
A Proofs

In this section, we prove Theorem 2. This proof follows to some extend that of Theorem 3, so we
underline the main differences. Because of missing links, we introduce new techniques to compare
the restricted and unrestricted maximum likelihood estimators. We also need to establish the strong
consistency of the maximum likelihood estimator for the conditional SBM (in the full observation
setting, this result is a direct consequence of [8]). Similarly, the proof of Theorem 3 relies heavily
on the fact that the likelihood function at the parameters and the profile likelihood function at the
parameters are asymptotically equivalent, which is a direct consequence of Lemma 3 [7]. This
result does not hold under missing observations, and we develop new arguments to prove the strong
consistency of the variational estimate of the labels.

A.1 Proof of Theorem 2

To prove Theorem 2, we first show that P
⇣
·|X �A, b↵V ar

, bQ
V ar

⌘
, i.e. the posterior distribution of

z at the variational estimator (b↵V ar
, bQ

V ar
), concentrates around �z0 , the dirac distribution at some

label function z
0 such that z0 ⇠ z

⇤ :

P
⇣
z
0|X �A, b↵V ar

, bQ
V ar

⌘
= 1� op(1). (11)

Then, we show that it implies the concentration of the estimator bzV ar :

P
�
bzV ar = z

0|X �A
�
= 1� op(1). (12)

Since P
�
bzV ar = z

0|X �A
�

is bounded, this also implies that it converges to 1 in expectation :

P
�
bzV ar = z

0� ! 1. (13)

Finally, we show that with probability going to one,

P (bz ⇠ z
⇤) ! 1. (14)

Combing Equations (12) and (14), we prove the first part of Theorem 2 :

P
�
bz ⇠ bzV AR

�
! 1. (15)

To establish the second part of Theorem 2, we show that the maximum likelihood estimator defined
in (9) is equal to the restricted maximum estimator (4). Theorem 3 then follows from Theorem 1.

Define cmin = mina,b Q
⇤
a,b and cmax = maxa,b Q

⇤
a,b. Theorem 1 implies that for some absolute

constant C > 0,

P
✓���⇥⇤ � b⇥

r
���
2

2
 C(cmax/cmin)

2
�
k
2 + n log(k)

�◆
! 1,

where the restricted maximum likelihood estimator b⇥
r

is defined as
b⇥

r

i<j = bQ
r

bzr(i)bzr(j),
b⇥

r

ii = 0

(bQ
r
, bzr) 2 argmax

Q2[cmin/2,2cmax]
k⇥k
sym ,z2Zn,k

X

i 6=j

LX(Aij ,Qz(i)z(j)).

Now, Equation (15) implies that with probability going to one, the variational estimator of the
probabilities of connections b⇥

V AR
is equal to the maximum likelihood estimator b⇥ given by

b⇥i<j = bQbz(i)bz(j),
b⇥ii = 0

for (bQ, bz) 2 argmin
Q2Q,z2Zn,k

X

i 6=j

K(Aij ,Qz(i)z(j)).

Thus, it is enough to show that b⇥ = b⇥
r

with large probability to prove the second part of Theorem 3.
To do so, we show that

P
�
Q(bz) 2 [cmin/2, 2cmax]

k⇥k
�
! 1. (16)
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Equation (16) implies that with probability going to 1, the maximum likelihood estimator of the
probabilities of connections between nodes coincides b⇥ with the restricted maximum likelihood
estimator b⇥

r
. This concludes the proof of Theorem 3.

Proof of Equation (11)

For any z 2 Zn,k and (↵,Q) 2 Q, let l0X (A, z;↵,Q) =

 
Q
in

↵z(i)

!
exp (LX(A; z,Q)) be the

profile likelihood of the parameters (z,Q). Then,

l
0
X (A, z;↵,Q)  sup

⌧2T
exp (JX (A; ⌧,↵,Q))  lX (A;↵,Q) . (17)

Let z0 = argmaxz:z⇠z⇤ l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
. By definition of lX ,

lX

⇣
A; b↵V AR

, bQ
V AR

⌘
=

X

z⇠z0

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
+
X

z 6⇠z0

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
. (18)

On the one hand, we bound the sum
P
z⇠z0

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
using the following result, proven

in [37] :
Proposition 1 (Proposition 6.11 in [37]). For any (↵,Q) 2 Q,

P
z⇠z⇤

l
0
X (A, z;↵,Q)

l0X (A, z⇤;↵⇤,Q⇤)
= #Sym(↵,Q)max

z0⇠z⇤

l
0
X (A, z

0;↵,Q)

l0X (A, z⇤;↵⇤,Q⇤)
(1 + op(1))

where the op(1) is uniform in (↵,Q) and

Sym(↵,Q) =

⇢
� 2 Sk :

�
↵�(a)

�
ak

= (↵a)ak and
⇣
Q�(a),�(b)

⌘

a,bk
=
�
Qa,b

�
a,bk

�

for Sk the set of permutations of [k].

