, and is useful for calibrating,
understanding and controlling noise in quantum devices. In the last few years, questions about the
fundamental limits of this task have gained a lot of theoretical attention: how many copies of an
n-qubit quantum state ρ are required to estimate the density matrix of ρ up to small error? Recent
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breakthrough results of [1, 2, 3] showed that Θ(22n/ε2) copies of ρ are necessary and sufficient to
learn ρ up to trace distance ε. Unfortunately, this exponential scaling in complexity hampers practical
applications of tomography; the best known experimental implementation of full-state quantum
tomography has been for a 10-qubit quantum state [4].

Simultaneously, the use of machine learning for quantum states has gained lot of traction in quantum
computing. In this area, the goal is to use heuristics to learn an unknown quantum state, often with
the motivation of physical implementation. Provable results in this area are very few, but interest
is widespread due to the number of emerging quantum hardware devices. Given the fundamental
importance of tomography and the natural connection to learning, Aaronson [5] formally defined a
variant of tomography: PAC learning quantum states. This problem brings together two ripe exciting
topics: classical machine learning and quantum computing. Following his work, there have been a
few other papers that have introduced models of learning quantum states with various constraints.

In this work, our main contribution is to show implications between several seemingly different
quantum learning models. The main technicality is extending known results in classical learning
theory from Boolean functions to real-valued functions with noisy labels – a setting motivated by
learning quantum states, but with potential extensions to learning other physical systems (e.g. [6]).
Along the way we also show how certain implications that hold for classical Boolean functions do not
hold true in the real-valued setting (which could be of independent classical interest). See Figure 1
for a summary of our results.

1.1 Background: Models of interest

To explain our main results, we start by introducing some learning models of interest. We state them
in the language of quantum state learning. However, these are at their core, classical learning models
for real-valued functions with imprecise feedback, and the translation is stated precisely in Section
2.2. We also formally translate them to the classical learning setting in Supplementary material
(Section A), which we omit here due to space constraints.

PAC learning. Valiant’s Probably Approximately Correct (PAC) learning, lays the foundation
for computational learning theory. Aaronson [5] considered learning quantum states in the PAC
model. In this model, let ρ ∈ C be an unknown quantum state (picked from a known concept
class C of states) and let D : E → [0, 1] be an arbitrary unknown distribution over all possible
2-outcome measurements E. Suppose a quantum learner obtains training examples (Ei,Tr(ρEi))
where Ei is drawn from D, and the goal is to output σ such that with probability ≥ 0.99, σ satisfies
PrE∼D[|Tr(σE)−Tr(ρE)| ≤ ζ] ≥ 1−α. How many training examples suffice for such a (ζ, α)-PAC
learner? In answer, he showed that the number of examples necessary and sufficient to learn C is
captured by the fat-shattering dimension of C.

PAC learning with Differential privacy. A well-studied area of computer science is differential
privacy (DP) (which says that an algorithm should behave “approximately" the same given two
datasets that differ in one element). This notion can be extended to the quantum realm, where we ask
that the quantum PAC learner proposed above is also differentially private, wherein given two datasets
S = {(Ei,Tr(ρEi))}i, S′ = {(E′i,Tr(ρE′i))}i such that there exists a unique i such that Ei 6= E′i,
then a quantum (γ, δ)-DP PAC learning algorithm needs to satisfy Pr[A(S) = σ] ≤ eγ Pr[A(S′) =
σ] + δ, where A(S) is the output of A on input S. 2

Communication complexity. Consider the standard one-way communication model between Alice
and Bob. Suppose Alice has a quantum state ρ (unknown to Bob) and Bob has an unknown (to Alice)
measurement E. The goal of Bob is to output an approximation of Tr(ρE) if only Alice is allowed to
communicate to Bob. A trivial strategy for this communication task is for Alice to send a classical
description of ρ, but can we do better? If so, how many bits of communication suffice for this task?

