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Abstract

Cross-Domain Recommendation (CDR) has been popularly studied to utilize differ-
ent domain knowledge to solve the cold-start problem in recommender systems. In
this paper, we focus on the Cross-Domain Cold-Start Recommendation (CDCSR)
problem. That is, how to leverage the information from a source domain, where
items are ‘warm’, to improve the recommendation performance of a target domain,
where items are ‘cold’. Unfortunately, previous approaches on cold-start and CDR
cannot reduce the latent embedding discrepancy across domains efficiently and lead
to model degradation. To address this issue, we propose DisAlign, a cross-domain
recommendation framework for the CDCSR problem, which utilizes both rating
and auxiliary representations from the source domain to improve the recommen-
dation performance of the target domain. Specifically, we first propose Stein path
alignment for aligning the latent embedding distributions across domains, and then
further propose its improved version, i.e., proxy Stein path, which can reduce the
operation consumption and improve efficiency. Our empirical study on Douban
and Amazon datasets demonstrates that DisAlign significantly outperforms the
state-of-the-art models under the CDCSR setting.

1 Introduction

Data sparsity and cold-start are long-standing problems in recommender systems [15, 19]. With the
development of internet techniques, most users always participant in many platforms or domains for
different purposes. Therefore, Cross-Domain Recommendation (CDR) has emerged to utilise the
relatively richer information from a source domain to improve the recommendation accuracy in a
target domain [52, 53]. Most existing CDR models can tackle the data sparsity problem in the target
domain by assuming the existence of overlapped users or items with similar tastes or attributions
across domains [5].

Instead of focusing on solving the data sparsity problem, we consider cold-start item recommendation
under the CDR setting. Specifically, we concentrate on the Cross-Domain Cold-Start Recommenda-
tion (CDCSR) problem, that is, two domains share the same user set but different items, and both
domains have auxiliary representations such as item profiles or descriptions. The prime challenge is
how to leverage the information from the source domain, where the items are ‘warm’, to improve the
recommendation performance of the target domain, where the items are ‘cold’. The CDCSR problem
popularly exists in practice, for instance, a movie marketing platform newly launches a book renting
service where there is no user-book interaction yet, as shown in Figure 1.

Existing researches on cold-start recommendation and CDR cannot solve the above problem well. On
the one hand, existing cold-start recommendation models assume that the distributions of cold items
should be consistent with the warm ones as they are homogeneous [54, 18, 12]. On the other hand,
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existing CDR models assume that both source and target domains have user-item interactions for
learning the mapping functions [25]. Since the cold and warm items are heterogeneous with different
latent embedding distributions in practice, and there is no user-item interaction in the target domain,
conventional cold-start and CDR models cannot properly suitable to the CDCSR problem.

Figure 1: The CDCSR Problem.

Similar to the transfer learning task, the key to the CDCSR
problem is to reduce the discrepancy between the latent embed-
ding distributions across domains. However, both the warm
and cold item representations are scattered and complicated
due to the fact that the latent embeddings may represent diverse
information. Thus, existing transfer learning based domain
adaptation approaches [23, 45, 37] cannot achieve good align-
ment results, which limits their performances.

To address the aforementioned issue, in this paper, we propose
DisAlign , a cross-domain recommendation framework for
the CDCSR problem. In order to better align the complicated
latent embedding distributions and make high quality of rating
predictions, we utilize two modules inDisAlign , i.e., rating prediction moduleandembedding
distribution alignment module, as will be shown in Figure 2. The rating prediction module aims to
capture user and item collaborative preferences in the source domain, and we propose metric-based
contrastive learning for modelling. The goal of distribution alignment module is to properly match
the latent embedding distributions across domains, and we propose two techniques for it, i.e.,Stein
path alignmentand its improved version calledproxy Stein path alignment. Speci�cally, inspired by
the particle-based inference algorithm Stein Variational Gradient Descent (SVGD) [21, 13, 20], we
�rst propose Stein path alignment to minimize the domain discrepancy through the particle-moving
process, which can take both the source probability and target intra-domain structure into account.
Although Stein path can obtain satisfying performance, it has to involve all the target samples during
the training process, which is time consuming when data size is large. Thus, we further propose
proxy Stein path alignment which only needs to exploit typical samples to represent the target data
distribution, and thus can accelerate the operation speed. The comparison and visualization results in
experiments will show the reliability and ef�ciency ofDisAlign .

