Light Field Networks: Neural Scene Representations
with Single-Evaluation Rendering

—Supplementary Material—

Vincent Sitzmann'* Semon Rezchikov®*
sitzmann@mit.edu skr@math.columbia.edu
William T. Freeman! Joshua B. Tenenbaum!** Frédo Durand!
billf@mit.edu jbt@mit.edu fredo@mit.edu

IMIT CSAIL 2Columbia University *IAFI *MIT BCS 3 CBMM
vsitzmann.github.io/lfns/

Contents

1 Additional results on the local two-plane parameterization 2

2 Reproducibility 3
2.1 Hardware e 3
2.2 Architecture Details 3
2.3 360-degree light field reconstruction experiments (Figure 5) 3
2.4 Multi-class single shot reconstruction 3
2.5 Single-class single shot reconstruction 4

3 Additional Results 4

4 References 6

*These authors contributed equally to this work.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://vsitzmann.github.io/lfns/

1 Additional results on the local two-plane parameterization

In this section, we derive Proposition 1 of the paper. We recall here that the Plucker coordinates
parameterize the space £ of oriented lines in R? as the set of tuples

L={(d,w)|dweR} d w=0,|d|| =1}. (1)

The line through x in direction d (with ||d|| = 1), i.e. the line x, x + d, has normalized Pliicker
coordinates
(d,x x (x+d)) =(d,x xd).

If the direction vector d is not normalized, we can still compute Pliicker coordinates as above; to
normalize the coordinates we must apply the normalization operator

N(d,w) = (d,w)/[d]. 2

Thus the ray a(s)b(t; has (unnnormalized) Pliicker coordinates
v(s,t) = (b—a,axb). 3)

Proof of Proposition 1. Given two coplanar lines

a(s) =x+sdandb(t) =x' +td 4)
we write b b
—a ax
clsvt) = ([oy) = PN (0(s.0) ®

for the color of the ray £ = a(s)b(¢) described by the LFN ®. Suppose ¢ captures the color of a point
p in a 3D scene. For a Lambertian scene, if the ray is not a tangent ray, c(s, t) should be constant
near ¢ along the line in the (s, t) plane corresponding to the family of rays through p. Therefore, the
gradient Vs yc(s,t) is orthogonal to this line in the (s, t) plane.

Write J for the matrix of rotation by 90 degrees, i.e. [0,—1;1,0]. Thus at non-tangent lines,
JV s ic(s,t) will point along the family of rays through p.

We write D for the distance between the lines a and b; so D = ||x’ — x|| for a, b as in (4). Let ag, by
be the closest points to p on a(s) and b(t), respectively. Write a; = a(s) and b; = b(t) for the

intersection of £ with a, b; then a nearby ray on the pencil of rays through p is given by ¢/ = a}b]
for some aj = a(s — ds), b} = b(t + t). We have similar triangles Apaga;, Apaga), Apbgby,
and Apbgb]. Since the (s,t) coordinates of ¢’ differ from the (s,t) coordinates of £ by a multiple
of JV, ic(s,t), the similarity relationships between the triangles above imply that

5s —(JVe), d

6t (JVe) D-d

This simplifies to

8tc B d
d,c D-—d
Rearranging, we have
i=p_ % (6)
dsc + 0sc
O

Let § be the distance from a(s) to p; then § = /52 + d2.

Let’s now describe how to get an estimate of a point generating the color of a ray in Pliicker
coordinates. Say we have (normalized) Pliicker coordinates (d, w). Write x = d x w; this is the
closest point on the line £(4,) to the origin. Now choose auxiliary d’ with ||d|| = 1. (Ideally d is

not close to d’.) Write x’ = x 4+ Dd for some positive number D. Then we consider the two-plane
parametrization through

a(s) =x+sd,b(t) =x"+td (7

Deine c via (5) where we define v as in (3) using a, b as in (7). The line x, x + (—i> = E(dw) intersects
a(s) at x = a(0) and intersects b(t) at x’ = x + Dd = b(0). Compute J,¢, J;c — a procedure that
involves computing analytical derivatives of the neural network ® — then compute d(s, t) via (6),
and then

p =x+4(0,0)d.

2 Reproducibility

In the following, we provide all the details necessary to reproduce the experiments outlined in the
paper. All code and datasets will be made publicly available.

2.1 Hardware

Each model was separately trained on a single NVIDIA RTX 6000 GPU with 24 GB of memory.
Overall, we used up to 4 GPUs in parallel.

