
A Limitations and future work

We believe that the NeuroSEED framework has the potential to be applied to numerous problems and
this work constitutes an initial analysis of its geometrical properties and applications. Here, we list
some of the limitations of the current analysis and the potential directions of research to cover them.

Type of sequences All real-world datasets analysed consist of sequence reads of the same part
of the genome. This is a widespread set-up for sequence analysis but not ubiquitous. Shotgun
metagenomics consists of sequencing random parts of the genome. This would generate sequences
lying on a low-dimensional manifold where the hierarchical relationship of evolution is combined
with the relationship based on the specific position in the whole genome. Therefore, more complex
geometries, such as product spaces [53, 54], might be best suited.

Type of labels In this project, we work with edit distances between sequences, these are too
expensive for large-scale analysis, but it is feasible to produce a large enough training set. For
different definitions of distance, however, this might not be the case, future work could explore the
robustness of this framework to inexact estimates of the distances as labels.

Architectures Throughout the project, we used models that have been shown to work well for
other types of sequences and tasks. However, the correct inductive biases that models should have to
perform NeuroSEED might be different and even dependent on the type of distance they try to preserve.
[24, 12] provide some initial work in this direction with respect to the edit distance. Moreover, the
capacity of the hyperbolic space could be further exploited using models that directly operate in the
space [52, 55, 56].

Self-supervised embeddings Finally, the direct use of the embeddings produced by NeuroSEED
for downstream tasks would enable the application of a wide range of geometric data processing tools
to the analysis of biological sequences.

Long-term impact We believe the combination of NeuroSEED embeddings and geometric deep
learning [57, 58] techniques could be beneficial to analyse and track the spectrum of mutations in a
wide variety of biological and medical applications. This would have positive societal impacts in
domains like microbiome analysis and managing epidemics. However, this could also have unethical
applications in fields such as genome profiling.

B Bioinformatics tasks

The field of bioinformatics has developed a wide range of algorithms to tackle the classical problems
that we explore. We describe here the methods that are most closely related to our work. For a more
comprehensive overview, the interested reader is recommended Gusfield [59] and Compeau et al.
[60].

B.1 Edit distance approximation

The task of finding the distance or similarity between two strings and the related task of global
alignment lies at the foundation of bioinformatics.

Alignment-based methods Classical algorithms to find the edit distance, such as Needle-
man–Wunsch [4], are based on the process of finding an alignment between the two strings via
dynamic programming. However, these are bound to a quadratic complexity w.r.t. the length of the
input sequence, the best algorithm [61] has a complexity O(M2/ logM) and there is evidence that
this cannot be improved [62].

Alignment-free methods With the rapid improvement of sequencing technologies and the subse-
quent increase in demand for large-scale sequence analyses, alternative computationally efficient
sequence comparison methods have been developed under the category of alignment-free methods.

k-mer [5] is the most commonly used alignment-free method and basis for many other algorithms
(such as FFP [16], ACS [63] and kmacs [64]). It considers all the sequences of a fixed length k,
k-mers, and constructs a vector where each entry corresponds with the number of occurrences of a
particular k-mer in the sequence. The distance between the strings is then approximated by some

14

type of distance d between the vectors. Therefore, k-mer generates vectors of size 4k and estimates
the edit distance as ED(s1, s2) ≈ n α d(k-mer(s1), k-mer(s2)) where α is the only parameter of the
model whose optimal value can be obtained with a single pass of the training set 4:

α∗ = argmin
α

∑
ij

(rij − αpij)2 (3)

where rij = n−1ED(si, sj) and pij = d(k-mer(si), k-mer(sj)). Therefore:

∂

∂α

∑
ij

(rij − αpij)2|α=α∗ = 0

∑
ij

∂

∂α
(r2ij − 2αrijpij + α2p2ij)|α=α∗ = 0

∴ α∗ =

∑
ij rijpij∑
ij p

2
ij

(4)

B.2 Hierarchical clustering

Single, Complete and Average Linkage The most common class of algorithms for hierarchical
clustering, referred to as agglomerative methods, works in a bottom-up manner recursively merging
similar clusters. These differ by the heuristics used to choose clusters to merge and include Single
[18], Complete [19] and Average Linkage (or UPGMA) [6]. They typically run in O(N2 logN) and
require the whole N2 distance matrix as input. Thus, with the edit distance, the total complexity is
O(N2(M2/ logM + logN))).