Now, with probability going to one, (b↵V AR
, bQ

V AR
) exhibits no symmetry, i.e.

#Sym(b↵V AR
, bQ

V AR
) = 1 (see Section B.11 in [37] for a proof of this result). Then,

Proposition 1 implies that
X

z⇠z0

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
= l

0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘
(1 + op(1))

which in turn implies
X

z⇠z0

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
= l

0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘
+ lX

⇣
A; b↵V AR

, bQ
V AR

⌘
op(1).

(19)

On the other hand, we bound the term
P
z 6⇠z0

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
by combining the two following

propositions from [37] :
Proposition 2 (Proposition 6.8 in [37]). Let (tn)n2N be a positive sequence such that tn ! 0 and
pntn/

p
log(n) ! +1. Then, on an event of probability going to 1 and for n large enough,

sup
(↵,Q)2Q

X

z/2S(z⇤,tn)

l
0
X (A, z;↵,Q) = op (l

0
X (A, z

⇤;↵⇤
,Q

⇤))

where S(z⇤, tn) = {z 2 Zn,k : 9z0 ⇠ z,
P

|z⇤i � z
0
i|  ntn}.

15



Proposition 3 (Proposition 6.10 in [37]). There exists a positive constant C such that

sup
(↵,Q)2Q

X

z2S(z⇤,C),z 6⇠z⇤

l
0
X (A, z;↵,Q) = op (l

0
X (A, z

⇤;↵⇤
,Q

⇤)) .

Combining Propositions 2 and 3, we find that on a event of probability going to 1,

X

z 6⇠z⇤

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
= l

0
X (A, z

⇤;↵⇤
,Q

⇤) op(1).

Now, we use the definition of the variational estimator and Equation (17), and find that

l
0
X (A, z

⇤;↵⇤
,Q

⇤)  sup
⌧2T

exp (JX (A; ⌧,↵⇤
,Q

⇤))  exp
⇣
JX

⇣
A; b⌧V AR

, b↵V AR
, bQ

V AR
⌘⌘

 lX

⇣
A; b↵V AR

, bQ
V AR

⌘
.

Thus, X

z 6⇠z⇤

l
0
X

⇣
A, z; b↵V AR

, bQ
V AR

⌘
= lX

⇣
A; b↵V AR

, bQ
V AR

⌘
op(1). (20)

Combining Equations (18), (19) and (20), we find that

lX

⇣
A; b↵V AR

, bQ
V AR

⌘
= l

0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘
+ lX

⇣
A; b↵V AR

, bQ
V AR

⌘
op(1).

Dividing both sides by lX

⇣
A; b↵V AR

, bQ
V AR

⌘
, we find that

P
⇣
z
0|X �A, b↵V ar

, bQ
V ar

⌘
=

l
0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

lX

⇣
A; b↵V AR, bQ

V AR
⌘ = 1 + op(1)

which proves Equation (11).

Proof of Equation (12)

By definition of JX ,

KL

⇣
Pb⌧V AR(·)||P

⇣
·|X �A, b↵V AR

, bQ
V AR

⌘⌘
= log

⇣
lX(A; b↵V AR

, bQ
V AR

)
⌘
�JX(A; b⌧V AR

, b↵V AR
, bQ

V AR
).

Equation (17) implies that

JX(A; b⌧V AR
, b↵V AR

, bQ
V AR

) � log
⇣
l
0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘⌘

so

KL

⇣
Pb⌧V AR(·)||P

⇣
·|X �A, b↵V AR

, bQ
V AR

⌘⌘
 log

⇣
lX(A; b↵V AR

, bQ
V AR

)
⌘
�log

⇣
l
0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘⌘

.

Note that Equation (11) implies

log
⇣
lX(A; b↵V AR

, bQ
V AR

)
⌘
� log

⇣
l
0
X

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘⌘

= op(1).

Now, using Pinsker’s inequality, we see that���Pb⌧V AR(z0)� P
⇣
z
0|X �A, b↵V AR

, bQ
V AR

⌘��� = op(1).

We use Equation (11) and the definition of bz(V AR) to conclude the proof of Equation (12).

Proof of Equation (14)

For z 2 Zn,k, define
⇤(z) = maxQ2QLX(A; z,Q)� LX(A; z⇤,Q⇤) and
e⇤(z) = maxQ2QE

h
LX(A; z,Q)� LX(A; z⇤,Q⇤)

���z⇤
i
.

Moreover, for z 2 Zn,k and (↵,Q), define
kz � z

⇤k⇠,0 = min
z0:z0⇠z⇤

kz0 � z
⇤k0

where kz0 � z
⇤k0 is the Hamming distance between the label functions z0 and z

⇤.