Online learning. Several features of the PAC learning model and tomography are somewhat artificial:
first, the assumption that the measurements (training examples) are drawn from the same unknown
distribution D that the learner will be evaluated on, which does not account for adversarial or
changing environments, and secondly, it may be infeasible to possess T -fold tensor copies of the
unknown quantum state ρ, rather we may only be able to obtain sequential copies of it. The quantum

2Our notion of DP differs from the notion of DP proposed by [7]. They consider DP measurements with
respect to a class of product states, whereas here we require DP with respect to the dataset {(Ei,Tr(Eiρ)}i.
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online learning model addresses these aspects. Online learning consists of repeating the following
rounds of interaction: a learner obtains a copy of ρ, maintains a local σ which is its guess of ρ,
obtains a description of measurement operator Ei (possibly adversarially) and predicts the value of
yi = Tr(ρEi). Subsequently it receives as feedback an ε-approximation of yi. On every round, if the
learner’s prediction satisfies |Tr(σEi)− yi| ≤ ε then it is correct, otherwise it has made a mistake.
The goal of the learner is the following: minimize m so that after making m mistakes (not necessarily
consecutively), it makes a correct prediction on all future rounds.

Importantly, while the goal in the above model is to make real-valued predictions yi, it departs from the
real-valued online learning literature in allowing for ε-imprecision in the feedback. This imprecision
is inherent to all learning settings where the feedback is generated by a statistical algorithm (in
our setting, the feedback arises from processing the outcomes of quantum measurements), and this
generalization has non-trivial implications, as we show. Working in this model, Aaronson [8] showed
that for learning the class of all quantum states, it suffices to let m be at most sequential fat-shattering
dimension of C (a combinatorial parameter which was originally introduced by Rakhlin et al. [9]).

Motivating question. All these learning models can be seen as variants of full-state tomography,
and are known to require exponentially fewer resources than tomography. A natural question is:

Is there a relation between these learning models, communication and combinatorial parameters?

Understanding this question classically in the context of Boolean functions has received tremendous
attention in computational learning theory and theoretical computer science in the last two years.
There have been several papers establishing various connections [10, 11, 12, 13, 14, 15, 16, 17, 18],
just to cite a few. However, these papers leave two important questions open:

1. Do these results apply to learning quantum states?

2. Do the classical results (for Boolean functions) also hold for real-valued functions?

Ours is the first work that studies the first question. In the process, we not only explore how
implications between Boolean learning models translate over to the quantum setting, but we also
introduce new notions of (classically) privately learning quantum states and quantum stability (linked
to privacy), contributing another perspective to an ongoing discussion of what differentially-private
quantum computation could look like [19, 20, 7]. The second question indirectly received attention
recently in NeurIPS’20 by Jung et al. [11] for multi-class learning, but their work left several open
ends (when translated to real-valued learning) which we tie up here (see Section 3.4 for a more
in-depth comparison).

2 Overview of main results
2.1 Quantum results

To condense our (affirmative) answer to the first question above, we derive a series of implications
going through all these models, starting from differentially-private PAC learning to online learning to
quantum stability (our conceptual contribution which we define and discuss below).

Taking a step back, quantum online learning and DP PAC quantum learning seem very different on the
surface. Online learning ensures that eventually (after m mistakes) we learn the state approximately,
but makes no guarantees on when the last of m mistakes occurs with respect to the series of examples
seen. DP PAC learning is not online – it separates the learning into train (offline) and test (online)
phases, and also introduces a distribution, D, from which measurements are drawn. Ultimately DP
PAC learning says that after seeing T measurements from D, we have (privately) learned the state.
We show that in fact DP PAC learning sample complexity can be lower bounded by the sequential
fat-shattering dimension which also characterizes the complexity of online learning [9]. We give a
summary of our results in Figure 1. Also, we say an algorithm is pure DP (resp. approximate DP)
when δ = 0 in our definition (resp. δ > 0). We remark that only a few arrows are efficient in both
sample and time complexity, otherwise these implications are primarily information-theoretic.

Conceptual contribution. The main center piece in establishing these connections is the concept
of quantum stability, which is the new conceptual contribution in this work. Intuitively, we say
a quantum learning algorithm is stable if, for an unknown state ρ, given a set of noisy labelled
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Figure 1: Summary of results for learning real-valued concept classes and quantum states with
imprecise feedback. Except for the ?-arrow, an arrow A→ B implies that, if the sample complexity
of learning in model A or the combinatorial parameter A is SA, then the complexity of learning
in model B or the combinatorial parameter B is SB = poly(SA). The dotted arrow signifies that a
technique used to prove that arrow for Boolean functions is a no-go for our quantum learning setting.