Dasgupta’s cost Dasgupta [17] proposed a global objective function that can be associated with the
HC trees. Given a rooted binary tree T , for two datapoints i and j let wij be their pairwise similarity,
i ∨ j their lowest common ancestor in T and T [i ∨ j] the subtree rooted at i ∨ j. Dasgupta’s cost of
T given w is then defined as:

CDasgupta(T ;w) =
∑
ij

wij | leaves(T [i ∨ j]) | (5)

In this work wij is taken to be 1− dij where dij is the normalised distance between sequences i and
j.

B.3 Multiple sequence alignment

Multiple Sequence Alignment (MSA) consists of aligning three or more sequences and is regularly
used for phylogenetic tree estimation, secondary structure prediction and critical residue identification.
Finding the global optimum alignment ofN sequences is NP-complete [65], therefore many heuristics
have been proposed.

Progressive alignment The most commonly used programs such as the Clustal series [7] and
MUSCLE [66] are based on a phylogenetic tree estimation phase from the pairwise distances which
produces a guide tree, which is then used to guide a progressive alignment phase. To replicate the
classical edit distance used, Clustal is run with a substitution matrix with all the entries -1 except 0
on the main diagonal and gap opening and extension penalties equal to 1.

Consensus error and Steiner string It is hard to quantify the goodness of a particular multiple
alignment and there is no single well-accepted measure [59]. One option is to find the sequence s∗
that minimises the consensus error to the set of strings S: E(s∗) =

∑
si∈S ED(s∗, si). The optimal

string s∗ is known as Steiner string, while the centre string sc is the one in S which minimises E(sc)
and has an upper bound E(sc) ≤ (2− 2/M)E(s∗) [59]. Algorithms to find an approximation of the
Steiner string typically use greedy heuristics [51, 50].

4Except when using the hyperbolic space, in which case the radius of the hypersphere to which points are
projected and α are learned via gradient descent.

15

B.4 Datasets

As real-world datasets, we used the Qiita, RT988 and Greengenes datasets of 16S rRNA subsequences.
Experiments were also run on synthetic datasets formed by sequences randomly generated. In all
datasets the splitting of sequences between train/val/test was random and duplicate sequences were
discarded. Below we list the sizes of the datasets used for the results presented, these datasets can be
downloaded from the public code repository.

Edit distance approximation RT988 and Greengenes 5000/500/1200 sequences (train/val/test,
25M training pairwise distances), Qiita 7000/700/1500 sequences (49M distances), synthetic
70k/10k/20k sequences (3.5M distances).

Hierarchical clustering the RT988 dataset is formed by 6.7k sequences to cluster while the Qiita
one contains 10k sequences. The Qiita dataset used in the unsupervised approach is disjoint from the
training set of the models.

Multiple sequence alignment for the unsupervised approach the test set from the edit distance
RT988 dataset was used, while the Steiner string approach was tested on the RT988 dataset using
4500/700 sequences for training/validation and 50 groups of 30 sequences for each of which the
model computes an approximation of the Steiner string.

C Neural architectures

The framework of NeuroSEED is independent of the choice of architecture for the encoder. For each
approach proposed in this project, we experiment with a series of models among the most commonly
used in the literature for the analysis of sequences. In this section, we give some detail on how each
model was adapted to the task at hand.

Linear & MLP operate on the input sequence using the one-hot encodings, padding to the maxi-
mum sequence length and flattening as a vector.