To prove Equation (14), we will use the following results.
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Proposition 4 (Equation (B.1) in [37]). There exists a constant c > 0 such that on an event of
probability going to one, for all positive sequence (tn)n2N such that tn ! 0 and pntn/

p
log(n) !

+1, 8z /2 S(z⇤, tn),

⇤̃(z)  �3cpn2
tn�(Q

⇤)

4
where and �(Q) = mina,a0 maxc KL (Qac,Qa0c) and S(z⇤, tn) =n
z 2 Zn,k : kz � z

⇤k⇠,0  ntn

o
.

Proposition 5 (Proposition 6.7 in [37]). There exists a constant CQ > 0 depending on Q such that
for any sequence (✏n)n2N with ✏n < CQ and ✏n � k

2
/(
p
8n),

sup
z2Zn,k

⇣
⇤(z)� ⇤̃(z)

⌘
= Op(✏nn

2).

We choose ✏n = 3�(Q⇤) log(n)/(8n). Then, Proposition 5 implies that there exists a constant
C > 0 such that with probability going to 1, supz2Zn,k

⇣
⇤(z)� ⇤̃(z)

⌘
 C✏nn

2. Moreover, we
choose tn = 2C log(n)/(cnp) and note that under the assumption p � log(n)/n, tn ! 0. Then,
Propositions 4 and 5 imply that with probability going to one

sup
z/2S(z⇤,tn)

⇤(z)  sup
z/2S(z⇤,tn)

e⇤(z) + sup
z/2S(z⇤,tn)

⇣
⇤(z)� e⇤(z)

⌘

 �3Cpn
2
tn�(Q

⇤)

4
+

3Cpn
2
tn�(Q

⇤)

8

 �3Cn log(n)�(Q⇤)

8
.

This implies in particular that

P
 

sup
z/2S(z⇤,tn)

⇤(z) < 0

!
! 1. (21)

We show a similar result for label functions z that are close to z
⇤. To do so, we use the following

result.
Proposition 6 (Proposition 6.5 in [37]). There exists a positive constant C such that on an event of
probability going to 1, for all z 2 S(z⇤, C),

⇤̃(z)  �
3cpn2

�(Q⇤) kz � z
⇤k⇠,0

4
.

We use Proposition 4, where we choose ✏n = k
2
/n. Then, there exists a constant C 0

> 0 such that
with probability going to 1, supz2Zn,k

⇣
⇤(z)� e⇤(z)

⌘
 C

0
nk

2. Now, Proposition 6 implies that
with probability going to 1,

sup
z2S(z⇤,C),z 6⇠z⇤

⇤(z)  sup
z2S(z⇤,C),z 6⇠z⇤

e⇤(z) + sup
z2S(z⇤,C),z 6⇠z⇤

⇣
⇤(z)� e⇤(z)

⌘

 �3cpn2
�(Q⇤)

4
+ C

0
nk

2

 nk
2

✓
C

0 � 3cpn�(Q⇤)

8k2

◆
.

Since pn ! +1, this implies that

P
 

sup
z2S(z⇤,C),z 6⇠z⇤

⇤(z) < 0

!
! 1. (22)
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Finally, since tn ! 0, for n large enough Zn,k = S(z⇤, C) [ S(z⇤, tn). Thus, Equations (21) and
(22) imply that

P
 
sup
z 6⇠z⇤

⇤(z) < 0

!
! 1. (23)

Now, ⇤(z⇤) = 0. Thus, with probability going to 1, argmax⇤(z) ⇠ z
⇤, so bz ⇠ z

⇤.

Proof of Equation (16)

To prove Equation (16), we use Bernstein’s inequality, which we recall here for sake of completeness
:
Theorem 4 (Bernstein’s inequality). Let X1, ..., Xn be independent centered random variables.
Assume that for any i 2 [n], |Xi|  M almost surely, then

P

0

@

������

X

1in

Xi

������
�
s

2t
X

1in

E[X2
i ] +

2M

3
t

1

A  2e�t
.

For z 2 Zn,k and (a, b) 2 [k]2, define

nab(z) =

⇢
|(z)�1(a)|⇥ |(z)�1(b)| if a 6= b

|(z)�1(a)|⇥
�
|(z)�1(a)|� 1

�
otherwise

and
n
X
ab(z) =

X

i2z�1(a),j2z�1(b)
i 6=j

Xij

the number of entries and of observed entries of the adjacency matrix between nodes of the communi-

ties a and b, and Q(z) = (Q(z)ab) such that Q(z)ab =

 
P

i2z�1(a),j2z�1(b)

XijAij

!
/n

X
ab(z). With

these notations, we note that bQ = Q(bz).
Note that |(z⇤)�1(a)| is a sum of n independent Bernoulli random variables with mean ↵a. Using
Bernstein’s inequality 4, we find that for any a,

P
�
n↵a � |(z⇤)�1(a)| � 0.5n↵a

�
 2e�n↵a/16.

