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Abstract

Training deep neural networks on large datasets can often be accelerated by using
multiple compute nodes. This approach, known as distributed training, can utilize
hundreds of computers via specialized message-passing protocols such as Ring
All-Reduce. However, running these protocols at scale requires reliable high-speed
networking that is only available in dedicated clusters. In contrast, many real-
world applications, such as federated learning and cloud-based distributed training,
operate on unreliable devices with unstable network bandwidth. As a result, these
applications are restricted to using parameter servers or gossip-based averaging
protocols. In this work, we lift that restriction by proposing Moshpit All-Reduce —
an iterative averaging protocol that exponentially converges to the global average.
We demonstrate the efficiency of our protocol for distributed optimization with
strong theoretical guarantees. The experiments show 1.3x speedup for ResNet-50
training on ImageNet compared to competitive gossip-based strategies and 1.5x
speedup when training ALBERT-large on preemptible compute nodes.

1 Introduction

Many recent influential discoveries in deep learning were enabled by the trend of scaling model and
dataset size. Over the last decade, computer vision has grown from training models with 60 million
parameters [1] on 1.3 million images [2] to 15 times more parameters [3] and 200 times more training
data [4]. In natural language processing, the state-of-the-art language models [5] with 175 billion
parameters are trained on over 570GB of texts, and even this does not saturate the model quality [6].
Training these large models can take years even with a top-of-the-line GPU server [7]. As a result,
researchers and practitioners often have to run distributed training with multiple machines [8].

The dominant approach to distributed deep learning is data-parallel training [9], where each worker
processes a fraction of the training batch and then exchanges its gradients with peers. If done
naïvely, the gradient exchange step can overload the network as the number of workers increases. To
combat this issue, modern distributed training algorithms take advantage of communication-efficient
protocols, such as all-reduce [10]. These protocols allow workers to collectively compute the global
average gradient with a constant communication overhead, regardless of the total number of peers.
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However, this efficiency makes the protocols more fragile: if any single participant fails or takes
too long to process its batch, all other nodes are stalled. Therefore, scaling all-reduce protocols
beyond a couple of servers requires specialized infrastructure with dedicated ultra-high bandwidth
networking [8]. This kind of infrastructure is notoriously expensive compared to regular GPU servers
or preemptible cloud VMs (see Appendix A for details).

Hence, it is tempting to consider distributed training on cheap unreliable instances as a cost-efficient
alternative. A similar scenario arises in federated learning [11], where a single model is trained on
heterogeneous devices due to privacy concerns. In both scenarios, workers use a shared network,
where both latency and bandwidth can vary drastically due to interference from other users [12].
Furthermore, compute nodes are also subject to failure (or preemption) caused by factors beyond the
protocol’s control.

Running large-scale distributed training in these circumstances requires fault- and latency-tolerant
algorithms [14, 15]. Most of these algorithms replace all-reduce averaging with gossip: each
participant periodically downloads the latest parameters from their neighbors in a sparsely connected
communication graph and averages the results. The updates gradually propagate through the graph
over multiple rounds of averaging. However, the communication required to perform gossip grows
linearly with the number of neighbors. Hence, when scaling to hundreds of peers, decentralized SGD
has to keep the communication graph sparse, slowing down the convergence.

In this work, we propose an alternative approach. Instead of relying on a predefined communica-
tion graph, participants dynamically organize themselves into groups using a fully decentralized
matchmaking algorithm called Moshpit All-Reduce. This strategy allows us to use communication-
efficient all-reduce protocols that significantly reduce the network load compared to gossip-based
averaging, while still being able to operate in unreliable hardware and network conditions.

Our contributions can be summarized as follows:

• We propose Moshpit All-Reduce — a novel decentralized averaging protocol for large-scale
training with unreliable communication-constrained devices. According to our analysis, this
method has exponential convergence rate independent of network topology and size.

• Armed with this averaging protocol, we develop Moshpit SGD for distributed optimization.
We derive convergence rates for this algorithm and establish its equivalence to Centralized
(Local) SGD in terms of iteration complexity under realistic assumptions.

• Our experiments demonstrate that Moshpit All-Reduce is significantly more efficient under
network latency in realistic conditions. In particular, we train ResNet-50 on ImageNet to
75% accuracy 1.3 times faster than existing decentralized training algorithms and pretrain
ALBERT-large 1.5 times faster on preemptible cloud VMs.2

2 Related Work
2.1 Data parallel training
The most popular way to accelerate neural network training with multiple devices is data-parallel
training [9, 16, 17]. On each optimization step, this strategy splits the training batch among partici-
pants. Each participant then runs forward and backward passes to obtain gradients of the objective
function on their part of the training batch. After that, we can aggregate the gradients from workers
and perform an optimization step. There are two main strategies for this aggregation.

Historically, the first solution to gradient aggregation was to use Parameter Server (PS) [18]: a separate
process or a dedicated server that keeps track of model parameters and optimizer statistics. After
each round, the PS accumulates the gradients from each worker and updates the model parameters
using SGD or any other optimizer, such as Adam [19]. Finally, the server distributes the updated
model parameters to workers.

This strategy is robust and easy to implement, but it requires the server to regularly download
full model gradients from every single worker. As a result, the parameter server can quickly
become a bottleneck for large-scale training [20]. Since the original PS, researchers have proposed
several modifications that reduce the communication load: accumulating multiple batches [22],
compression [23, 24], server sharding [25, 26]. A more detailed overview is given in Appendix B.