CNN is also applied to the padded sequence of one-hot elements. They are conceptually similar to
the k-mer baseline with a few distinctions: CNNs can learn the kernels to apply, CNNs are equivariant
not invariant to the translation of the patterns and, with multiple layers, CNNs can exploit hierarchical
patterns in the data.

GRU [28] operates on the sequence of one-hot sequence elements.

Transformer [29] every token is formed by 4-16 bases and is given a specific positional encoding
using sinusoidal functions. We test both global attention where every token queries all the others and
local where it only queries its 2 neighbours. Local attention allows the model to have a complexity
linear w.r.t. the number of tokens.

All the models are integrated with various forms of regularisation including weight decay, dropout
[67], batch normalisation [68] and layer normalisation [69] and optimised using the Adam optimiser
[70]. In the hyperbolic space, the embedded points are first projected on a hypersphere of learnable
radius and then to the hyperbolic space.

D Distance functions

The key idea behind NeuroSEED is to map sequences into a vector space so that the distances in
the sequence and the vector space are correlated. In this appendix, we present various definitions
of distance in the vector space that we explored: L1 (referred as Manhattan), L2 (Euclidean), L2
squared (square), cosine and hyperbolic distances. For the hyperbolic space, we use the Poincaré ball
model that embeds the points of the n-dimensional Riemannian manifold in an n-dimensional unit
sphere Bn = {x ∈ Rn : ‖x‖ < 1} where ‖·‖ denotes the Euclidean norm. Given a pair of vectors p
and q of dimension k, the definitions for the distances are:

Manhattan d(p,q) = ‖p− q‖1 =

k∑
i=0

|pi − qi| (6)

16

https://anonymous.4open.science/r/NeuroSEED

Euclidean d(p,q) = ‖p− q‖2 =

√√√√ k∑
i=0

(pi − qi)2 (7)

square d(p,q) = ‖p− q‖22 =

k∑
i=0

(pi − qi)2 (8)

cosine d(p,q) = 1− p · q
‖p‖‖q‖

= 1−
∑k
i=0 piqi√∑k

i=0 p
2
i

√∑k
i=0 q

2
i

(9)

hyperbolic d(p,q) = arcosh

(
1 + 2

‖p− q‖2

(1− ‖p‖2)(1− ‖q‖2)

)
(10)

E Distortion on synthetic datasets

We used a dataset of randomly generated sequences to test the importance of data-dependent ap-
proaches and understand whether the improvements shown in Section 5 are brought by a better
capacity of the neural models to model the edit distance mutation process or their ability to focus on
the lower-dimensional manifold that the real-world data lies on.

RT988 Qiita

Model Cosine Euclidean Square Manhattan Hyperbolic Cosine Euclidean Square Manhattan Hyperbolic

2-mer 7.782 4.927 8.000 5.036 4.859 21.222 11.752 30.453 11.639 10.481

3-mer 3.392 3.351 3.520 2.987 3.308 12.352 7.962 32.219 7.439 6.657

4-mer 1.790 3.314 1.899 2.318 3.294 6.006 7.015 34.098 5.636 6.728

5-mer 1.409 3.449 1.422 1.801 3.470 5.027 7.638 34.559 5.391 7.600

6-mer 1.471 3.710 1.450 1.686 3.730 5.723 8.383 34.616 5.844 8.275

Linear 0.62±0.03 21.3±7.0 27.2±10.8 - 0.51±0.01 3.38±0.06 4.39±0.09 5.83±0.21 3.82±0.09 2.50±0.01