We summarize the main contributions of this paper as follows: (1) We propose a novel framework,
i.e.,DisAlign , for the CDCSR problem, which can utilize both rating and auxiliary representations
from the source domain to improve the recommendation performance of the target domain. (2) To our
best knowledge, this is the �rst attempt in literature to propose Stein path alignment for aligning the
latent embedding distributions across domains, and we also propose its improved version, i.e., proxy
Stein path, for higher ef�ciency. (3) Empirical studies on Douban and Amazon datasets demonstrate
thatDisAlign signi�cantly improves the state-of-the-art models under the CDCSR setting.

2 The proposed model

2.1 Framework of DisAlign

Figure 2: The Framework ofDisAlign .

First, we describe notations. We assume there
are two domains, i.e., a source domainS and a
target domainT . We assume both domainsS and
T haveNU users,S hasNS warm items, andT
hasNT cold items. LetR S 2 RN U � N S be the
warm rating matrix inS andR T 2 RN U � N T be
the cold rating matrix inT . In CDCSR setting,
R T is absence during training and will be only
used for test, since items are cold inT . We also
assume that the warm items and the cold items
have auxiliary representationsX W 2 RN S � Z

andX V 2 RN T � Z , respectively, withZ denoting
the dimension of auxiliary representations. The auxiliary representations usually include useful side-
information, e.g., themes, reviews, pro�les in a movie domain. Our purpose is to predict the absent
R T in T by leveragingR S in S and the auxiliary representations in bothS andT .
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Then, we introduce the overview of our proposedDisAlign framework, as is illustrated in Figure 2.
DisAlign model mainly has two modules, i.e.,rating prediction moduleandembedding distribution
alignment module. To avoid the error superimposition problem [54], the rating prediction module in
the source domain mainly provides end-to-end joint training of modelling user and item collaborative
embeddings and matching the item collaborative embeddings with item auxiliary embeddings. The
embedding distribution alignment module aligns the distributions between the warm and cold items
across domains, minimizing the discrepancy between auxiliary latent feature embeddings in the
source and target domains suf�ciently. We will introduce these two modules in details later.

2.2 Rating prediction module

We �rst introduce the rating prediction module ofDisAlign . For thei -th user and thej -th item in the
source (warm) domain, we de�ne their corresponding one-hot ID vectors asX U

i andX V
j , respectively.

For thej -th warm item, we also de�ne its auxiliary representation asX W
j . The rating prediction

module mainly has three purposes, including (1) exploiting user and item collaborative embeddings
based on ratings, which is the prime purpose; (2) matching the item collaborative embeddings with
item auxiliary embeddings; and (3) obtaining more discriminative item collaborative embeddings
using unsupervised clustering method.

First, user and item collaborative embeddings should accurately represent the corresponding rating
interactions. We obtain the user and item collaborative embeddings byFU (X U ) = U 2 RN � D

andFV (X V ) = V 2 RN � D , respectively. Here,FU andFV denote the user and item encoding
networks respectively,N is batch size, andD is the dimension of collaborative embeddings. After
that, we use pairwise ranking lossL BE based on metric-based contrastive learning [10, 14]:

min L BE = �
X

(U i ;V j ;Vk )2D

log
exphU i ; Vj i

exphU i ; Vj i + exphU i ; Vk i
; (1)

whereD := f (U i ; Vj ; Vk )jRS
ij > R S

ik g denotes the original preference pairs [32], andh�; �i denotes
the inner product. The loss functionL BE can pull the positive items close and push the negative
items away for a certain user according to his/her preference.

Second, a item's collaborative embedding should be similar to its auxiliary embeddings to avoid the
error superimposition problem [54]. We utilize a networkGV to translate the auxiliary representations
into auxiliary embeddings asGV (X W ) = W 2 RN � D . After it, the item embedding matching loss
is given byL BM = jjW � V jj2

2.

Third, similar item collaborative embeddings should be clustered in order to obtain more discrimina-
tive latent features. We adopt deep unsupervised K-Means clustering approach [24, 48] for this, and
the corresponding loss isminF F T = I L BK =

�
Tr( V V T ) � Tr( F V V T F T )

�
, whereF 2 RK � N

is the cluster indicator matrix andK denotes the cluster number.