Thus,
P
⇣
min
a

|(z⇤)�1(a)|  0.5nmin
a

↵a

⌘
 2ke�nmina ↵a/16.

Therefore, the event ⌦ =
�
mina,b na,b(z⇤) � n

2 mina(↵a)2/5
 

holds with probability going to 1.

Similarly, note that conditionally on z
⇤, nX

ab(z
⇤) is a sum of nab(z⇤) independent Bernoulli variables

with parameter p. Then, for any two (a, b) 2 [k]2, Bernstein’s inequality 4 implies that

P
�
|pnab(z

⇤)� n
X
ab(z

⇤)| � 0.5pnab(z
⇤)
��z⇤

�
 2e�pnab(z

⇤)/16
.

Thus,

P
✓
min
a,b

n
X
ab(z

⇤)  0.5pmin
a,b

nab(z
⇤)
��z⇤

◆
 2ke�pmina,b nab(z

⇤)/16
.

This implies that

P
✓
min
a,b

n
X
ab(z

⇤)  0.1n2
pmin

a
↵
2
a

��⌦
◆

 2ke�pn2 mina ↵a/80.

Since p � log(n)/n, the event ⌦0 = {8(a, b) 2 [k]2, nX
ab(z

⇤) � 0.1n2
pmina ↵2

a} holds with
probability going to 1.
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Now, we show that on the event ⌦0, with large probability, Q(z⇤) 2 [cmin/2, 2cmax]k⇥k. Recall that
for any a, b, conditionally on z

⇤ and X , nX
ab(z

⇤)Q(z⇤)ab is a sum of nX
ab(z

⇤) independent Bernoulli
random variables with mean Q

⇤
ab. Then, Bernstein’s inequality implies that for any t > 0

P
✓��nX

ab(z
⇤)Q(z⇤)ab � n

X
ab(z

⇤)Q⇤
ab

�� �
q
2tnX

ab(z
⇤)Q⇤

ab +
2t

3

���z⇤,X
◆

 2e�t
.

Choosing t = n
X
ab(z

⇤)Q⇤
ab/16 yields

P
⇣��nX

ab(z
⇤)Q(z⇤)ab � n

X
ab(z

⇤)Q⇤
ab

�� � 0.5nX
ab(z

⇤)Q⇤
ab

���z⇤,X
⌘
 2e�nX

ab(z
⇤)Q⇤

ab/16.

On the event ⌦0, this implies that

P
⇣
|Q(z⇤)ab �Q

⇤
ab| � 0.5Q⇤

ab

���⌦0
⌘
 2e�n2Q⇤

ab(mina ↵a)
2/160

.

A union bound yields

P
⇣
Q(z⇤) /2 [cmin/2, 2cmax]

k⇥k
���⌦0

⌘
 2k2e�n2 mina,b Q⇤

ab(mina ↵a)
2/160

.

Since P (⌦0) ! 1, this shows that

P
�
Q(z⇤) 2 [cmin/2, 2cmax]

k⇥k
�
! 1.

Now, Equation (14) shows that with probability going to 1, bz ⇠ z
⇤. Thus,

P
�
Q(bz) 2 [cmin/2, 2cmax]

k⇥k
�
! 1.

A.2 Proof of Theorem 3

In the case of fully observed network, we alleviate notations and write

L(A; z,Q) =
X

i 6=j

Aij log
⇣
Qz(i),z(j)

⌘
+ (1�Aij) log

⇣
1�Qz(i),z(j)

⌘
,

l (A;↵,Q) =
X

z2Zn,k

 
Y

i

↵z(i)

!
exp (L(A; z,Q)) ,

and J (A; ⌧,↵,Q) = log (l (A;↵,Q))�KL (P⌧ (·) ||P (·|A,↵,Q)) .

For any z 2 Zn,k and (↵,Q) 2 Q, we denote

l
0 (A, z;↵,Q) =

0

@
Y

in

↵z(i)

1

A exp (L(A; z,Q))

the likelihood of the parameters (↵,Q) and the label function z. Then, the likelihood of the stochastic
block model with parameters (↵,Q) is given by l (A;↵,Q) =

P
z2Zn,k

l
0 (A, z;↵,Q). Note that the

likelihood functions l (A;↵,Q) and l
0 (A, z;↵,Q) provide lower and upper bounds on the variational

objective function J (A; ⌧,↵,Q) : for any parameter (↵,Q) and any label function z 2 Zn,k,

l
0 (A, z;↵,Q)  sup

⌧2T
exp (J (A; ⌧,↵,Q))  l (A;↵,Q) . (24)