MLP 1.57±0.16 1.10±0.05 6.78±2.50 1.01±0.04 0.59±0.20 4.98±0.11 4.36±0.19 8.52±0.78 4.92±0.10 1.85±0.02

CNN 0.69±0.03 0.58±0.05 2.95±1.09 0.98±0.06 0.59±0.01 2.54±0.04 2.68±0.05 5.03±0.85 4.06±0.21 1.56±0.01

GRU 14.9±4.56 1.10±0.11 1.96±0.47 1.13±0.15 2.56±3.33 - 3.30±0.06 5.52±0.15 3.74±0.01 2.60±0.16

Global T. 0.49±0.01 0.52±0.01 0.88±0.02 0.44±0.01 0.46±0.01 2.61±0.01 2.10±0.05 3.71±0.04 2.57±0.11 1.83±0.03

Local T. 0.51±0.03 0.57±0.00 0.58±0.02 0.48±0.01 0.45±0.01 2.67±0.04 2.42±0.02 3.72±0.06 2.46±0.02 1.86±0.02

Synthetic

Model Cosine Euclidean Square Manhattan Hyperbolic

2-mer 10.49 7.11 10.53 7.28 7.11

3-mer 5.71 6.02 5.81 6.01 5.99

4-mer 3.74 6.24 3.87 5.92 6.23

5-mer 3.92 6.75 3.97 5.72 6.75

6-mer 4.71 7.26 4.72 5.37 7.31

Linear 4.77±0.04 33.9±35.1 5.25±0.03 - 6.50±0.60

MLP 9.79±0.08 9.40±0.05 7.74±0.05 9.82±0.06 10.71±0.18

CNN 4.18±0.25 4.93±0.04 4.93±0.03 5.48±0.06 4.60±0.15

GRU 6.30±4.93 5.11±0.10 5.60±4.33 5.68±0.22 8.54±0.84

Global T. 4.51±0.01 4.74±0.02 5.23±0.03 4.67±0.04 4.75±0.04

Local T. 4.45±0.03 4.86±0.03 5.05±0.03 4.87±0.02 4.49±0.03

Greengenes

Cosine Euclidean Square Manhattan Hyperbolic

16.172 7.983 14.753 7.931 5.084

11.210 5.583 10.994 5.352 5.133

5.931 3.874 5.981 3.611 5.164

3.600 3.427 3.339 3.107 5.182

3.152 3.478 2.828 2.905 5.192

3.60±0.05 1155±18.3 2670±3209 14133±680 2.70±0.01

4.60±0.08 4.38±0.13 8.73±0.77 3.97±0.06 2.53±0.03

1.83±0.05 1.37±0.04 2.23±0.03 1.58±0.03 1.00±0.01

24.69±0.00 1.61±0.02 24.69±0.00 4.90±0.69 1.18±0.16

2.16±0.04 2.09±0.03 2.83±0.04 1.73±0.03 1.91±0.07

2.12±0.02 1.85±0.04 2.37±0.05 1.72±0.06 1.89±0.05

Figure 10: % RMSE test set results on all datasets and for all models and distances for the edit
distance approximation task. The embedding space dimensions are as in Figure 2.

In Figure 10, the picture that emerges from the results on the synthetic dataset is dramatically different
from the one of real-world datasets and confirms the hypothesis that the advantage of neural models
in real-world datasets is mainly due to their capacity to exploit the low-dimensional assumption.

17

Instead, in the synthetic dataset, the best neural models perform only on par (taking into account the
difference embedding space dimension) with the baselines. This is caused by two related challenges:
the incredibly large space of sequences (41024) that the model is trying to encode and the diversity
between training and test sequences due to the random sampling. These make the task of learning a
good encoding task too tough for currently feasible sizes of models and training data.

F Closest string retrieval

This task consists of finding the sequence that is closest to a given query among a large number of
reference sequences and is very commonly used by biologists to classify newly sequenced genes.

Task formulation Given a pretrained encoder fθ, its closest string prediction is taken to be the
string rq ∈ R that minimises d(fθ(rq), fθ(q)) for each q ∈ Q. This allows for sublinear retrieval via
locality-sensitive hashing or other data structures which is critical in real-world applications where
databases can have billions of reference sequences. As performance measures, we report the top-1,
top-5 and top-10 percentage accuracies, where top-k indicates the percentage of times the closest
string is ranked in the top-k predictions.