examples from a distribution D, there exists one state σ such that, with “high" probability, the output
of the learning algorithm is “close" to σ. More formally, we say a quantum learning algorithm A is
(T, ε, η)-stable with respect to distribution D over a set of orthogonal 2-outcome measurements if,
given T many labelled examples S consisting of Ei drawn from D and ζ-approximations of Tr(ρEi),
there exists a state σ such that

Pr[A(S) ∈ BM(ε, σ)] ≥ η, (1)

where the probability is taken over the examples in S and BM(ε, σ) is the ball of states ε-close to
σ with respect toM, i.e., BM(ε, σ) = {σ′ : |Tr(Eσ)− Tr(Eσ′)| < ε for every E ∈ M}. In other
words, quantum stability means that up to an ε-distance, there is some hypothesis state σ that is
output by A with “high" (at least η) probability.

A classical analog of stability can be written as: a classical learning algorithm for concept class
C : X → [0, 1] (run on examples {(xi, ĉ(xi))} where |ĉ(xi)− c(xi)| < ζ, c ∈ C) is stable if there
exists a hypothesis f such that

Pr[A(S) ∈ T (ε, f)] ≥ η,
where T (ε, f) := {g ∈ C : |g(x)− f(x)| < ε for every x ∈ X}.
Consistent stability implies learnability. While we will make this precise later, the significance of an
algorithm A being stable is that σ, the output state at the ‘center of the ball’, is a good hypothesis
for estimating measurement probabilities (and hence A is a good learner). This is not at all obvious
from the definition of stability, which does not inherently require that this σ is a good approximation
of ρ. Yet, it turns out that if A is a stable and consistent learner (i.e., its output does not contradict
any of the training examples it has seen), σ has low loss with respect to D. This means that, using
hypothesis σ to predict outcomes of future measurements drawn from distribution D as Tr(Eσ) will
yield ε-accurate predictions with high probability.

2.2 Classical results

In order to see the connection to classical learning theory we first observe the following. Learning
n-qubit quantum states over an orthogonal basis of n-qubit quantum measurements,M, is equivalent
to learning – with imprecise adversarial feedback – an arbitrary real-valued function in the class
D = {f : X → [0, 1]} when X =M: there is a one-to-one mapping between the set of all quantum
states and the set of bounded real-valued functions onM.3 To elaborate, for every σ, one can clearly
associate a function fσ :M→ [0, 1] defined as fσ(M) = Tr(Mσ) and for the converse direction,
given an arbitrary c :M→ [0, 1], one can find a density matrix σ for which c(M) = Tr(Mσ) for all
M ∈M (and this uses the fact thatM is an orthogonal measurement basis crucially). Hence, if one
can learn D when we fix theM to be an arbitrary orthogonal basis of 2-outcome measurements then
one can learn the class of quantum states C, and the converse is also true.

3Indeed, in Section 4 of this paper, we slightly abuse notation; when C is a class of quantum states, we use
sfat(C) to mean sfat(D).
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So, our results for quantum learning naturally follow from our study of learning from noisy examples
real-valued concept classes over arbitrary domain X , which are the focus of this work. As we
mentioned in the introduction, some of the implications we study are well-known for the case of
Boolean functions. However, motivated by the setting of learning quantum states, we were confronted
with two questions: (i) do these Boolean learning results also hold for real-valued learning? (ii) in the
real-valued class learning problem, the learner is not provided with exact data, but is given imprecise
feedback which could correspond to a different class label altogether, so are these results robust?

Our main contribution is thus in establishing all the arrows in Figure 1 for real-valued concept
classes. As far as we are aware, even classically establishing equivalences between online learning,
stability and approximate differential privacy for real-valued functions with imprecise feedback was
not explored before. In the precise feedback model, a few of the arrows in Figure 1 were proven
implicitly in [11], when they considered multi-class learnability but they left several open ends which
we tie up here (see Section 3.4 for more). Strikingly, when considering real-valued functions, a
technique due to [10] showing stability implies approximate DP PAC for Boolean functions, is a
no-go in our setting, as we show. We give a counterexample concept class which can be reduced to
fingerprinting codes, for which we show that stability does not imply approximate DP PAC without a
domain size dependence.