2.2 Architecture Details

All LFNs are implemented as six-layer fully connected neural networks with ReLU nonlinearities
and 256 hidden units per layer. Before each layer, we leverage layer normalization without affine
transforms, i.e., no additional parameters are introduced. All hypernetworks are implemented as
three-layer fully connected neural networks with ReLU nonlinearities and layer normalization with
affine transform. The hidden layer size of the hypernetworks is 256. Thus, the parameter ¢ in Equation
10 of the main text is ~ 400, 000. The size of latent codes z is 256.

2.3 360-degree light field reconstruction experiments (Figure 5)

Cars dataset. We use the dataset proposed by Sitzmann et al. [9], hosted by the
authors of pixeINeRF [11] wunder https://drive.google.com/drive/folders/
1PsT3uKwqHHD2bEEHKIXBO99A1I jtmrEiR.

Rooms dataset. Using the assets provided by the authors of GQN [2], hosted under
https://github.com/deepmind/lab/tree/master/assets/textures/map/lab_games

and a modified version of the Blender Shapenet rendering script hosted under https://github.
com/vsitzmann/shapenet_renderer/blob/master/shapenet_spherical_renderer.py,
we rendered 10, 000 rooms. The rooms have a sidelength of 7. Cameras are placed exclusively in the
center 2 x 2 square of the room. Objects are placed exclusively in the outer 1.5 perimeter of the
room, such that the camera is only placed in unobstructed free space. Colors and types of objects are
chosen at random. Every room features between 1 and 5 objects. We render 30 observations per
room.

Experiment Details. We train separate models for the “cars” and “rooms” classes. We train in two
resolution stages. First, at a resolution of 64 x 64 and a batch size of 300, then, at a batch size of 75
at a resolution of 128 x 128 until convergence for a total of approx. 3 days, both using the ADAM
optimizer with a step size of 10~%. We choose the parameter \;,; as 1e2. At test time, we freeze
the network parameters, initialize all latent codes to the prior mean (i.e., all zeros), and optimize the
latent codes until convergence. Hyperparameters were discovered via unstructured search.

2.4 Multi-class single shot reconstruction

Dataset. We use the dataset proposed by Kato et al. [3], available for download un-
der https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_

https://drive.google.com/drive/folders/1PsT3uKwqHHD2bEEHkIXB99AlIjtmrEiR
https://drive.google.com/drive/folders/1PsT3uKwqHHD2bEEHkIXB99AlIjtmrEiR
https://github.com/deepmind/lab/tree/master/assets/textures/map/lab_games
https://github.com/vsitzmann/shapenet_renderer/blob/master/shapenet_spherical_renderer.py
https://github.com/vsitzmann/shapenet_renderer/blob/master/shapenet_spherical_renderer.py
https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_volumetric_rendering/data/NMR_Dataset.zip
https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_volumetric_rendering/data/NMR_Dataset.zip

volumetric_rendering/data/NMR_Dataset.zip (hosted by the authors of Differentiable
Volumetric Rendering [5]).

Experiment Details. We train a single model on all 13 classes. We train until convergence (approx.
two days) at a resolution of 64 x 64 and a batch size of 300 until convergence for a total of approx. 3
days using the ADAM optimizer with a step size of 10~%. We choose the parameter \;,; as 1e2. At
test time, we freeze the network parameters, initialize all latent codes to the prior mean (i.e., all zeros),
and optimize the latent codes until convergence. Leveraging an aggressive learning rate schedule,
auto-decoding converges within 200 iterations or approximately 1 second for a batch of 300 shapes.
Hyperparameters were discovered via unstructured search.

2.5 Single-class single shot reconstruction

Dataset. We use the dataset proposed by Sitzmann et al. [9], hosted by the au-
thors of pixelNeRF [II] under https://drive.google.com/drive/folders/
1PsT3uKwqHHD2bEEHKIXBO9A1I jtmrEiR.

Experiment Details. We train separate models for the “cars” and “chairs” classes. We train in
two resolution stages. First, at a resolution of 64 x 64 and a batch size of 300 for 200k steps, then,
at a batch size of 75 at a resolution of 128 x 128 until convergence (total approx. 3 days), both
using the ADAM optimizer with a step size of 10~%. We choose the parameter \;,; as 1e2. At
test time, we freeze the network parameters, initialize all latent codes to the prior mean (i.e., all
zeros), and optimize the latent codes until convergence, as in the multi-class single-shot experiment.
Hyperparameters were discovered via unstructured search.