Triplet loss The triplet loss [71, 72, 73] is widely used in the field of metric learning [42, 43] to
learn embeddings that can be considered as a more direct form of supervision for this task. Given
three examples with feature vectors a (anchor), p (positive) and n (negative) where the p is supposed
to be closer to a than n, the triplet loss is typically defined as:

L(a, p, n) = max(0, d(a, p)− d(a, n) +m) (11)

where m is the safety margin and d a given distance function between vectors (typically Euclidean or
cosine).

Model
Cosine Euclidean Square Manhattan Hyperbolic

top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 5 top 10

K
-m

e
r

2-mer 25.5 42.4 50.8 23.0 40.7 49.2 23.0 40.7 49.2 21.5 38.6 47.3 25.5 42.4 50.8

3-mer 38.1 54.0 60.6 35.9 53.2 59.7 35.9 53.2 59.7 36.7 53.7 60.2 38.1 54.0 60.6

4-mer 43.8 60.3 66.9 41.5 58.3 64.3 41.5 58.3 64.3 43.2 59.4 65.8 43.8 60.3 66.9

5-mer 45.9 62.9 69.6 44.7 60.9 67.9 44.7 60.9 67.9 45.3 62.6 68.8 45.9 62.9 69.6

6-mer 45.5 62.7 68.2 44.9 60.9 67.3 44.9 60.9 67.3 44.9 62.6 68.3 45.5 62.7 68.2

M
SE

Linear 47.7 65.1 72.2 38.6 49.9 54.1 42.5 54.1 58.8 39.8 50.3 53.8 43.2 63.7 71.4

MLP 37.8 50.6 55.9 37.4 52.5 59.4 35.4 48.2 53.6 31.8 46.2 53.0 43.4 67.9 78.2

CNN 47.0 75.5 84.2 40.0 65.3 75.2 38.1 62.4 72.3 32.0 52.9 62.2 50.1 77.2 85.9

GRU - - - 36.5 62.0 71.7 33.4 58.0 68.2 36.7 59.7 68.2 28.6 50.3 59.9

Global T. 51.3 75.9 84.5 45.8 72.3 81.8 48.2 67.5 76.0 46.2 67.4 76.7 49.5 75.5 84.0

Local T. 49.8 75.0 84.4 42.3 66.7 75.7 47.4 66.8 75.7 43.7 68.4 77.3 48.8 75.1 84.5

Tr
ip

le
t Linear 47.4 70.1 78.2 41.4 53.6 58.6 43.7 54.4 58.2 40.9 51.3 54.8 - - -

CNN 46.3 76.7 85.7 32.4 56.6 68.1 24.1 44.3 54.1 33.7 60.3 71.8 - - -

Global T. 48.3 75.8 84.5 45.5 71.7 81.4 45.8 70.2 80.4 44.1 69.8 79.4 - - -

Figure 11: Models’ performance averaged over 4 runs of different models for closest string retrieval
on the Qiita dataset (1k reference and 1k query sequences, disjoint from training set).

Results Figure 11 shows that convolutional and attention-based data-dependent models significantly
outperform the baselines even when these operate on larger dimensions. In terms of distance functions,
the cosine distance achieves performances on par with the hyperbolic. An explanation is that for a
set of points on the same hypersphere, the ones with the smallest cosine or hyperbolic distance are
the same. The models trained with MSE of pairwise distances and the ones with triplet loss from
Section 5 performed similarly except for the hyperbolic space where the triplet loss produces unstable
training. The stabilisation of the triplet loss in the hyperbolic space and further comparisons between
the two training frameworks are left to future work.

18

G Steiner string approach to MSA

In this section we explain more in details the Steiner string approach to multiple sequence alignment
introduced in Section 7.2.