3 Proof sketches for our main results (Fig. 1)

We break down the proofs of the arrows in Figure 1 into four steps and discuss them below. Before
this, we provide a quick introduction to necessary quantum information theory.

Quantum information preliminaries. An n-qubit quantum state ρ is a positive semidefinite matrix
with trace 1. An arbitrary valid quantum operation on quantum states can be expressed as a unitary
matrix U (which satisfies UU∗ = U∗U = 1). An application of a unitary U to the state ρ results
in the quantum state UρU∗. Finally, in order to extract meaningful classical information out of a
quantum state, one can perform a POVM (positive-operator valued measurement) which is specified
by a set of m positive semidefinite matrices E1, . . . , Em satisfying

∑
iEi = 1. A measurement on a

state ρ using such a POVM returns a classical outcome i ∈ [m] with probability Tr(Eiρ).

3.1 Pure DP PAC learnability implies finite sfat dimension

It is known that if there is a DP PAC learning algorithm for a Boolean function class C then
the representation dimension of the class is bounded by the sample complexity of said algorithm.
Representation dimension, itself, upper bounds classical communication complexity as well as a
combinatorial dimension of the concept class known as the Littlestone dimension.

All of the above connections and combinatorial parameters pertain to learning Boolean functions,
but we show that they can be robustly ported to our ‘quantum-inspired’ DP PAC setting of learning
real-valued functions and with adversarial imprecision. Analogous to the Littlestone dimension, the
ζ-sequential fat shattering dimension [9] (denoted sfatζ(·)) is a combinatorial parameter that can
be associated to every real-valued concept class. In this direction, a key contribution is: prior to
our work, [21] showed that Littlestone dimension lower bounds one-way classical communication
complexity, but we show that for learning real-valued functions, the sfat dimension lower bounds
both classical and quantum communication complexity. We omit the proofs of these implications and
refer the reader to Section D in Supplementary material.

3.2 Finite sfat(·) implies online learnability and resolving an open question of Aaronson

In the second step, the goal is to go from a concept class C having finite sfat(C) to design an online
learning algorithm for C that makes at most sfat(C) mistakes even in the presence of imprecise
feedback. In this direction, one of our technical contributions is to construct a robust standard optimal
algorithm (denoted RSOA) which satisfies this mistake-bound. This RSOA algorithm and result
below will be crucial for the following steps.

Result 3.1 (Informal). Let C be a concept class with sfatζ(C) = d. There is an explicit robust
standard optimal algorithm RSOA that makes at most d mistakes in online learning C.
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Indeed, the word ‘robust’ in the name of the algorithm indicates that it is robust to ζ-imprecise
adversarial feedback. This robustness property allows RSOA to be relevant in contexts where the
feedback is generated by some physical measurement process. In this case, our end goal is to use
RSOA for learning quantum states, where typically, the feedback is generated by the learner itself
by measuring E repeatedly on copies of the quantum state ρ. Averaging these measurements will
provide a ζ-approximation of Tr(ρE) instead of its exact value.

To accommodate this imprecision, we introduce the notion of an interleaved ζ-cover of the [0, 1]

interval, Ĩζ , as the set of overlapping half-open intervals (‘super-bins’) of width 2ζ given by{
[0, 2ζ), [ζ, 3ζ), . . . , [1−2ζ, 1]

}
with the midpoints Ĩζ =

{
ζ, 2ζ, . . . , 1−ζ

}
where |Ĩζ | = 1/ζ−1.

We also define the following: given a set of functions V ⊆ {f : X → [0, 1]}, r ∈ Ĩ2ζ and x ∈ X ,
define a (possibly empty) subset V (r, x) ⊆ V as V (r, x) =

{
f ∈ V : f(x) ∈ [r − 2ζ, r + 2ζ]

}
, i.e.,

V (r, x) are the set of functions f ∈ V such that f(x) is within a 2ζ-ball around r.

We present our RSOA algorithm in Algorithm 1. We now make a few comments regarding this result.
Classically, for the Boolean setting, it is well-known that the so-called Standard Optimal Algorithm is
an online learner for any concept class, that makes at most Littlestone dimension-many mistakes [22].
Eventually, [9] generalized the work of Littlestone for real-valued functions, showing that real-valued
concept classes can be learned using their FAT-SOA algorithm, with at most sfat(C) many mistakes.
Now, our RSOA algorithm generalizes this, showing that real-valued concept classes can be learned
with sfatζ(C) many mistakes, even in the presence of adversarial imprecision of magnitude ζ.