To prove Proposition 3, we first show that P
⇣
·|A, b↵V ar

, bQ
V ar

⌘
, i.e. the posterior distribution of z

at the variational estimator (b↵V ar
, bQ

V ar
), concentrates around �z0 , the dirac distribution at the label

function z
0 = argmaxz:z⇠z⇤ l

0
⇣
A, z; b↵V AR

, bQ
V AR

⌘
:

P
⇣
z
0|A, b↵V ar

, bQ
V ar

⌘
= 1� op(1). (25)
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Then, we show that it implies the concentration of the estimator bzV ar :

P
�
bzV ar = z

0|A
�
= 1� op(1). (26)

Together (25) and (26) imply P
�
bzV ar ⇠ z

⇤|A
�

= 1 � op(1). Since the random variable
P
�
bzV ar ⇠ z

⇤|A
�

is bounded, Equation (26) also implies that it converges to 1 in expectation.
Finally, we show that with probability going to one, the maximum likelihood estimator of the label
function is equal to the true label function (up to permutation):

P (bz ⇠ z
⇤) = 1� op(1) (27)

which concludes the proof of the first part of Theorem 3.

To prove the second part of Theorem 3, we show that the maximum likelihood estimator studied in
Proposition 3 is equal to the restricted maximum estimator studied in Theorem 1. More precisely,
define cmin = mina,b Q

0
a,b and cmax = maxa,b Q

0
a,b. Theorem 1 implies that for some absolute

constant C > 0,

P
✓���⇥⇤ � b⇥

r
���
2

2
 C(cmax/cmin)

2
⇢n

�
k
2 + n log(k)

�◆
! 1,

where the restricted maximum likelihood estimator b⇥
r

is defined as

b⇥
r

i<j = bQ
r

bzr(i)bzr(j),
b⇥

r

ii = 0

(bQ
r
, bzr) 2 argmin

Q2[cmin⇢n/2,2cmax⇢n]
k⇥k
sym ,z2Zn,k

X

i 6=j

K(Aij ,Qz(i)z(j)).

One the other hand, Proposition 3 implies that with probability going to one, the variational estimator
of the probabilities of connections b⇥

V AR
is equal to the maximum likelihood estimator b⇥ given by

b⇥i<j = bQbz(i)bz(j),
b⇥ii = 0

for (bQ, bz) 2 argmin
Q2Q,z2Zn,k

X

i 6=j

K(Aij ,Qz(i)z(j)).

We show that
P
⇣
b⇥ = b⇥

r
⌘
! 1, (28)

which concludes the proof of Theorem 3.

Proof of Equation (25)

The proof of Equation (25) relies on results proven in [7], which we recall for the sake of completeness.
For any two parameters (↵,Q) and (↵0

,Q
0) in Q, we say that (↵0

,Q
0) 2 S↵,Q if there exists a

permutation � of {1, ..., k} such that for any (a, b) 2 {1, ..., k}2, Q0
�(a),�(b) = Qa,b and ↵

0
�(a) = ↵a.

Theorem 5 (Theorem 1 in [7]). Let (z⇤, A) be generated from a stochastic block model with
parameters (↵⇤

,Q
⇤) 2 Q such that Q0 has no identical columns and ⇢n � log(n)/n. Then, for

any (↵,Q) 2 Q,

l (A;↵,Q)

l (A;↵⇤,Q⇤)
= max

(↵0,Q0)2S↵,Q

l
0 �
A, z

⇤;↵0
,Q

0�

l0 (A, z⇤;↵⇤,Q⇤)

�
1 + ✏n

��
↵
0
,Q

0�
, k
��

+ ✏n

��
↵
0
,Q

0�
, k
�

where sup(↵,Q)2Q ✏n ((↵,Q) , k) = op(1).

Proposition 7 (Lemma 3 in [7]). Let (z⇤, A) be generated from a stochastic block model with
parameters (↵⇤

,Q
⇤) 2 Q such that Q0 has no identical columns and ⇢n � log(n)/n. Then,

l
0 (A, z

⇤;↵⇤
,Q

⇤)

l (A;↵⇤,Q⇤)
= 1 + op(1).
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Recall that z0 = argmaxz:z⇠z⇤ l
0
⇣
A, z

⇤; b↵V AR
, bQ

V AR
⌘

. By definition of l and l
0,

X

z 6=z0

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘
= l

⇣
A; b↵V AR

, bQ
V AR

⌘
� l

0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘
.