3 Additional Results

In fig. 1 we show novel views of training set objects together with extracted epipolar plane images
and depth maps. Please see the supplemental video for extensive qualitative results.

In Table 1 we show additional results comparing rendering complexity of LFNs to other existing
methods, for larger, 800 x 800 pixel images.

Comparison to conditioning-by-concatenation. We performed an ablation study comparing hy-
pernetworks to the simpler alternative of conditioning via concatenation. We parameterized the
LFN identically to the MLPs in pixeINeRF and DVR: A 5-layer, fully-connected residual MLP
with ReLU activations and 512 hidden units. The latent code was directly concatenated to the input
ray coordinate. The remaining experimental settings were identical to those in Section 2.4 above.
Both methods were trained for approximately 3 days on a single RTX 6000 GPU. In this setting,
conditioning via concatenation yields significantly worse performance, as shown in Table 2. This is
in line with the insight from Pi-GAN [1], where FILM-conditioning [6], which is an intermediate
between a hypernetwork and conditioning via concatenation, was found to perform significantly better
than conditioning via concatenation. Similarly, Facebook AI has found the hypernetwork-conditioned
SRN to outperform concatenation-conditioned DVR and NeRF alternatives (see minute 16:30 of
video associated to [7]). We further note that conditioning via concatenation is a special case of
a hypernetwork, namely a single linear layer outputting the biases of the first LFN layer - see for
instance appendix of [8] for a proof.

We note that we do not claim that the proposed method of conditioning is superior to any other
method of conditioning. Rather, the proposed LFN framework is compatible with any conditioning
method. We merely argue that to learn multi-view consistent light fields, we require some form of
meta-learning, and see the analysis of the optimal conditioning method as an avenue for future work.

Ablating overfitting vs. generalization. To validate our claim that meta-learning on a dataset of
3D shapes enables consistent novel view synthesis on test objects by learning a multi-view consistency
prior in light-fields, we benchmarked PSNR of novel views on 10 objects in the 10 set, reconstructed
from a single observation using models trained on 1, 10, 100, 1k, and up to 2500 shapes, both in the
single-class and multi-class settings. Experimental settings are as in Sections 2.4 and 2.5. Please

https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_volumetric_rendering/data/NMR_Dataset.zip
https://s3.eu-central-1.amazonaws.com/avg-projects/differentiable_volumetric_rendering/data/NMR_Dataset.zip
https://drive.google.com/drive/folders/1PsT3uKwqHHD2bEEHkIXB99AlIjtmrEiR
https://drive.google.com/drive/folders/1PsT3uKwqHHD2bEEHkIXB99AlIjtmrEiR

see Table 3 for results. The trend in PSNR is consistent improvement, suggesting that additional
training-set objects would likely improve performance further.

We further note that meta-learning across a dataset of 3D scenes serves two distinct roles: learning a
space of multi-view consistent light fields, and learning a prior over 3D scenes to enable few-shot
reconstruction. To better disentangle these two roles, we ran a second experiment. For each instance
in the training set, which was drawn from the ShapeNet chair class, we randomly picked 5 views,
such that on average, almost every surface point of each chair has been observed, but not every
oriented ray. IL.e., while the 3D surfaces of the chairs are densely sampled, their light fields are not.
We trained LFNs on 10, 100, 1000, and all (4.5k) chair instances, including the 10 chairs previously
mentioned, and evaluated view synthesis performance in PSNR on a held-out set of novel views for
each of these 10 chairs. This tests only the first property of the meta-learning approach - i.e., how the
meta-learning learns multi-view consistency as an abstract property - without entangling it with the
capability to perform few-shot reconstruction. Experimental parameters were as in 2.5. Please see
Table 4 for results. The performance similarly improves logarithmically.

Rendered Image EPIs Sparse Depth Map Rendered Image EPIs Sparse Depth Map

W B AENE Tan

Figure 1: Novel views of cars and rooms with Epipolar Plane Images and depth maps.

Table 1: Comparison of rendering complexity, continued. Data for all architectures aside from
LFN taken from [7]; see 17:00 of associated video.

LFNs SRNs[9] DVRI[5] IDR[I0] NeRF [4]
clock time for 800 x 800 image (ms) 20.5 le3 9e4 le5 2e4

Table 2: Comparison of meta-learning approach. We compared conditioning via a hypernetwork,
used in the paper, to conditining-by-concatenation (CvC below) in the 13-class ShapeNet dataset. All
results are PSNR in dB.