In summary, the loss of the rating prediction module is a combination of the three losses, that is:

min
F F T = I

L B = L BE + �L BM + �L BK ; (2)

where� and� represent the balance hyper-parameters. The optimization procedure is given as below:
(1) Fixing the other variables exceptF , we updateF throughminF F T = I Tr( F V V T F T ) with
singular value decomposition algorithm; (2) FixingF , we update other variables through gradient
descent methods for several iterations then go back to step (1) until it convergences. For the sake of
stability, in practice, we updateF every 15 iterations.

2.3 Embedding distribution alignment module

2.3.1 Overview

We then introduce the embedding distribution alignment module ofDisAlign . We useGV (X C
j ) =

C 2 RN � D to denote the auxiliary embeddings of the cold items in the target domain. Speci�cally,
GV (�) is a two-stream siamese network with shared weights for encoding both warm item auxiliary
representationX W and cold item auxiliary representationX C . We denotepW andpC as the warm
and cold item auxiliary embedding probability distributions, respectively, and denotepV as the warm
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item collaborative embedding probability distribution. In CDCSR setting,pW 6= pC andpV 6= pC ,
because the embeddings generated from the source (warm) domain and the target (cold) domain
are heterogeneous, which leads to thedomain discrepancyproblem. Let us consider a case where
the source domain has user-book interactions while the target domain has user-movie interactions.
Although books and movies share some similar characteristics, the auxiliary representations of
the Book domain usually include authors and writing styles, while the auxiliary representations
of the Movie domain include directors and actors, which brings discrepancy. Without embedding
distribution alignment, a recommender system may recommend horror books instead of history books
to a user who likes history movies rather than horror movies due to domain discrepancy, as illustrated
in the left of Figure 3. After alignment, the history movies/books and horror movies/books are
aligned, as is shown in the right of Figure 3, and thus the recommender system can provide more
reliable results. In order to reduce the distribution discrepancy between the source and target domains,
we introduce two approaches, i.e., Stein path alignment and Proxy stein path alignment.

2.3.2 Stein path alignment

Figure 3: Demonstration of the necessity of em-
bedding distribution alignment.

As mentioned in Section 1, since the latent em-
beddings from two domains in CDCSR are scat-
tered and complicated due to the fact that they
may represent diverse information, previous do-
main adaptation methods cannot be effectively
utilized to solve the distribution discrepancy
problem. Therefore, we propose a new distri-
bution alignment approach, namedStein path
alignment. Stein path alignment can prompt
the target samples move to the source domain
through properpaths, according to the target
intra-domain structure and the probability distribution of the source domain. Stein path alignment
relies on Stein Variational Gradient Descent (SVGD) [21, 42], a variational inference method that
starts from a set of initial particles and iteratively updates them with an approximate steepest direction,
whose main iteration process is:

z i;l = z i;l � 1 + �� p(z i;l � 1); � p(z) =
1
N

NX

j =1

[k(z; z j )r z logp(z) + r z k(z; z j )] ; (3)

wherez i;l denotes thei -th original target sample at thel-th iteration,p(z) denotes the source
probability distribution,� denotes the step size, andk(x ; y ) = exp

�
� (jjx � y jj2

2)=� 2
�

is the
Gaussian kernel function with� denoting the bandwidth. Existing researches [21, 7, 2] have proved
that mean �eld theory can guarantee the rigorous theoretical convergence of SVGD, that is, the
gradient dynamics at particle level will approach to zero:lim t ! + 1 (1=N �

P N
i =0 � p(z i;t )) ! 0.