Thus
P
z 6=z0

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘

l0 (A, z⇤;↵⇤,Q⇤)
=

l (A;↵⇤
,Q

⇤)

l0 (A, z⇤;↵⇤,Q⇤)
⇥

l

⇣
A; b↵V AR

, bQ
V AR

⌘

l (A;↵⇤,Q⇤)
�

l
0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

l0 (A, z⇤;↵⇤,Q⇤)
.(29)

Using Proposition 7, we have that

l (A;↵⇤
,Q

⇤)

l0 (A, z⇤;↵⇤,Q⇤)
= 1 + op(1). (30)

Moreover, we note that

max
(↵0,Q0)2S

b↵V AR,cQV AR

l
0 �
A, z

⇤;↵0
,Q

0� = max
z⇠z⇤

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘

= l
0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

by the definition of z0. Then, applying Theorem 5, we get that

l

⇣
A; b↵V AR

, bQ
V AR

⌘

l (A;↵⇤,Q⇤)
=

l
0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

l0 (A, z⇤;↵⇤,Q⇤)
(1 + op(1)) + op(1). (31)

Combining Equations (29), (30) and (31), we obtain that
P
z 6=z0

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘

l0 (A, z⇤;↵⇤,Q⇤)
=

l
0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

l0 (A, z⇤;↵⇤,Q⇤)
op(1) + op(1).

Thus,
X

z 6=z0

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘
= max

n
l
0 (A, z

⇤;↵⇤
,Q

⇤) , l0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘o

op(1). (32)

On the one hand, using Equation (24) and the definition of (b⌧V AR
, b↵V AR

, bQ
V AR

), we find that

l
0 (A, z

⇤;↵⇤
,Q

⇤)  sup
⌧2T

exp (J (A; ⌧,↵⇤
,Q

⇤))

 exp
⇣
J
⇣
A; b⌧V AR

, b↵V AR
, bQ

V AR
⌘⌘

 l

⇣
A; b↵V AR

, bQ
V AR

⌘
.

Also, by the definition of l and l
0, we have that l0

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

⇣
A; b↵V AR

, bQ
V AR

⌘
.

Thus, Equation (32) implies
X

z 6=z0

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘
= l

⇣
A; b↵V AR

, bQ
V AR

⌘
op(1). (33)

Now, we can conclude the proof of Equation (25) by noticing that

P
⇣
z
0|A, b↵V ar

, bQ
V ar

⌘
=

l
0
⇣
A, z

0; b↵V AR
, bQ

V AR
⌘

l

⇣
A; b↵V AR, bQ

V AR
⌘

= 1�

P
z 6=z0

l
0
⇣
A, z; b↵V AR

, bQ
V AR

⌘

l

⇣
A; b↵V AR, bQ

V AR
⌘
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and using Equation (33).

Proof of Equation (26) By the definition of J (A; ⌧,↵,Q), we have that

KL

⇣
Pb⌧V AR(·)||P

⇣
·|A, b↵V AR

, bQ
V AR

⌘⌘
= log

⇣
l

⇣
A; b↵V AR

, bQ
V AR

⌘⌘
�J

⇣
A; b⌧V AR

, b↵V AR
, bQ

V AR
⌘
.

Equation (24) implies that J
⇣
A; b⌧V AR

, b↵V AR
, bQ

V AR
⌘
� log

⇣
l

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘⌘

, so

KL

⇣
Pb⌧V AR(·)||P

⇣
·|A, b↵V AR

, bQ
V AR

⌘⌘
 log

⇣
l

⇣
A; b↵V AR

, bQ
V AR

⌘⌘
�log

⇣
l

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘⌘

.

Note that Equation (25) implies

log
⇣
l

⇣
A; b↵V AR

, bQ
V AR

⌘⌘
� log

⇣
l

⇣
A, z

0; b↵V AR
, bQ

V AR
⌘⌘

= op(1).

Now, using Pinsker’s inequality, we see that
���Pb⌧V AR(z0)� P

⇣
z
0|A, b↵V AR

, bQ
V AR

⌘��� = op(1).

We use Equation (25) and the definition of bz(V AR) to conclude the proof of Equation (26).

Proof of Equation (27)

Equation (27) is proven in [8]. In this work, the authors define the profile likelihood modularity
QLM (A, z) of a label function z 2 Zn,k as

QLM (A, z) =
1

2

X

a,b

nab

✓
Oab

nab
log

✓
Oab

nab

◆
+

✓
1� Oab

nab

◆
log

✓
1� Oab

nab

◆◆
.

for Oab =
P

i2z�1(a),j2z�1(b)

Aij and

nab =

⇢
|z�1(a)|⇥ |z�1(b)| if a 6= b

|z�1(a)|⇥
�
|z�1(a)|� 1

�
otherwise

For ẑ
LM = argmaxz2Zn,k

QLM (A, z), the authors of [8] prove that under the assumptions of
Proposition 3, with probability going to 1, ẑLM ⇠ z

⇤. Since maximizing QLM (A, z) is equivalent
to maximizing maxQ L (A;Q, z), this implies that bz ⇠ z

⇤ with probability going to 1.