Algorithm 1 Robust Standard Optimal Algorithm
Input: Concept class C ⊆ {f : X → [0, 1]}, target (unknown) concept c ∈ C, and ζ ∈ [0, 1].

Initialize: V1 ← C

1: for t = 1, . . . , T do
2: The learner receives xt and maintains set Vt, a set of “surviving functions".
3: For every super-bin midpoint r ∈ Ĩ2ζ , compute the set of functions Vt(r, xt).
4: The learner finds the super-bin which achieves the maximum sfat(·) dimension

Rt(xt) :=

{
arg max
r∈Ĩ2ζ

sfat2ζ (Vt(r, xt)) ∈ Ĩ2ζ

}

5: Learner computes the mean of the set Rt(xt), i.e., ŷt := 1
|Rt(xt)|

∑
r∈Rt(xt) r.

6: The learner outputs ŷt and receives feedback ĉ(xt).
7: Update Vt+1 ← {g ∈ Vt | |g(xt)− ĉ(xt)| ≤ ζ}
8: end for

Outputs: The intermediate predictions ŷt for t ∈ [T ] and a hypothesis f(x) := RT+1(x).

The basic principle that underlies our RSOA algorithm is, keep track of a set of ‘surviving’ functions,
and after every round of learning, eliminate those which were grossly inconsistent with the adversary’s
feedback. In more detail: beforehand, the learner discretizes the function range [0, 1] into 1/ζ − 1-
many 2ζ-sized overlapping bins. During learning, upon receiving the domain point x, the learner
evaluates all remaining functions at x and ‘counts’ (using sfat(·) dimension as a proxy) the number
of functions mapping to each bin, and finally outputs the bin with the highest sfat(·) dimension. The
intuition is that quantifying the number of functions in each bin with the sfat(·) dimension (of only
the functions in the bin) instead of their raw count, allows the learner to reduce the surviving set of
functions efficiently. Furthermore, the learner never makes more than sfat(C) prediction mistakes in
the course of learning. For a proof of correctness, refer to Section B in the supplementary material.

Resolving an open question. Prior to our work, Aaronson [8] considered quantum online learning
and showed that sfat(·) of all n-qubit quantum states is at most n, which in particular shows the
existence of a quantum online learning algorithm for the class of all quantum states that makes at
most n mistakes. However, their focus was on online learning with regret bounds, and so they didnn’t
provide an explicit algorithm that achieves the sfat(·) mistake bound, but raised this question in their
work. Our Result 3.1 resolves their question, by showing that our RSOA is such an algorithm.
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3.3 Online learnability implies stability

We now show that if a set of quantum states has sfat dimension d (i.e., it can be online-learned with
noisy measurements with d-many mistakes), then it can be learned by an (T = ε−d, ε, εd) quantum-
stable algorithm A satisfying Eq. (1)). That is, for unknown state ρ from this online-learnable set,
given O(ε−d)-many examples which consist of 2-outcome measurements Ei from an orthogonal set
M and ε-accurate Tr(ρEi), there exists a σ having low loss, such that PrS∼DT [A(S) ∈ BM(ε, σ)] ≥
εd. We now state this formally in terms of real-valued learning.

Result 3.2. Let α, ζ ∈ [0, 1]. Let C ⊆ {f : X → [0, 1]} be a concept class with sfat2ζ(C) = d.
Let D : X → [0, 1] be a distribution and let S = {(xi, ĉ(xi))} be a set of T = ζ−d/ε-many
examples where xi ∼ D and |ĉ(xi) − c(xi)| < ζ where c ∈ C is an unknown concept. There is a
(T, ζ−d, ζ)-stable learner G, that outputs g ∈ B(f, ζ) such that Prx[|f(x)− c(x)| ≤ ζ] ≥ 1− α.

Proof sketch. To prove this theorem we borrow the high-level idea from [10] (for the case of Boolean
functions). Before our work we didn’t have an RSOA algorithm which could be used as a black-box
in order to emulate the proof-technique of [10] for the quantum/robust real-valued setting. Our stable
learner in the result above is essentially the RSOA algorithm that we designed earlier, but run on a
carefully tailored input distribution over the examples, with T being the overall sample complexity of
our algorithm. Most of the work in the proof arises in explaining how to tailor the set of examples
drawn from the original distribution D into a new set S on which RSOA is guaranteed to succeed.