2Implementation and code of experiments are at github.com/yandex-research/moshpit-sgd.
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In turn, many practical distributed training systems have instead switched to averaging with All-
Reduce [16, 27, 28, 17]. This name refers to a collection of protocols originally developed for HPC
applications. Workers can follow these protocols to collectively compute the average3 gradient more
efficiently than with a central server.

2.2 Communication-efficient All-Reduce

There are several all-reduce protocols optimized for different network topologies. The simplest one is
known as Butterfly All-Reduce [10]. Each of N participants splits its local vector into N chunks.
Then, i-th worker aggregates i-th chunk of data from all peers and sends back the averaged chunk.
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Figure 1: A schematic illustration of Butterfly All-Reduce.

As long as the vector size s is greater than N , this protocol uses O
(
s× N−1

N

)
total bandwidth on

each worker. However, it requires all-to-all communication, which is not always practical for the
HPC infrastructure due to network contention [10]. As a result, real-world systems typically use Ring
or Tree All-Reduce, where each worker only communicates with a small subset of its peers.

These protocols enable highly efficient and scalable averaging with O(1) or O(logN) total commu-
nication per worker, but they also share a common drawback: they cannot tolerate node failures or
network instability. If any single participant fails to execute its part or takes long to respond, this
paralyzes all other workers.

2.3 Distributed training in unstable conditions

Some distributed training applications must deal with unstable network bandwidth and/or unreliable
workers. This issue is most prevalent in federated learning [11, 29, 30]. When dealing with privacy-
sensitive data distributed across multiple actors, such as hospital servers [31, 32] or mobile phones [33,
34], one must train the model using whichever hardware and network available to those actors.

Another important motivational factor is cost: HPC-grade infrastructure can be prohibitively expen-
sive, pushing researchers and practitioners towards commodity servers or preemptible cloud VMs that
are significantly cheaper (see Appendix A). Another solution is to use volunteer computing [35, 36]
with abundant, but even less reliable, compute resources.

Training under these conditions requires specialized strategies. At a small scale, one can deploy one
or a few reliable parameter servers to aggregate the updates from workers. This strategy can tolerate
individual node failures [37], but scales poorly due to the reasons discussed in Section 2.1.

2.4 Decentralized training

If there are too many participants for PS, it can be advantageous to use decentralized SGD via
gossip-based averaging [38, 39, 14]. In this scenario, participants form a sparse graph: each worker
periodically downloads parameters from its neighbors and mixes them with local parameters.

In essence, gossip-based averaging removes the communication bottlenecks of PS at the cost of
using different local parameters on each peer. That said, gossip-based optimization algorithms
can match, and sometimes even outperform, their centralized counterparts in terms of training
speed [40, 41, 42, 14, 43]. However, the convergence properties of gossip averaging and gossip-
based optimization methods significantly depend on the communication graph through the spectral
properties of the mixing matrix [44, 42] or the Laplacian matrix of the network [45, 46].

3All-Reduce works with any commutative associative operation, such as min, max, or product.
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Consequently, as the number of peers increases, gossip-based averaging has to either increase the
number of neighbors (hence more communication) or accept slower convergence speed. Because
of this, gossip is less communication-efficient than all-reduce algorithms reviewed in Section 2.2.
However, gossip-based algorithms are more robust to changes, which makes them applicable to
time-varying networks [47, 48, 49, 50] and federated learning [51, 52, 53].

3 Moshpit SGD

Large-scale training with unreliable participants requires a protocol that is both communication-
efficient and fault-tolerant. Unfortunately, existing methods have only provide one of these properties.
To better address our conditions, we propose Moshpit All-Reduce — a fully decentralized averaging
protocol that combines the efficiency of all-reduce and the fault tolerance of gossip-based averaging.

The rest of this section is organized as follows:

• Section 3.1 describes the protocol and proves its correctness and communication efficiency;
• Section 3.2 provides the analysis of the protocol and proves exponential convergence rate

for averaging and the rate matching the one of centralized Local-SGD for optimization;
• Section 3.3 contains implementation details for training with heterogeneous compute nodes.

3.1 Moshpit All-Reduce

The core idea of Moshpit All-Reduce is that workers perform averaging in small independent groups.
That way, a single failed participant would only affect his current group. In turn, the composition of
each group should be chosen dynamically to converge in the least number of steps. Ideally, if there
are 9 peers with local parameters θ, we can average them in 2 rounds, as demonstrated in Figure 2:

First round Second round

A θA θA θA

θB θB θB

θC θC θC

Group

C
Group

B
Group

Average θ
in groups

θ3θ1 θ2

θ6θ4 θ5

θ9θ8θ7

Figure 2: Example averaging order for 9 peers
in 2 rounds. On each round, peers are split
into 3 groups that run All-Reduce in parallel.

Algorithm 1 Moshpit All-Reduce (for i-th peer)

Input: parameters {θj}Nj=1, number of peers N , d,
M , number of iterations T , peer index i
θ0i := θi
C0

i := get_initial_index(i)
for t ∈ 1 . . . T do
DHT[Ct−1

i , t].add(addressi)
Matchmaking() // wait for peers to assemble
peerst := DHT.get([Ct−1

i , t])

θti , c
t
i := AllReduce(θt−1

i , peerst)
Ct

i := (Ct−1
i [1:], cti) // same as eq. (1)

end for
Return θTi

To achieve this in a decentralized system, we use Distributed Hash Tables (DHT) — a decentralized
key-value storage; Appendix B contains its more detailed description. On each averaging round:

• Each worker computes its group key Ci;
• Workers add their network addresses to the DHT key corresponding to Ci;
• Each worker can now fetch a full list of peers that have the same Ci and run All-Reduce

with those peers.