Proof of Equation (28) To do so, we show that with large probability, Q(bz) 2
[cmin⇢n/2, 2cmax⇢n]k⇥k]. We define

nab(z) =

⇢
|z�1(a)|⇥ |z�1(b)| if a 6= b

|z�1(a)|⇥
�
|z�1(a)|� 1

�
otherwise

for z 2 Zn,k, and Q(z) = (Q(z)ab) such that Q(z)ab =

 
P

i2z�1(a),j2z�1(b)

Aij

!
/nab(z). With

these notations, we note that bQ = Q(bz).
Recall that |(z⇤)�1(a)| is a sum of n independent Bernoulli random variables with mean ↵

0
a. Using

Bernstein’s inequality 4, we find that for any a,

P
�
n↵

0
a � |(z⇤)�1(a)| � 0.5n↵0

a

�
 2e�n↵0

a/16.

Thus,
P
⇣
min
a

|(z⇤)�1(a)|  0.5nmin
a

↵
0
a

⌘
 2ke�nmina ↵0

a/16.

Therefore, the event ⌦ =
�
mina,b na,b(z⇤) � n

2 mina(↵0
a)

2
/5
 

holds with probability going to 1.
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Now, we show that on the event ⌦, with large probability, Q(z⇤) 2 [cmin⇢n/2, 2cmax⇢n]k⇥k. Recall
that for any a, b, conditionally on z

⇤, nab(z⇤)Q(z⇤)ab is a sum of nab(z⇤) independent Bernoulli
random variables with mean ⇢nQ

0
ab. Then, Bernstein’s inequality 4 implies that for any t > 0

P
✓��nab(z

⇤)Q(z⇤)ab � nab(z
⇤)⇢nQ

0
ab

�� �
q

2tnab(z⇤)⇢nQ
0
ab +

2t

3

◆
 2e�t

.

Choosing t = nab(z⇤)⇢nQ
0
ab/16 yields

P
���nab(z

⇤)Q(z⇤)ab � nab(z
⇤)⇢nQ

0
ab

�� � 0.5nab(z
⇤)⇢nQ

0
ab

�
 2e�nab(z

⇤)⇢nQ
0
ab/16.

On the event ⌦, this implies that

P
���nab(z

⇤)Q(z⇤)ab � nab(z
⇤)⇢nQ

0
ab

�� � 0.5nab(z
⇤)⇢nQ

0
ab

�
 2e�n2⇢nQ

0
ab(mina ↵0

a)
2/80

.

A union bound yields

P
�
Q(z⇤) /2 [cmin⇢n/2, 2cmax⇢n]

k⇥k
�
 2k2e�n2⇢n mina,b Q0

ab(mina ↵0
a)

2/80

on the event ⌦. Since P (⌦) ! 1 and n
2
⇢n ! +1, this shows that

P
�
Q(z⇤) 2 [cmin⇢n/2, 2cmax⇢n]

k⇥k
�
! 1.

Now, Equation (27) shows that with probability going to 1, bz ⇠ z
⇤. Thus, Q(bz) 2

[cmin⇢n/2, 2cmax⇢n]k⇥k with probability going to one, and the maximum likelihood estimator
of the probabilities of connections between nodes coincides with the restricted maximum likelihood
estimator. This concludes the proof of Equation (28).

B Further informations on the numerical experiments

B.1 Simulation protocol

In this section, we provide details on the simulation protocol for Section 4.1. The numerical
experiments where conducted using R version 4.0.3, the package softImpute version 1.4.1, and the
package missSBM version 0.3.0.

Dense stochastic block model The parameters used for the simulations are the following :
↵
assort. = ↵

disassort. = (1/3, 1/3, 1/3), ↵mix. = (0.1, 0.3, 0.6), and

Q
assort. =

 
0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5

!
, Q

disassort. =

 
0.2 0.5 0.5
0.5 0.2 0.5
0.5 0.5 0.2

!
, Q

mix. =

 
0.1 0.5 0.3
0.5 0.2 0.4
0.3 0.4 0.6

!
.

For each model and each number of nodes, we simulate 100 networks. For each networks, entries of
the adjacency matrix are observed independently from one another with probability 1/2. Then, the
matrix of connection probabilities ⇥⇤ is estimated using each method (variational approximation to
the maximum likelihood estimator, missSBM, and softImpute). The oracle estimator is obtained as

8a < k and b < k, bQ
⇤
ab ,

P
i2(z⇤)�1(a),j2(z⇤)�1(b),i 6=j

XijAij

P
i2(z⇤)�1(a),j2(z⇤)�1(b),i 6=j

Xij

Sparse stochastic block model The parameters (↵,Q) of the stochastic block model are given by
↵ = (1/3, 1/3, 1/3), and

Q = ⇢

 
0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5

!

for ⇢ ranging between 0.05 and 1. For each sparsity, we simulate 100 networks with 500 nodes. For
each networks, entries of the adjacency matrix are observed independently from one another with
probability 1/2. Then, the matrix of connection probabilities ⇥⇤ is estimated using each method
(variational approximation to the maximum likelihood estimator, missSBM, softImpute, the oracle
estimator and the naive estimator).
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Stochastic block model with missing observations The parameters (↵,Q) of the stochastic block
model are given by
↵ = (1/3, 1/3, 1/3), and

Q =

 
0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5

!