We prove this theorem in two steps: in step (1) we provide a tailoring algorithm that defines
distributions ext(D, 1), . . . , ext(D, d) (where sfatζ(C) = d) as a function of the unknown target
distribution D (to which we have black-box access). Just as in [10], the key idea for the tailoring is
to inject examples into the sample that would force RSOA to make mistakes (we give more details
about this below). We adapt this idea for the robust, real-valued setting. Unfortunately, this tailoring
algorithm uses an unbounded number of examples (in the worst case). To handle this, step (2) is
to compute the expected number of examples drawn by the tailoring algorithm, then use Markov’s
inequality to compute what the cutoff should be. This will be our final stable algorithm.

We now give more details about step (1). We sample many labelled examples from the unknown
distribution D and instead of feeding these examples directly to the black-box RSOA, we plant
amongst them some “mistake examples" before giving the processed sample to RSOA. A “mistake
example" is an example which is correctly labelled, but on which RSOA would make the wrong
prediction. That is to say, from a large pool of T = ζ−d examples drawn from D, craft a short
sequence of O(1/ζ) examples that include at most d mistake examples; now feed the short sequence
into RSOA. This works, because RSOA satisfies the guarantee that after making d = sfatζ(C)
mistakes, it would have identified the target concept up to O(ζ) prediction error.

Our technique for creating mistake examples differs from that of [10]. In the Boolean case, to insert
a mistake, it suffices to do the following: Let c : X → {0, 1} be the unknown target function.
First, take two candidate samples S1, S2, feed them into two parallel runs of SOA, and obtain two
different output hypothesis functions f1, f2 respectively. Next, identify a point in the domain x at
which f1(x) 6= f2(x). Say f1(x) = c(x) and f2(x) = c(x), then it suffices to append an example
(which will be the mistake example) of the form (x, c(x)) to S2, so that when SOA is now run on
S2 ◦ (x, c(x)), SOA’s hypothesis function just before seeing the last example is f2, which it then
uses to make a (wrong) prediction on the last example. To generate the bit c(x) for their mistake
example, [10] simply flip a coin b ∈ {0, 1} and with probability 1/2, b = c(x). For us this does not
work because our target function is real-valued, i.e. c(x) ∈ [0, 1]. Instead, we discretize [0, 1] into
1/ζ many ζ-intervals, pick a uniformly random interval and let b be the center of this interval. Clearly
now, with probability 1/ζ, c(x) lies in the ζ-ball around b and is thus valid adversarial feedback.
Overall, the construction of our quantum stable learner is more involved in order to work around the
looser approximation guarantees of RSOA due to the possibility of imprecise adversarial feedback.
We skip the proofs here and refer the reader to Section C in Supplementary material.

3.4 Stability does not imply approximate DP PAC learnability

So far we showed that quantum/robust real-valued online learning C implies a quantum/robustly
stable learner for C. For Boolean-valued Cs, [10] went one step further and created a approximately
differentially-private learner from a stable learner; in this sense, stability can be viewed as an
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intermediate property between online learnability and differential privacy. A natural question here is,
can we extend this result to our setting, i.e., does quantum/robust stability in turn imply differential
privacy? If so, then Figure 1 would start and end with differential privacy (albeit starting from pure
DP and resulting in approximate DP).

Alas, we show that the technique of [10] does not go through for real-valued learning. More precisely,
one cannot go from a stable learner (in the sense of Result 3.2) to a differentially private learner
without a domain-size dependence. First observe that our “stability" guarantees on G (Result 3.2) are
somewhat unusual: there exists some function ball (around the target concept) such that the collective
probability of G outputting its member functions is high, in contrast to the Boolean setting [10], where
global stability means that a single function is output with high probability. The stability guarantees
differ because, in our setting, the learner only obtains ε-accurate feedback from the adversary. Since
all functions that are in the ε-ball of c are consistent with the feedback of the adversary, the learner
cannot uniquely identify the target concept c. We thus allow the learner to output a function in the
ε-ball around the target concept. This difference, however, also prevents us from applying the generic
transformation from a stable learner to a private learner employed in [10], as we now explain.4