Unfortunately, the averaging structure from Figure 2 is impossible to maintain when participants
are constantly joining, leaving, and failing. However, we can achieve equivalent results without
global structure using a simple rule: if two peers were in the same group in round t, they must choose
different groups in round t+1.

A natural way to enforce this rule is to take advantage of the chunk indices from Butterfly All-Reduce
(see Figure 1). Recall that each worker accumulates a unique chunk of parameters defined by an
index ci. By setting Ci := ci, we can guarantee that any workers that were in the same group at a
round t will have different group indices in round t+1.
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This averaging scheme can be generalized to more than two dimensions in order to fit a larger number
of peers or reduce the group size. For a d-dimensional hypercube, nodes should find groups of peers
that they have not communicated with during d−1 previous rounds. To that end, we define Ci as
tuples containing chunk indices from d−1 previous rounds (t denotes the communication round):

Ct
i := (ct−d+1

i , ct−d+2
i , . . . , cti). (1)

The above intuition can be formalized with Algorithm 1. Here, N peers form a virtual d-dimensional
grid with M peers per row and average their parameters θi over T rounds. DHT[·] is a shortcut for
using the DHT to add or retrieve values for a given key. The Matchmaking step corresponds to the
decentralized matchmaking procedure that organizes active workers with the same index into groups,
described in detail in Appendix E. In turn, AllReduce denotes running all-reduce to compute the
average θ in a given group. The get_initial_index function takes the peer index i and returns
d−1 integers in range [0,M) such that the size of initial groups does not exceed M . This way, the
groups formed on subsequent rounds will also have at most M participants. One possible strategy is:

get_initial_index(i) =
(
⌊i/Md−1⌋ modM

)
j∈{1, ..., d} (2)

If N=Md and there are no node/network failures, Algorithm 1 is equivalent to Torus All-Reduce [54],
achieving the exact average after d rounds of communication (see Appendix C.1). However, our
typical use case is far from this perfect scenario; for example, some groups can have less than M
members. Furthermore, a peer might fail during all-reduce, causing its groupmates to skip a round of
averaging. Still, Moshpit All-Reduce is applicable even in these conditions:
Theorem 3.1 (Correctness). If all workers have a non-zero probability of successfully running a
communication round and the order of peerst is random, then all local vectors θti converge to the
global average with probability 1:

∀i,
∣∣∣∣∣∣θti − 1

N

∑
i

θ0i

∣∣∣∣∣∣2
2
−−−→
t→∞

0. (3)

Proof (sketch, complete in Appendix C.2). Running all-reduce with a subset of peers preserves the
invariant 1

N

∑
i θ

t
i =

1
N

∑
i θ

t−1
i and reduces the deviation of θti from the overall average.

Complexity. The matchmaking protocol is implemented over Kademlia DHT [55], meaning that each
read and write operation needs at most O(logN) requests and O(M) bandwidth to load peerst.

After the matchmaking is over, each group runs a single all-reduce round to compute the average.
In principle, Moshpit Averaging can use any general-purpose all-reduce protocol. We opted for a
butterfly-like version (Figure 1), as it is simpler than Ring All-Reduce while still being communication-
efficient. The communication complexity of this algorithm is O

(
max(s,M)× M−1

M

)
, where s is

the size of vector θ. Thus, the total time complexity of Algorithm 1 becomes:

O
(
T ×

[
log2 N +M +max(s,M)× M − 1

M

])
. (4)

This compares favorably to gossip, where network load grows linearly with the number of neighbors.

3.2 Convergence analysis

3.2.1 Mixing properties of Moshpit Averaging

As stated in the previous section, Moshpit All-Reduce computes the exact average when N = Md,
which cannot be guaranteed in practice. Therefore, additional analysis is needed to establish how
quickly Moshpit Averaging approximates the actual average of N vectors stored on peers.

In the following theorem, we provide such analysis for a simplified version of Moshpit Averaging.
One can find the full proof in Appendix C.3.
Theorem 3.2. Consider a modification of Moshpit All-Reduce that works as follows: at each iteration
k ≥ 1, 1) peers are randomly split in r disjoint groups of sizes Mk

1 , . . . ,M
k
r in such a way that∑r

i=1 M
k
i = N and Mk

i ≥ 1 for all i = 1, . . . , r and 2) peers from each group compute their group
average via All-Reduce. Let θ1, . . . , θN be the input vectors of this procedure and θT1 , . . . , θ

T
N be the

outputs after T iterations. Also, let θ = 1
N

∑N
i=1 θi Then,

E

[
1

N

N∑
i=1

∥θTi − θ∥2
]
=

(
r − 1

N
+

r

N2

)T
1

N

N∑
i=1

∥θi − θ∥2. (5)
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Algorithm 2 Moshpit SGD

1: Input: starting point θ0, learning rate γ > 0, communication period τ ≥ 1
2: for k = 0, 1, . . . do
3: for each peer i ∈ Pk+1 in parallel do
4: Compute the stochastic gradient gki at the current point θki
5: if k + 1 mod τ = 0 then
6: θk+1

i = Moshpit All-Reducej∈Pk+1
(θkj − γgkj ) for i-th peer (Algorithm 1)