Stein path distance.We denotez i;t as the Stein mirror point ofz i; 0 when SVGD convergences at
thet-th iteration. We proposeStein path distanceas below:

PT !S (Z ) :=
1
N

NX

i =0

jj z i;t � z i; 0jj2
2 =

1
N

NX

i =0

jj z i;t � 1 + �� S (z i;t � 1) � z i; 0jj2
2 : (4)

Stein path distance quanti�es the discrepancy between the source domainS and the target domain
T by taking the average length of all paths fromT to S through thet-th iteration. Stein path
considers the source probability distribution and intra-domain structures, and thus can avoid negative
transfer arisen from coarsely pairwise matching by traditional methods. Meanwhile Stein path is also
explainable. Letz i; 0 denote the auxiliary embedding ofi -th book in the Book domain,z i;t could be
taken as a similar movie in the Movie domain, e.g., the movie is based on the story of the book. The
calculation of Stein path distance mainly has three steps. First, adopting kernel density estimation
[30, 29, 39] with radial basis function kernel to estimate the probabilities ofW andV . Second,
�nding the Stein mirror point of the cold item auxiliary embeddings through SVGD by Equation(3).
Third, calculating the Stein path distance using Equation(4). The calculation details will be given in
Appendix A.1.

Stein path loss.In summary, the better the source and target domains are aligned, the smaller the
Stein path distance. Therefore, we innovatively proposeStein path lossto align the cold item auxiliary
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embeddingC with warm item collaborative preferenceV and auxiliary embeddingW as below:

min L SP = PC ! W (C ) + PC ! V (C ) + jjP C ! W (C ) � P C ! V (C )jj2
2; (5)

where the �rst two terms denote the Stein path distances fromC to W andC to V , respectively, and
the third term reinforces that these two distances should be similar.

2.3.3 Proxy Stein path alignment

Figure 4: The main procedures
of proxy Stein path alignment.

Although Stein path alignment achieves satisfying performance,
it has scalability problem when facing large dataset. Because all
the cold items in each batch need to be used for calculating Stein
path distance. Therefore, it is urgent to reduce the computation
cost to accelerate the optimization process. To do this, we propose
proxy Stein path approachwhich only needs to choose the most
typical cold item proxies to represent the global properties in
order to speed up the alignment process through SVGD. We now
describe the main steps for �nding the proxies and the optimization
procedure.

Multiple-proxies algorithm. We �rst introduce a highly ef�cient
multiple-proxies algorithm, which aims to �nd typical proxy sam-
ples in the target domain. Suppose there existsM 2 RH � D

typical proxies for the cold item auxiliary embeddingsC , where
H denotes the number of proxies. Let	 2 RN � H be the simi-
larity matrix between the cold items in the target domain and the
proxies. Inspired by [1, 28], we formulate the multiple-proxies
optimization problem as

min
M ; T

i 1=1 ; ij � 0

NX

i =1

HX

j =1

 ij jj ci � m j jj2
2 + �

NX

i =1

HX

j =1

 ij log  ij ; (6)

whereci denotes thei -th cold item auxiliary embedding andm j denotes thej -th corresponding
proxy. The entropy norm regularization term

P N
i =1

P H
j =1  ij log  ij is set to avoid trivial solution

with � denoting the regularization strength. Compared with the square normjj � jj 2, the entropy
norm can not only obtain a nonnegative and nonlinearly representational similarity matrix but also
reduce the computational cost [1]. In summary, the multiple-proxies optimization algorithm has
two main steps, i.e., (1) updating	 , which has closed-form solution, and (2) updatingM as
m j =

P N
i =1  ij ci =

P N
i =1  ij . The optimization could be done by repeating (1) and (2) until	 and

M convergence. We will present the optimization details in Appendix A.2.

Proxy Stein path distance.After �nding the typical proxiesM and setting	 as a constant, we
proposeproxy Stein path distanceaccording to the original Stein path as below:

P �
T !S (M ) =

1
H

HX

i =0

jjm i;t � m i; 0jj2
2 =

1
H

HX

i =0

jjm i;t � 1 + �� S (m i;t � 1) � m i; 0jj2
2 ; (7)

wherem i;t denotes thei -th proxym i at thet-th iteration. Notably, in each batch, proxy Stein path
onlyneeds to move the number of proxy samples (H ) in the target domain rather than the total number
of samples (N ). SinceH < N , proxy Stein path can reduce the time consumption on calculating the
Stein path distance.

Proxy Stein path loss.Similarly to the Stein path loss, theproxy Stein path lossis given by:

min L P SP = P �
C ! W (M ) + P �

C ! V (M ) + jjP �
C ! W (M ) � P �

C ! V (M )jj2
2: (8)

The optimization of proxy Stein path alignment mainly has four steps. The �rst step is adopting the
multiple-proxies algorithm to �gure out the typical proxiesM in the target domain. The following
three steps are similar as Stein path alignment mentioned in the Section 2.3.2, except that we are
moving proxiesM rather thanC . We will present the optimization details in Appendix A.3.