That transformation first generates a list of hypothesis functions by running the stable learner G of
Result 3.2, n many times, each of which outputs a function fi. By Result 3.2 and a Chernoff bound,
one can show that with high probability, an η = ζd-fraction of the list should lie in B(ζ, f) for some
f . Next one would like to privately output some function in B(ζ, f), i.e. solve the following problem:
Problem 3.3 (Query release for function balls). Given as input a list of n functions {fi : X →
R}i∈[n], an η-fraction of which satisfy |fi(x) − f∗(x)| ≤ ζ for all x, f∗ : X → R output some
function g such that |g(x)− f∗(x)| ≤ ζ for all x.

We also introduce the following related problem:
Problem 3.4 (Clique identification on a discrete domain). For domain Y = [4]d, given as input a
relation R = {(x, y) ∈ Y × Y : ‖x − y‖∞ ≤ 1} and a dataset D ∈ Yn under the promise that
(x, y) ∈ R for all x, y ∈ D, output a z ∈ Y such that (x, z) ∈ R for every x ∈ D.

Observe that Problem 3.4 reduces to Problem 3.3. We give a lower bound on the number of samples
necessary to solve problem 3.4, which gives a lower bound for our query release on functions
balls. In order to do this one can use a slightly non-standard reduction to the well-studied 1-way
marginal release problem [24]. Subsequently, one can use a modified argument from fingerprinting
codes [25, 26] and show that for δ < 1/1500, every (1, δ < 1/n)-DP algorithm solving Problem
3.4 with probability at least 1499/1500 requires n ≥ Ω̃(

√
d). This implies that every (1, δ)-DP 5

algorithm for Problem 3.3 requires n ≥ Ω̃(
√
|X |). In particular, this lower bound is unbounded if

|X | is unbounded, which is precisely the case if we are performing quantum learning on the domain
of all possible 2-outcome measurements. See Section C in the Supplementary material for more.

Linking this discussion back to our motivating setting of quantum learning (see Section 2.2), when
M is the orthogonal basis of n-qubit Paulis, then |M| = 4n and so the above implies that one needs
sample complexity Ω̃(4n/2) in order to go from stability to approximate differential privacy.

We can also give a quadratically-worse upper-bound on the sample complexity of pure private PAC
learning in our quantum/robust setting (which naturally also upper bounds its approximate version).
We simply invoke the generic private learner of [27, 10], without going through the intermediate step
of producing a stable learner. Given any set of functions H, this learner simply draws O (log |H|)
examples, and samples a function from H with probability inverse exponential in the function’s
loss on the examples. To learn quantum states in C – again withM the orthogonal basis of n-qubit
Paulis – with the Generic Private Learner, we discretize the [0, 1]-range of D into bins of size
ζ, obtaining a resulting function class H with size (1/ζ)4

n

. Therefore the sample complexity of
differentially-private quantum learning is Õ(4n).

Comparison to prior work [11]. After completion of this work, we were made aware of the work
by [11] (in NeurIPS’20). While they extended the work of [10] to multi-class functions, they claim
that their results also apply to real-valued learning by discretizing the range of the functions (we

4The following argument was communicated to us by Mark Bun [23].
5In differential privacy, we are typically interested only in values of δ < 1/n, in order to rule out algorithms

that simply pick a point in their input uniformly and then process them in a possibly non-private manner.

8



couldn’t find a version of the paper that spells out the proof that online learnability implies a stable
real-valued learner, but this seems implicit from their proofs). While they state a notion of stability
for learning real-valued functions that, similar to ours, invokes the notion of function balls, in order to
go from an online learner to stable learner they crucially rely on a alternate Littlestone dimension. In
this work, we use the standard notion of sequential fat-shattering dimension – which we also bound
for the case of quantum states. Secondly, while [11]’s online and PAC learning settings assume that
the learner receives exact real-valued labels, in all our learning models, we allow for ε-imprecise
labels. Thus, all our implications are robust to such adversarial imprecision (making our work closer
to “classification-noise learning"). This additional consideration bars the usage of [10]’s technique,
developed for Boolean functions as a black-box. We discuss further differences between our works in
the paragraph above Section D in the Supplementary material.