7: else
8: θk+1

i = θki − γgki
9: end if

10: end for
11: end for

In particular, this result implies that even if workers are randomly split into pairs at each iteration,
the simplified version of Moshpit Averaging makes the average distortion (the left-hand side of
Equation 5) less than ε in expectation after O (log(1/ε)) iterations. That is, this algorithm finds
ε-accurate average on each node with the rate that does not depend on the spectral properties of the
communication graph like gossip and its variants (see Section 2.4 and Appendix B.1). Since Moshpit
Averaging prevents two peers from participating in the same groups during successive iterations, the
actual algorithm should find ε-accurate averages on participating peers even faster than Equation 5
predicts. Moreover, in Appendix C.3 we explain how this result can be generalized to the case when
{Mk

i }Ni=1 and r depends on k or even is random. In Appendix C.4, we also provide the guarantees
measuring how fast Algorithm 1 reduces the variance when averaging random vectors.

3.2.2 Moshpit SGD

We consider a classical distributed optimization problem

min
θ∈Rn

{
f(θ) =

1

N

N∑
i=1

fi(θ)

}
, (6)

where N is the number of workers and worker i has access only to the function fi.
We propose a new algorithm called Moshpit SGD to solve this problem (see Algorithm 2). In
this algorithm, workers perform independent local SGD steps and periodically synchronize their
parameters θki with other peers using Moshpit All-Reduce. Moreover, we define the indices of
participating nodes at iteration k as Pk+1 (P0 = {1, . . . , N}) allowing peers to vanish.

First of all, we list the key assumptions that we use in the convergence analysis of Moshpit SGD.

Assumption 3.1 (Bounded variance). We assume that for all k ≥ 0 and i = 1, . . . , N stochastic
gradients gki satisfy E

[
gki | θki

]
= ∇fi(θ

k
i ) and

E
[
∥gki −∇fi(θ

k
i )∥2 | θki

]
≤ σ2. (7)

This assumption is classical in the stochastic optimization literature [56, 57]. We notice that our
analysis can be generalized to the settings when the stochastic gradients satisfy less restrictive
assumptions such as expected smoothness [58] or have more sophisticated structure similar to [59]
using the theoretical framework from [60].

The following assumption controls the averaging properties and the effect of the peers’ vanishing.

Assumption 3.2 (Averaging quality & peers’ vanishing). We assume that the vanishing of peers
does not change the global average of the iterates of Moshpit SGD too much, i.e., Pk+1 ⊆ Pk and
|Pk| ≥ Nmin for all k ≥ 0, |Paτ | ≤ 2|Pa(τ+1)| for all non-negative integers a ≥ 0, and there exist
such θ̃ ∈ Rn and a sequence of non-negative numbers {∆k

pv}k≥0 that ∀k ≥ 0

E
[
⟨θk+1 − θ̂k+1, θk+1 + θ̂k+1 − 2θ̃⟩

]
≤∆k

pv, f convex; (8)

E
[
⟨∇f(θk), θk+1 − θ̂k+1⟩+ L∥θ̂k+1 − θk+1∥2

]
≤∆k

pv, f non-convex, L-smooth, (Def. D.1) (9)

where Nk = |Pk|, θk+1 = 1
Nk+1

∑
i∈Pk+1

θk+1
i , and θ̂k+1 = 1

Nk

∑
i∈Pk

(θki − γgki ) for k ≥ 0.
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Moreover, we assume that for some δaq ≥ 0 and for all non-negative integers a ≥ 0,

E

[
1

Naτ

∑
i∈Paτ

∥θaτi − θaτ∥2
]

≤ γ2δ2aq. (10)

If Pk = Pk+1 = {1, . . . , N} for all k ≥ 0, i.e., peers do not vanish, then θk = θ̂k and properties (8, 9)
hold with ∆k

pv ≡ 0 for all k ≥ 0. Moreover, according to the mixing properties of Moshpit Averaging
established in Theorem 3.2, inequality 10 holds after O (log (1/γ2δ2aq)) iterations of Algorithm 1.
Therefore, the assumption above is natural and well-motivated.

Under these assumptions, we derive the convergence rates both for convex and non-convex problems.
The full statements and complete proofs are deferred to Appendix D.
Theorem 3.3 (Convex case). Let f1 = . . . = fN = f , function f be µ-strongly convex (Def. D.2)
and L-smooth (see Def. D.1), and Assumptions 3.1 and 3.2 hold with ∆k

pv = δpv,1γµE[∥θk − θ∗∥2]+
γ2δ2pv,2 and θ̃ = θ∗, where θ∗ ∈ argminθ∈Rn f(θ) and δpv,1 ∈ [0, 1), δpv,2 ≥ 0. Then there exists a

choice of γ such that E
[
f(θ

K
)− f(θ∗)

]
≤ ε after K iterations of Moshpit SGD, where K equals

Õ

(
L

(1−δpv,1)µ
+
δ2pv,2+σ2

/Nmin

(1− δpv,1)µε
+

√
L((τ−1)σ2+δ2aq)

(1−δpv,1)2µ2ε

)
, µ > 0; (11)

O

LR2
0

ε
+
R2

0(δ
2
pv,2+σ2

/Nmin)

ε2
+
R2

0

√
L((τ−1)σ2+δ2aq)

ε3/2

, µ = 0, (12)

where θ
K

= 1
WK

K∑
k=0

1
Nk

∑
i∈Pk

wkθ
k
i , wk = (1− γµ)−(k+1), WK =

∑K
k=0 wk, R0 = ∥θ0− θ∗∥ and

Õ(·) hides constant and log(1/ε) factors.