Time complexity analysis.The time complexity of Stein path alignment isO(N 3t1), wheret1 is
the iteration number. The time complexities of the multiple-proxies algorithm and proxy Stein path
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Table 1: Experimental results on Douban and Amazon datasets.
(Douban) Movie! Book (Douban) Movie! Music (Douban) Book! Movie (Amazon) Movie! Music

HR Recall NDCG HR Recall NDCG HR Recall NDCG HR Recall NDCG

DropoutNet .2866 .1528 .0959 .2893 .1896 .1134 .2448 .0976 .0553 .2591 .1463 .0786
LLAE .2914 .1744 .1078 .3105 .2039 .1278 .2511 .1104 .0618 .2643 .1504 .0850
Heater .2983 .1816 .1135 .3223 .2104 .1310 .2613 .1263 .0707 .2784 .1631 .0942
WCF .3028 .1920 .1266 .3376 .2177 .1385 .2704 .1385 .0796 .2867 .1744 .1103

ESAM .3146 .2025 .1304 .3467 .2314 .1491 .2815 .1482 .0886 .2942 .1878 .1186
DARec .3139 .2149 .1356 .3350 .2196 .1389 .2749 .1407 .0824 .2981 .1910 .1229

DisAlign -Base .2991 .1846 .1189 .3258 .2108 .1324 .2617 .1276 .0733 .2839 .1676 .1054
DisAlign -SP(I) .3375 .2373 .1466 .3650 .2485 .1587 .3023 .1682 .0979 .3102 .2096 .1303
DisAlign -SP .3428 .2411 .1508 .3734 .2506 .1603 .3028 .1709 .1058 .3155 .2182 .1379

DisAlign -PSP .3401 .2405 .1482 .3795 .2528 .1623 .3102 .1711 .1076 .3281 .2276 .1395

(Douban) Book! Music (Douban) Music! Movie (Douban) Music! Book (Amazon) Music! Movie

HR Recall NDCG HR Recall NDCG HR Recall NDCG HR Recall NDCG

DropoutNet .2584 .1215 .0686 .2595 .1310 .0767 .2632 .1196 .0603 .2662 .1743 .1005
LLAE .2685 .1268 .0710 .2635 .1424 .0819 .2717 .1245 .0658 .2753 .1802 .1093
Heater .2724 .1289 .0742 .2701 .1472 .0833 .2834 .1342 .0733 .2848 .1876 .1115
WCF .2710 .1332 .0761 .2722 .1530 .0864 .2726 .1295 .0728 .2967 .2112 .1240

ESAM .2837 .1398 .0803 .2876 .1709 .0935 .2868 .1486 .0847 .3273 .2204 .1415
DARec .2866 .1410 .0839 .2918 .1683 .0916 .2917 .1409 .0811 .3313 .2293 .1476

DisAlign -Base .2712 .1303 .0745 .2684 .1490 .0858 .2746 .1305 .0697 .2913 .1928 .1181
DisAlign -SP(I) .2946 .1557 .0881 .3082 .1932 .1107 .2986 .1623 .0957 .3362 .2414 .1520
DisAlign -SP .2983 .1581 .0905 .3107 .1948 .1156 .3073 .1692 .1015 .3428 .2505 .1609

DisAlign -PSP .3018 .1593 .0924 .3121 .1990 .1194 .3005 .1644 .0988 .3485 .2542 .1644

alignment areO(NHt 2) andO(H 2Nt 1), respectively, wheret2 is the inner-loop iteration number.
Therefore, the total time complexity of proxy Stein path alignment isO(NHt 2) + O(H 2Nt 1) =
O(NHt 2 + H 2Nt 1). SinceH < N , proxy Stein path alignment is much cheaper than Stein path
alignment. Empirically, we setH � = [ N

2 ].

2.4 Putting together

The total loss ofDisAlign could be obtained by combining the losses of the rating prediction module
and the embedding distribution alignment module. That is, the losses ofDisAlign with Stein Path
(DisAlign -SP) and Proxy Stein Path (DisAlign -PSP) are:

min L DisAlign -SP = L B + � SP L SP ; min L DisAlign -PSP = L B + � P SP L P SP ; (9)

where� SP and� P SP are hyper-parameters to balance the two types of losses. In testing phase, one
can predict the missing rating in the target domain by taking the inner product of user embeddingsU
and cold item embeddingsC .