4 Faster algorithms for quantum state learning

Our previous sections were written for the general setting of robustly learning a real-valued function
class. Now we switch gears, applying these results to our motivating problem: tightly characterizing
the complexity of quantum state learning. See section E in the Supplementary material for details.

1. Faster shadow tomography for classes of states. Aaronson [28] introduced a learning model
called shadow tomography. Here, the goal is to learn the “shadows" of an unknown quantum state ρ,
i.e., given m measurements E1, . . . , Em, how many copies of ρ suffice to estimate Tr(ρEi) for all
i ∈ [m]. Aaronson surprisingly showed that O(n, logm) copies of ρ suffice for this task (in contrast
to the trivial tomography or sampling bound of O(exp(n),m)), and an important open problem is
can we get rid of the n dependence (even for a subclass of quantum states)? Subsequently, there were
many works that tried to improve the complexity of general shadow tomography [29, 30]. We can
now answer this question affirmatively: the complexity of shadow tomography (assuming that the
unknown state ρ comes from a set C) can be made O(sfat(C), logm).
Result 4.1 (Informal). There is a (α, δ)-gentle (1− ε)-accurate shadow tomography procedure for
a set of states C using poly

(
sfat(C), logm, 1/(αε), log(1/δ)

)
copies of ρ.

This result relies on an observation of [7] that a mistake-bounded online learning algorithm (we plug
in RSOA) can be used as a subroutine in gentle shadow tomography, where gentle can be viewed as a
proxy for privacy (albeit, the notion of DP here is with respect to states and different from ours).

2. A better bound on sfat(·). Let Cn be the class of all n-qubit states. As we mentioned earlier, [8]
showed that sfat(Cn) is at most O(n), but clearly for a subset C ⊆ Cn of quantum states it is possible
that sfat(C) � sfat(Cn). In this direction, using techniques from quantum random access codes
(which was also used before [5, 8, 31, 32]) we first give a general upper bound on the sequential fat
shattering dimension of a class of quantum states in terms of Holevo information of an ensemble.
Result 4.2 (Informal). Let C be a set of states on n qubits. Then sfatp(C) ≤ 1

1−H(p) maxG⊆C χ(EG),
where χ is the Holevo information and EG is a uniform ensemble over the states in G.

Now, an immediate consequence of this result is a class of states for which sfat(·) is much smaller
than n. Consider the set C of “k-juntas",6 i.e., each n-qubit state lives in the same unknown k-
dimensional subspace. In this case it is not hard to see that χ(EG) is at most log k, which improves
upon the trivial upper bound of n on sfat(C). We discuss more such classes of states below.

3. Learning noisy quantum states. Let C again be a class of quantum states and letN be a quantum
channel. Let C′ = {N (U) : U ∈ C} be the set of states obtained after passing through quantum
channel N . Suppose the goal is to learn C′ (i.e., to learn states that have passed through a noisy
channel N ). This connects to the question of experimental learning of quantum states, i.e., can we
learn the unknown noise (or states) in a noisy-quantum device. Here we show that sfat(C′) ≤ C(N ),
i.e., sfat(C′) is upper bounded by the classical capacity of N . Fortuitously, recent advances in
quantum Shannon theory enable upper bounds on these previously hard-to-compute capacities, and
we use them to bound the complexity of learning states corrupted by noise from depolarizing channels,
Pauli channels and bosonic channels (e.g. fiber optic cables). As far as we are aware, this is the first
work to consider learnability of continuous-variable states.

6k-juntas are well-studied in computational learning theory, wherein a Boolean function on n bits is a k-junta
if it depends on an unknown subset of k input bits.
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4.1 Open questions

Our work opens up several questions relevant to both classical and quantum machine learning: (1) Can
we extend our work to the agnostic setting (which is more applicable in the setting of implementing
quantum algorithm in a device with unknown noise)? (2) Recently, [12] improved upon [10] by
showing that one needs a polynomial blow-up in sample complexity in going from online learning
to differential privacy, can we use similar techniques to improve our results? (3) Classically, [27]
established connections between statistical query learning and local differential privacy, can we
extend this also to the quantum regime, using the recently defined notion of quantum statistical query
learning [33]? (4) Recently, [15] showed that the equivalence between private learning and online
learning cannot be made computationally efficient assuming existence of one-way functions, do these
extend to the quantum setting?
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