That is, if δpv,1 ≤ 1/2, Nmin = Ω(N), δ2pv,2 = O(σ
2
/Nmin), and δ2aq = O((τ − 1)σ2), then Moshpit

SGD has the same iteration complexity as Local-SGD in the homogeneous case [61, 62]. However, the
averaging steps of Moshpit SGD are much faster than those of the parameter-server architecture when
the number of peers is large. Also, unlike the state-of-the-art convergence guarantees for Decentralized
Local-SGD [63], our bounds do not depend on the spectral properties of the communication graph
(see Appendix B.1 for the details).
Theorem 3.4 (Non-convex case). Let f1 = . . . = fN = f , function f be L-smooth and bounded
from below by f∗, and Assumptions 3.1 and 3.2 hold with ∆k

pv = δpv,1γE[∥∇f(θk)∥2] + Lγ2δ2pv,2,
δpv,1 ∈ [0, 1/2), δpv,2 ≥ 0. Then there exists such choice of γ that E

[
∥∇f(θKrand)∥2

]
≤ ε2 after K

iterations of Moshpit SGD, where K equals

O

(
L∆0

(1−2δpv,1)2ε2

[
1+τ

√
1−2δpv,1+

δ2pv,2+σ2/Nmin

ε2 +

√
(1−2δpv,1)(δ2aq+(τ−1)σ2)

ε

])
,

∆0 = f(θ0)− f(θ∗) and θKrand is chosen uniformly from {θ0, θ1, . . . , θK−1} defined in As. 3.2.

Again, if δpv,1 ≤ 1/3, Nmin = Ω(N), δ2pv,2 = O(σ
2
/Nmin), and δ2aq = O((τ − 1)σ2), then the above

theorem recovers the state-of-the-art results in the non-convex case for Local-SGD [64, 63].

3.3 Implementation details

Training on heterogeneous unreliable hardware also poses a number of engineering challenges. The
most obvious one is that the system must be able to recover from node failures. To address this
challenge, we use a fully decentralized infrastructure where all information is replicated in a Dis-
tributed Hash Table; see Appendix B.5 for details. When a new worker joins midway through training,
it can download the latest model parameters and metadata from any other peer (see Appendix F).
Another challenge arises when devices in a group have uneven network bandwidth. In that case,
we dynamically adjust the communication load of each peer to avoid being bottlenecked. More
information on this procedure can be found in Appendix G.
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4 Experiments

In this section, we conduct empirical evaluation of the proposed averaging protocol and its corre-
sponding optimization algorithm. First, we check the theoretical properties of Moshpit All-Reduce in
a controlled setup (Section 4.1). Then, we compare Moshpit SGD with other distributed methods on
practical tasks of image classification and masked language model pretraining (Sections 4.2 and 4.3).

4.1 Decentralized averaging

In this series of experiments, we aim to empirically verify the convergence and fault tolerance
properties proven in Section 3.2. To measure this in a controlled setting, we create peers with
parameters that are scalar values drawn from the standard Gaussian distribution. We study the
convergence of different distributed methods with respect to the number of workers N and their
individual failure rate for a single iteration of averaging p (failed peers return in the next round).

We compare Moshpit Averaging with the following algorithms from prior work: All-Reduce (with
restarts in case of node failures), Gossip, PushSum (equivalent to the method described in [15]).
Also, we provide the results of averaging in random groups as a simpler version of our approach.
However, the implementation of group averaging maintains approximately the same group size across
all iterations: this property might be hard to achieve in a decentralized setting, and as a result, the
estimate of this method’s performance should be considered highly optimistic.

We report the average squared difference between the worker parameters and the actual average of all
values; the results are averaged across 100 restarts from different random initializations. We compare
the convergence for 512–1024 peers and consider failure probabilities ranging from 0 to 0.01. For
Moshpit Averaging and random group averaging, we use groups of size 32, which corresponds to
M = 32 and d = 2 for Algorithm 1.
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Figure 3: Convergence of averaging algorithms in different configurations.

Figure 3 displays the results of experiments for several combinations of N and p; the complete results
with additional grid configurations are available in Appendix I. We make several key observations:

1. When the failure rate of each peer is zero, standard All-Reduce predictably computes the average
faster than all other methods. However, as soon as p reaches a value of at least 0.005, the number
of retries needed for the success becomes prohibitively high.

2. Previous decentralized averaging methods, such as Gossip or PushSum, require significantly
more iterations for convergence to the global average than Moshpit All-Reduce, likely due to the
structure of their communication graphs.

3. As discussed in Section 3.1, when the total number of peers is equal to the grid capacity and there
are no failures, Moshpit All-Reduce matches the result of regular All-Reduce with the number of
steps equal to the number of grid dimensions (2 in this case).

4. Averaging in random groups can perform comparably to Moshpit Averaging when the number of
peers is less than half of the grid capacity. The reason for this behavior is that when the workers
do not fully occupy the grid, the group sizes are no longer guaranteed to be equal across groups
and across iterations. In the worst case, there can be groups of only one peer for certain grid
coordinates, which may significantly affect the convergence. However, as the grid utilization
grows, Moshpit Averaging starts to outperform random group averaging. Moreover, even if we
use 512 peers, arranging them in a proper 8x8x8 grid leads to faster convergence.
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Figure 4: (Left, Middle) ResNet-50 top-1 validation accuracy for ImageNet as a function of training
time (left) and epochs (middle). (Right) Full training objective (MLM + SOP) of ALBERT-large on
BookCorpus as a function of training time.