3 Experiments

3.1 Experimental setup

Datasets and Tasks.We conduct extensive experiments on two popuarly used real-world datasets,
i.e.,DoubanandAmazon. First, theDoubandataset [50, 51] has three domains, i.e., Book, Music,
and Movie, which contains ratings, reviews, tags, and item details. There are six CDCSR tasks
on Douban by randomly choosing two domains as source domain and target domain respectively.
Second, theAmazondataset [49, 27] has two domains, i.e., Movies and TV (Movie), and CDs and
Vinyl (Music). There are two tasks on Amazon, i.e., Amazon Movie! Amazon Music and Amazon
Music ! Amazon Movie. For both datasets, we binarize the ratings to 1 and 0. Speci�cally, we take
the ratings higher or equal to 4 as positive and others as negative. We also �lter the users and items
with less than 5 interactions, following existing research [46, 51]. We list the detailed information on
these datasets and tasks in Section B.1 of the supplementary material.

Baselines.We compare our proposedDisAlign with the following state-of-the-art cold-start and
CDR models. (1)DropoutNet [41] inputs both auxiliary representations and collaborative �ltering
representations and randomly dropouts pre-trained collaborative �ltering representations for training.
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(a) Heater (b) ESAM (c) DARec (d) DisAlign -SP

Figure 5: The t-SNE visualization ofDouban Movie! Douban Book, whereDouban Movie is the
source domain with red dots andDouban Bookis the target domain with blue dots.

(2) LLAE [18] introduces semantic auto-encoder using the idea of zero-shot learning to solve the
cold-start recommendation problem. (3)Heater [54] is the latest cold-start recommendation model
which combines separate-training and joint-training framework to overcome the error superimposition
issue. (4)WCF [26] is the �rst attempt to apply Wasserstein distance optimal transport for item
cold-start recommendation. (5)ESAM [4] adopts attribute correlation alignment to improve long-
tail recommendation performance by suppressing inconsistent distribution between displayed and
non-displayed items. (6)DARec [46] adopts adversarial training strategy to extract and transfer
knowledge patterns for shared users across domains and achieves the state-of-the-art performance
in CDR. ForDropoutNet, LLAE , Heater, andWCF, we use the same setting as reported in their
original papers. ForDARec andESAM, since they cannot be directly applied to cold-start tasks,
we adopt the same rating prediction module asDisAlign . Note that, for a fair comparison, all the
models use the same types of data and pre-processing methods during experiments.

Implemented details. We provide the implemented details of our proposed model and baselines.
The auxiliary representations forX W andX C across domains include genres, themes, reviews, item
pro�les, etc. We split auxiliary representations into each word and adopt directional skip-gram [33]
on Douban for Chinese words and apply Glove [31] on Amazon for English words to obtain the
average feature representations with dimensionZ = 200. We use all the user-item rating interactions
in the source domain, and all the items auxiliary representations in both the source domain and the
target domain for training the model, following standard evaluation for unsupervised adaptation
[22, 11]. For all the experiments, we perform �ve random experiments and report the average results.
We choose Adam [16] as optimizer, and adopt Hit Rate@20(HR@20), Recall@20, and NDCG@20
[43] as the ranking evaluation metrics.

Hyper-parameter settings. We set batch sizeN = 256 for both the source and target domains.
The latent embedding dimension is set toD = 128. For therating prediction module, we set
the balance hyper-parameters as� = 0 :01 and� = 0 :01, and number of clusterK = 5 for item
unsupervised clustering. For thestein path alignment module, we set the moving step size as� = 0 :01
and the kernel bandwidth as� = 0 :5. For theproxy stein path alignment module, we set� = 0 :1
andH = 64 according to Section 2.3.3. Finally, for the balance parameters,� SP and� P SP are
�rst selected according to accuracy onDouban Movie ! Douban Bookand then �xed as the best
values, i.e.,� SP = � P SP = 0 :5. Although there are many hyper-parameters, we �rst optimize the
hyper-parameters of the rating prediction module, and then optimize the other hyper-parameters.