The proportion of observed entries p varies between 0.02 and 1. For each p, we simulate 100 networks
with 500 nodes. For each networks, entries of the adjacency matrix are observed independently from
one another with probability p. Then, the matrix of connection probabilities ⇥⇤ is estimated using
each method (variational approximation to the maximum likelihood estimator, missSBM, softImpute,
the oracle estimator and the naive estimator).

B.2 Empirical strong consistency of the variational estimator

We illustrate the empirical strong consistency of the variational estimator. Using the parameters
chosen for simulating dense stochastic block models, we compute the number of misclassified nodes,
defined as

min
z⇠ẑ

(
X

i

1 {z⇤(i) 6= z(i)}
)
.

The total classification error for the assortative, dissasortartive and mixed models are presented in
Figure 2. These simulations confirm that the variational estimator achieves strong recovery of the
labels, even in unbalanced setting when neither assortative or disassortative behaviour are observed.

(a) Assortative SBM. (b) Disassortative SBM. (c) Mixed SBM.

Figure 2: Number of nodes misclassified by the variational estimator in the assortative SBM with
balanced communities (left), in the disassortative SBM with balanced communities (middle), and
in the mixed SBM with unbalanced communities (right). The full lines indicate the median of the
number of misclassified nodes over 100 repetitions, while the dashed lines indicate its 25% and 75%
quantiles.

B.3 Prediction of interactions within an elementary school

To compare the errors in term of link prediction of the methods missSBM and softImpute with that
of our estimator, we plot the precision-recall curves of these estimators. More precisely, for any
estimator b⇥ of the matrix of connection probabilities ⇥⇤, and all thresholds t 2 [0, 1], one can define
the link-prediction estimator bA as follows : bAij = 1 if and only if b⇥ij � t, that is, we predict that
there exists a link between nodes i and j is the estimated probability that these nodes are connected is
larger than the threshold t. The recall-precision curves obtained by varying this threshold is presented
in Figure 3. We also represent the mean precision-recall curve of the baseline estimator obtained by
predicting edges independently at random with an increasing probability.

The three methods used for link prediction obtain quite similar precision-recall curves. No single
method is better across all sensitivity levels.
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Figure 3: Precision-recall curves for link prediction in the network of interactions within a

school: Precision-recall curves of the estimator obtained using missSBM (in red), of the estimator
obtained using softImpute (in green), and of the variational approximation to the maximum
likelihood estimator (in blue). The dotted black line represents the precision of the baseline estimator.

B.4 Prediction of collaboration in the co-authorship network

Similarly, we plot the precision-recall curves of the link-prediction methods obtained by using our
new estimator, missSBM and softImpute. We also represent the mean precision-recall curve of
the baseline estimator obtained by predicting edges independently at random with an increasing
probability. The recall-precision curves is presented in Figure 4.

Figure 4: Precision-recall curves for link prediction in the network co-authorship: Precision-
recall curves of the estimator obtained using missSBM (in red), of the estimator obtained using
softImpute (in green), and of the variational approximation to the maximum likelihood estimator
(in blue). The dotted black line represents the precision of the baseline estimator.

The precision-recall curve of the variational approximation to the maximum likelihood estimator is
equivalent to or better than the other estimators across all sensitivity levels.
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C EM algorithm for the variational estimator

The expectation - maximization (EM) algorithm derived in [48] can be used to iteratively compute
the variational estimator. This algorithm alternates between the following two steps :

• Estimation Step: given parameters (↵,Q), the variational parameter ⌧ maximizing
JX(A; ⌧,↵,Q) is given by the fixed point equation :

⌧
i
a = ci↵a

Y

j 6=i:Xij=1

Y

bk

⇣
Q

Aij

ab (1�Qab)
1�Aij

⌘⌧j
b

where ci is a normalizing constant;

• Maximization Step: given parameter ⌧ , the parameters (↵,Q) maximizing JX(A; ⌧,↵,Q)
are given by

↵a =

P
i ⌧

i
a

n
, Qab =

P
i 6=j Xij⌧

i
a⌧

j
bAij

P
i 6=j Xij⌧

i
a⌧

j
b

.

Note that this algorithm is not guaranteed to converge to a global maximum. To circumvent this
problem, the authors of [48] suggest to initialize the weights ⌧ ia using a first clustering step.
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