4.2 ImageNet training

Here, we evaluate the performance of Moshpit SGD in distributed training. More specifically, we
train ResNet-50 [65] on the ILSVRC [2] dataset, following the training protocol of [16]. Trainers use
SGD with Nesterov momentum with a batch size of 256 and 32-bit precision regardless of the GPU
type4. We evaluate the following training strategies:

• All-Reduce SGD (AR-SGD) — traditional distributed training with all-reduce gradient averaging;
• Asynchronous Decentralized Parallel SGD (AD-PSGD) — parallel SGD that runs gossip

communication in a cycle: each worker averages parameters with 2 neighbors [66]. Communication
rounds are overlapped with computation;

• Stochastic Gradient Push (SGP) — a more advanced algorithm with an exponential communica-
tion graph and push-based communication [15];

• Moshpit SGD — similar to SGP, but with 1 round of Moshpit Averaging instead of PushSum.

We report top-1 validation accuracy as a function of training time in two experimental setups:

• Homogeneous: 16 servers with a single Tesla V100-PCIe GPU, 6 CPU cores, and 64GB RAM.
• Heterogeneous: a total of 81 GPUs (V100, 1080Ti, and P40) across 64 servers and workstations.5

All servers and workstations communicate over the network with 1Gb/s Ethernet (non-dedicated
symmetric bandwidth). The machines are located in two data centers and one office within 300 km of
one another. The communication latency is 1–6ms depending on the location. To simulate shared
usage, at the beginning of each communication round we inject additional latency sampled from the
exponential distribution [67] with the mean of 100ms.

For Moshpit SGD, we use a two-dimensional “grid” with 4 and 8 groups for homogeneous and
heterogeneous setups respectively. For AD-PSGD, we attempt to compensate for slow convergence
by training for 60 more epochs without changing the learning rate schedule. Finally, we only report
AR-SGD in the first setup, as it is unsuitable for heterogeneous hardware.

The results in Figure 4 (Left) demonstrate that the two most efficient strategies for our setting are
Moshpit SGD and SGP. In the homogeneous setup, Moshpit is only slightly more efficient than
SGP, likely due to higher efficiency of all-reduce. This advantage increases to over 30% for the
heterogeneous setup with 64 servers. In turn, AR-SGD demonstrates the best performance per
iteration, but its training time is by far the longest due to network latency (1.5× of Moshpit SGD).
Finally, AD-PSGD predictably shows the best throughput (time per epoch), but achieves lower
accuracy even after training for 150 epochs. We report results for smaller setups in Appendix J.

4.3 Masked Language Model training

Finally, we evaluate Moshpit All-Reduce training performance in the wild with preemptible cloud
instances. For this experiment, we perform one of the most resource-demanding tasks in modern
deep learning — unsupervised pretraining of Transformers [68, 69, 70, 5]. We opt for the ALBERT
model [71] to make better use of communication-constrained devices. This model has fewer trainable
parameters due to layer-wise weight sharing.

4For GPUs that cannot fit this into memory, we accumulate gradients over 2 batches of 128 examples.
5We provide a detailed configuration in Appendix H.
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Specifically, we train ALBERT-large (18M parameters) on the BookCorpus [72] dataset, following
the training setup from the original paper. We minimize the masked language modeling loss (MLM)
along with the sentence order prediction loss (SOP) using the LAMB optimizer [17] with a global
batch size of 4096 and sequence length 512. We measure convergence in terms of full training
loss [73, 74]. Similarly to Section 4.2, we use two training setups:

• Homogeneous: a single cloud instance with 8 Tesla V100-PCIe GPUs and 56 vCPUs;
• Heterogeneous: a total of 66 preemptible GPUs, 32 of which are cloud T4, and the remaining 34

are various devices rented on a public marketplace.

Despite the fact that the latter setup has almost 3× more raw compute6, its hourly rent costs less than
the homogeneous setup due to relying on preemptible instances7. This instance type is much cheaper
than regular cloud instances, but it can be interrupted at any time. As a side-effect, the participants in
heterogeneous setup are also spread across 3 continents with uneven network bandwidth, ranging
from 100Mb/s to 1500Mb/s per worker. These limitations make it impractical to deploy conventional
all-reduce protocols. By contrast, the fully decentralized nature of Moshpit SGD allows it to operate
on unreliable nodes.

In this setup, the participants accumulate gradients over multiple local batches and use DHT to track
the global batch size. Once the swarm collectively accumulates gradients over 4096 training samples,
it runs 2 rounds of Moshpit All-Reduce with M=8 and d=2. Unfortunately, training with simple
parameter averaging does not converge, likely due to diverging LAMB statistics. To mitigate this
issue, workers recover “pseudo-gradients” [76, 77] after averaging to update the optimizer statistics.

Figure 4 (right) demonstrates that Moshpit SGD with a fully preemptible fleet of machines trains
1.5 times faster than the traditional data-parallel setup. The final loss achieved by two training
strategies is the same within the margin of error. A closer investigation reveals that this speedup
is entirely explained by the reduced iteration time. An interesting observation is that the iteration
time of Moshpit SGD varies between 10–22 seconds, while AR-SGD consistently spends 25s per
step. This can be explained by natural variation in the preemptible fleet size: there were 30–66 active
participants depending on the resource availability.