3.2 Recommendation performance

Results and discussion.The comparison results on Douban and Amazon datasets are shown in
Table 1. From it, we can �nd that (1) AlthoughHeater can get better results on conventional
cold-start problem, it cannot achieve satisfying solutions on CDCSR problem since it cannot reduce
the discrepancy across domains. (2)WCF obtains better performance thanHeater in some tasks,
but optimal transport with Wasserstein distance is easily affected by noisy samples, resulting in the
over-adaptation errors in boundaries and limiting the transportation results. (3)ESAM andDARec
provide correlated-attribution alignment and adversarial training to match source and target domains,
while such coarsely matching methods lead to limited prediction enhancement. (4)DisAlign -
SP or DisAlign -PSPconsistently achieves the best performance, which proves that Stein path
alignment strategy can signi�cantly improve the prediction accuracy. (5)DisAlign -PSPoutperforms
DisAlign -SPon several tasks, e.g., Music and Movie domains on both datasets, which demostrates
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Figure 7: Case study on the recommendation task ofDouban Movie! Douban BookandDouban
Book! Douban Movie. The left part are the user preferences in the source domain. The middle and
right parts are the recommendation results ofDisAlign -Base andDisAlign -SP, respectively.

that typical proxies can �lter out the outliers and improve model robustness. Besides, we further
investigate the time consumption of each model on different tasks, and report the results in Figure 6.
From it, we �nd thatDisAlign -SPis the slowest, because it has to transport the whole batchsize
of samples from the target domain to the source domain. In contrast,DisAlign -PSPis much faster
thanDisAlign -SP, and also faster thanWCF andDARec, since it only needs to transport typical
target proxies.

Figure 6: Comparison of running
time on four tasks.

Visualization. To show the feature transferability, we visual-
ize the t-SNE embeddings [17] of the source item auxiliary
embeddings (W ) and the target item auxiliary embeddings
(C ). The results of Douban Movie! Douban Book are shown
in Figure 5. From it, we can see that (1)Heater does not
has the ability to bridge the gap across different domains, and
thus the embeddings are separated in source and target do-
mains, as shown in Figure 5(a); (2)ESAM andDARechave
the tendency to draw the source and target embeddings closer,
while they still have a certain distance, as shown in Figure
5(b) and Figure 5(c). This indicates that they can only align
the marginal probability distribution; (3)DisAlign -SPin Figure 5(d) depicts that the embeddings
trained through Stein path alignment achieves more closer gap between the source and target domains.
The visualization on Amazon dataset shows similar result, and we present it in Section B.2 of the
supplementary material.

3.3 Analysis

Ablation study. To study how does each module ofDisAlign contribute on the �nal performance,
we compareDisAlign with its several variants, includingDisAlign -BaseandDisAlign -SP(I).
(1) DisAlign -Base only consists of the rating prediction module with collaborative embeddings
clustering. (2)DisAlign -SP(I) only aligns the warm item auxiliary embeddingW and the cold item
auxiliary embeddingC . The comparison results are shown in Table 1. From it, we can observe that
(1) DisAlign -Base without the Stein path distribution alignment module cannot transfer knowledge
from the source domain to the target domain, resulting in poor performance, (2)DisAlign -SP(I)
achieves better performance thanDisAlign -Base, where we only align the distributions between
W andC , and (3) By extra aligningC with V , DisAlign -SP can further promote the performance
of DisAlign -SP(I). Overall, the above ablation study demonstrates that our proposed embedding
distribution alignment module is effective in solving the CDCSR problem.

Case study. In order to illustrate the domain discrepancy problem mentioned in the Section 2.3
(Figure 3), we visualize the cases onDouban Movie! Douban BookandDouban Book! Douban
Movie. Figure 7 shows the recommendation results. The left part is the user-item interactions in the
source domain where the blue and red frames indicate users like or dislike the items respectively.
The middle part denotes the top-5 recommendation results for the corresponding users based on
DisAlign -Base, where we can see that these users will probably dislike the recommended items
in the target domain due to the lack of embedding distribution alignment. After applying Stein
path alignment on the right part, the recommender system can effectively improve the results. The
results indirectly demonstrate that Stein path can properly translate the items across different domains
according to the latent probability distribution.
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