Method plane bench cbnt. car chair disp. lamp spkr rifle sofa table phone boat mean
Hypernetwork 29.95 2321 2591 28.04 2294 20.64 2456 2254 2750 2515 2458 2221 27.16 2495
CvC 2408 1943 21.01 2357 19.81 1747 19.05 1940 2224 2085 19.81 17.64 24.02 20.64

Overfitting a densely sampled 3D scene. We demonstrate that LFNs can in principle represent
high-frequency information. We fit an LFN to all the views of the “Fern” scene from the NeRF [4]
dataset, which consists of photos of a real-world scene captured with a DSLR camera. We add
positional encodings to the plucker embedding, following NeRF. Please see qualitative results in
Fig 2, as well as the supplemental video. LFNs succeed in reproducing all context images perfectly,
proving that in principle, an LFN is capable of parameterizing realistic, 4d high-frequency content.
As expected, rendering out the intermediate views leads to basically random images, please see this
video, as there is no mechanism to enforce multi-view consistency, in contrast to the experiments
in the paper, where this prior was learnt using meta-learning. We note that fundamentally, there are

Table 3: Multi-view consistency vs. training set size. As we scale the size of the training set, the
multi-view consistency prior improves consistently, both in the single-class and multi-class setting.
All results are PSNR in dB. Top row denotes number of object instances in the traninig set. The cars
dataset contains approximately 2500 objects, while the NMR dataset contains approximately 2000
objects per class.

Dataset 1 10 100 1k all

Cars (Single-class) 16.21 18.98 20.76 23.09 23.56
NMR (Multi-Class) 18.03 19.77 20.82 23.87 24.95

Table 4: Disentangling multi-view consistency vs. object prior. Columns indicate number of
instances of chair ShapeNet class. Each LFN was trained on 5 random views of each instance and
evaluated on 10 novel views of a fixed subset of 10 training set chairs.

10 100 1k all
PSNR (dB) on novel views 15.88 16.83 19.12 22.15

| e y S o

Figure 2: Overfitting a single 3D scene. We overfit an LFN on the context views of the “Fern” scene
from NeRF [4]. Context views are reproduced almost perfectly, demonstrating that an LFN can in
principle fit high-frequency detail (left). Rendering out intermediate views with unobserved rays fails,
as no multi-view consistency prior is enforced (right).

two different regimes of interest. (1) The overfitting regime, where a neural scene representation
is fit to a 3D scene that is completely observed, i.e., every surface point is observed enough times
to enable triangulation. (2) The prior-based reconstruction regime, where we aim to reconstruct a
3D scene given incomplete observations. We note that problem (2) is of great interest in the field
of artificial intelligence, where we regularly infer neural scene representations from incomplete
observations. LFNs are immediately applicable to this regime, opening avenues of future work in
scene understanding, scene decomposition, reinforcement learning (where a tractable inverse graphics
model is of critical importance), etc.

4 References
[1] E.R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. Proc. CVPR, 2020.

[2] S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Morcos, M. Garnelo, A. Ruderman, A. A. Rusu,
I. Danihelka, K. Gregor, et al. Neural scene representation and rendering. Science, 360(6394):1204-1210,
2018.

[3] H.Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In Proc. CVPR, pages 3907-3916, 2018.

[4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In Proc. ECCV, 2020.

(5]

(6]

(7]

(8]

(9]

(10]

(1]

M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable volumetric rendering: Learning
implicit 3d representations without 3d supervision. In Proc. CVPR, 2020.

E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning with a general
conditioning layer. In AAAZ, 2018.

J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny. Common objects
in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In Proc. ICCV, pages
10901-10911, 2021.

V. Sitzmann, E. R. Chan, R. Tucker, N. Snavely, and G. Wetzstein. Metasdf: Meta-learning signed distance
functions. Proc. NeurIPS, 2020.

V. Sitzmann, M. Zollhofer, and G. Wetzstein. Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In Proc. NeurIPS 2019, 2019.

L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman. Multiview neural surface
reconstruction by disentangling geometry and appearance. Proc. NeurlPS, 2020.

A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelnerf: Neural radiance fields from one or few images.
Proc. CVPR, 2020.

	Additional results on the local two-plane parameterization
	Reproducibility
	Hardware
	Architecture Details
	360-degree light field reconstruction experiments (Figure 5)
	Multi-class single shot reconstruction
	Single-class single shot reconstruction

	Additional Results
	References