5 Conclusion and future work
In this work, we propose Moshpit All-Reduce, a decentralized averaging protocol intended for
distributed optimization in unstable and network-constrained environments. It has favorable theoreti-
cal properties when compared to gossip-based approaches and achieves considerable speedups in
distributed training for image classification and masked language modeling.

Our approach was primarily designed for cloud-based training and federated learning, as well as
for distributed training on unreliable instances; future work might explore additional settings, such
as collaborative training of neural networks. Another potential research direction is to study the
interactions of Moshpit All-Reduce with other methods that improve communication efficiency of
distributed optimization, such as gradient compression. Finally, the idea of arranging All-Reduce
nodes into groups can be improved to address specific issues that may arise in practice, such as the
varying number of workers and their geographical distribution.
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Supplementary Material
A GPU instance costs

This section provides a brief cost analysis of typical deep learning compute resources both in the
cloud and on-premises. For brevity, we limit this analysis to the popular GPUs available at the time
of submission. Note that the exact costs will depend on a variety of factors such as the cloud provider,
the region, electricity costs, and market fluctuations. Therefore, we warn the reader to consider this
analysis only as a rough estimate.

Specifically, we estimate the compute costs for the occasional usage scenario: running a single set of
experiments over several weeks or conducting infrequent experiments. This scenario covers most
research scientists and small organizations. The most straightforward way to provision a GPU server
in such a scenario is to rent it from a cloud provider (e.g., GCP or AWS) or a public marketplace
(e.g., Vast.ai or Golem).

While the exact server specifications vary from one provider to another, there are two broad categories
of GPU machines: regular and preemptible. Regular instance types typically offer 1–8 GPUs per node
with tight uptime guarantees (typically 99.99%) and a high-bandwidth network (tens of Gb/s). In
turn, preemptible instances provide the same resource type at a significant discount with the condition
that the machine can be terminated at any time after short notice.

To account for individual variations, we report the average rent price over three popular cloud
providers. We consider three popular instance types: two high-end instances with 8 Tesla V100 or
A100 GPUs and a low-end instance with a single Tesla T4 GPU. We also describe several low-end
servers and workstations available on a public marketplace. Unlike cloud VMs, these instances are
hosted on non-curated hardware with less uptime guarantees (typically 95% – 99.9%), slower network
and significant variation in performance. However, marketplace instances are the cheapest in terms of
cost per TFLOPS. To quantify this, we report the average over three most affordable instances that fit
the chosen minimum requirements.

As a point of comparison, we also measure each system’s training performance for BERT-Large [68]
fine-tuning on SQuAD v1.1 [78] in PyTorch with mixed precision. We follow the official benchmark-
ing protocol by [75] and reuse the official performance results for V100, A100, and T4 instances.
The only exception is GTX 1080Ti, where we use full 32-bit precision because that device does not
support efficient half-precision operations.

Table 1: Cloud and marketplace GPU instance pricing for short-term usage.
Minimum system specifications Average cost, $/hour BERT-Large

training samples/sGPU CPU cores CPU type RAM, GB Regular Preemptible

Cloud instances

8× V100 64 Intel Xeon Broadwell 480 23.47 7.13 354
8× A100 96 AMD Epyc ROME 960 30.65 10.18 755

1× T4 4 Intel Xeon Cascade Lake 16 0.46 0.18 18

Marketplace instances

6× 3090 32 AMD Epyc Rome 480 5.04 4.17 154
4× 2080Ti 16 Intel Xeon Haswell 240 0.96 0.84 83.4

1× RTX 1080Ti 8 Intel Xeon Haswell 16 0.22 0.16 12

Table 1 shows two main tendencies. First, preemptible cloud instances are, on average, three times
cheaper than their non-preemptible counterparts8. Second, the high-end HPC-grade servers that offer
the highest raw performance are less cost-effective than lower-tier servers and marketplace instances.
In theory, one could match the raw floating-point performance of a 8×V100 instance at a fraction of
its cost using multiple lower-tier workstations, such as 4× RTX 2080Ti, with a smaller total cost.

8The cost can be up to 11× cheaper for some instance types, e.g. Azure V100 instances in the central US
region at the time of writing.
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However, in practice, running distributed training with these workstations is challenging due to their
unreliability and slow network connection.

Note that this analysis does not represent the cloud costs for sustained GPU usage. If an organization
plans to constantly use GPU resources over a period of multiple years, they can reduce the costs
by deploying their own compute infrastructure or relying on the sustained usage discounts reaching
up to 60–70%. Thus, the long-term compute costs are much harder to analyze and depend on a
number of additional factors, such as local electricity prices for on-premise infrastructure. However,
this scenario offers similar trade-offs: HPC-grade infrastructure offers greater interconnectivity, but
requires expensive network interface cards, high-end switches and a more complex setup process.

B Additional Related Work

In this section, we review some of the papers relevant to our work, but omitted from the main part
due to space constraints.

B.1 Decentralized training

In this subsection, we give additional details about the dependence of gossip-based optimization
methods on the spectral properties on the communication graph through the spectral properties
of the mixing matrix [44, 42] or the Laplacian matrix [45, 46] of the network. That is, gossip
finds approximate average on nodes with accuracy ε after O

(
(1− λ2(M))−1 log(ε−1)

)
iterations,

where M is the mixing matrix and λ2(M) is the second largest eigenvalue of M when sorted by
absolute value. The quantity η = 1 − λ2(M) is called the spectral gap of the mixing matrix M,
and η−1 is typically a polynomial of the total number of nodes N when the maximal degree of
the node is O(1). For example, for uniformly averaging M one can show that η−1 = O(N2) for
the ring topology (node degree 2), η−1 = O(N) for the two-dimensional torus topology (node
degree 2), and η−1 = O(1) for the fully connected graph (node degree N − 1); one can find
more examples in [79]. Similarly, the communication complexity of decentralized optimization
methods often has multiplicative dependence on either O(η−1) (see [80] and references therein) or
O(η−1/2) [42, 46, 81, 82], which is not improvable for gossip-based methods [83, 40].