Training For this approach, it is necessary to train not only an encoder model but also a decoder.
The resulting autoencoder is trained with pairs of sequences (and their true edit distance) which
are encoded into the latent vector space and then decoded. The loss combines an edit distance
approximation component and a sequence reconstruction one. The first is expressed as the MSE
between the real edit distance and the vector distance between the latent embeddings. The second is
expressed as the mean element-wise cross-entropy loss of the outputs with the real sequences. While
this element-wise loss does not perfectly reflect the edit distance, it is an effective solution to the
problem of the lack of differentiability of the latter. Therefore, given two strings s1 and s2 of length
n and a vector distance d, the loss of a model with encoder fθ and decoder gθ′ is:

L(θ, θ′) = (1− α) LED(θ)︸ ︷︷ ︸
edit distance

+ α LR(θ, θ
′)︸ ︷︷ ︸

reconstruction

(12)

where LED(θ) =
(
n−1ED(s1, s2)− d(fθ(s1), fθ(s2))

)2
and LR(θ, θ

′) =
1

2n

n−1∑
i=0

(
H(s1[i], gθ′(fθ(s1))[i]) +H(s2[i], gθ′(fθ(s2))[i])

)
where α is a hyperparameter that controls the trade-off between the two components and H(c, ĉ) =

c log (̂c) + (1− c) log(1− ĉ) represents the cross-entropy.

One issue with this strategy is that the decoder is not learning to decode any point in the continuous
space, but only those of the discrete subspace of points to which the generator maps some sequence
from the domain. This creates a problem when, at test time, we try to decode points that are outside
the subspace hoping to retrieve the string that maps to the point in the subspace closest to it. To
alleviate this issue, during training, Gaussian noise is added to the embedded point in the latent space
before decoding it, which forces the decoder to be robust to points not produced by the encoder.
To make the noisy model trainable with gradient descent, we employ the reparameterization trick
commonly used for Variational Auto-Encoders [74] making the randomness an input to the model.
Therefore, the reconstruction loss becomes:

LR(θ, θ
′, ε) =

1

2n

n−1∑
i=0

(
H(s1[i], gθ′(fθ(s1) + ε1i)[i]) +H(s2[i], gθ′(fθ(s2) + ε2i)[i])

)
(13)

where ∀i, j εij ∼ N (0, σ2I) and σ is a hyperparameter.

In the hyperbolic space adding noise distributed with a Euclidean Gaussian distribution would not
distribute uniformly, therefore we Wrapped Normal generalisation of the Gaussian distribution to the
Poincaré ball [75] was used. Finally, for the cosine space, we normalise the outputs of the encoder
and the input of the decoder to the unit hyper-sphere.

Testing At test time, given a set of strings, we want to obtain an approximation of the Steiner string,
which minimises the consensus error (sum of the distances to the strings in the set). In the sequence
space with the edit distance finding the median point is a hard combinatorial optimisation problem.
However, in the space of real vectors with the distance functions used in this project, it becomes a
relatively simple procedure which can be done explicitly in some cases (e.g. with square distance)
or using classical optimisation algorithms5. Therefore, the Steiner string s∗ of a set of strings S is
approximated by:

s∗ = argmin
s′

∑
si∈S

ED(s′, si) ≈ gθ′
(
argmin

x

∑
si∈S

d(x, fθ(si))
)

(14)

The continuous optimisation is performed using the COBYLA [76] (for the hyperbolic distance) and
BFGS [77, 78, 79, 80] (for all the others) algorithms implemented in the Python library SciPy [81].

5If the distance function is convex such as in the Euclidean case, the resulting optimisation problem is also
convex.

19

The produced predictions are then discretised to obtain actual sequences taking the most likely
character for each element in the sequence and then evaluated by computing their average consensus
error:

E(ŝ∗) =
1

|S|
∑
s′∈S

ED(ŝ∗, s′) (15)

20