Contrary to this, Moshpit All-Reduce does not depend on a fixed communication graph and the
properties of its mixing matrix. However, it depends on the number of averaging groups and the total
number of peers (see Theorem 3.2), which can be viewed as properties of a time-varying random
communication graph. Fortunately, this dependence is often much better than in gossip: as we
mentioned in the main part of the paper, even if workers are randomly split into pairs at each iteration,
the simplified version of Moshpit All-Reduce makes the average distortion (the left-hand side of
Equation 5) at least 2 times smaller after each round on average.

B.2 Compressed communication

Another popular approach to address the communication bottleneck is communication compres-
sion [84, 85, 86, 87, 88]: before sending any information (e.g., iterates, gradients, Hessians or more
sophisticated data) over the network, peers compress this information by applying a possibly random
transformation. As the result, peers send fewer bits for each communication round, but the total
number of communication rounds needed to achieve the predefined accuracy of the solution increases.
However, compression can be useful in situations when the reduction in communication costs of one
round is more important than the increase in the number of these rounds [89].

There are two distinct groups of works on distributed training with compressed communication: ones
that focus on unbiased compression operators (e.g., Rand-K, ℓp-quantization) and ones studying
algorithms with biased compressors (e.g., Top-K); see a detailed summary of popular compression
operators in [90]). Quantized SGD (QSGD) [85] and TernGrad [91] were among the first compression
methods with convergence guarantees. Next, the convergence analysis of these methods was gener-
alized and tightened in the (strongly) convex case in [92]. Moreover, the authors of [92] proposed
a modification of QSGD called DIANA: this algorithm is based on the quantization of gradients’
differences, which helps it achieve linear convergence in the strongly convex case when peers com-
pute full gradients. Next, DIANA was generalized to arbitrary unbiased compression in [93], where
authors also developed and analyzed the variance-reduced version of DIANA. After that, several
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further modifications, such as Accelerated DIANA [94] and DIANA with bidirectional compres-
sion [95, 96], were proposed. Finally, we refer the reader to [97, 98, 99, 100] for state-of-the-art
results for distributed methods with unbiased compression in the non-convex case.

However, naïve application of biased compression operators can lead to significantly worse per-
formance in practice. For instance, as it was shown recently in [90], parallel SGD with Top-1
compression can diverge exponentially fast. Therefore, biased compressors are used jointly with
so-called error-compensation [84]. The first analysis of Error-Compensated SGD (EC-SGD) was
proposed in [101, 102] which then was generalized and tightened in [90]. Next, several further im-
provements, such as an accelerated version of EC-SGD [103] and linearly converging EC-SGD [95],
were recently proposed. However, current theory does not show any superiority of distributed meth-
ods with biased compressors to the ones with unbiased compression operators. In addition, one
can combine decentralized communication with compression. Such combinations with unbiased
compression operators were studied in [104, 105] and with biased operators in [24, 106]. In this
paper, we do not study the interaction of different compression methods and Moshpit Averaging,
leaving this promising direction to future work.

B.3 Multiple local steps

Alternatively, to reduce the impact of the communication bottleneck, it is possible to perform several
local optimization steps on each peer between the communication rounds. This approach is based on
the idea that the increased computational load of peers will decrease the number of communication
rounds required to obtain the optimal parameters; it is frequently used in federated learning [107, 108].
In particular, one of the most popular methods with multiple local steps is called Local-SGD or
Federated Averaging [107, 109]. The first results on its convergence were given in [109, 110],
and later they were tightened and generalized both for homogeneous [61, 62] and heterogeneous
cases [61, 111]. Recently, further modifications of Local-SGD were proposed and analyzed: these
modifications include acceleration [112], variance reduction [60], communication compression
[113, 98, 99], decentralization [64, 63], adaptive and proximal methods [76, 114], and resistance to
client drift [59]. Moshpit SGD can perform multiple local gradient steps before synchronization by
design, as shown in Algorithm 2.

B.4 Asynchronous methods

In the previous subsections, we mostly discussed synchronous distributed methods, since they are
more widespread and better studied than asynchronous ones. Mainly, this is because asynchronous
methods are more difficult to implement, debug and analyze under general assumptions. However,
such methods can be more efficient in terms of using computational resources, which leads to faster
wall-clock convergence [115]. In recent years, several asynchronous stochastic methods [116, 117,
118], methods with no shared memory [119, 120], and methods with delayed updates [121, 122, 123,
95] were proposed and analyzed: one can find more details in a recent survey [115]. Moshpit SGD
belongs to this family of asynchronous approaches as well, because the averaging steps happen in
smaller groups and can be interleaved with local parameter updates.

B.5 Distributed Hash Tables

In this work, we set out to improve distributed averaging with a dynamic matchmaking protocol.
Without a central server, this protocol relies on decentralized data structures to organize peers. The
main data structure we use is the Distributed Hash Table, or DHT. On a high level, DHT is a distributed
fault-tolerant “dictionary” that can be accessed by every participant. Each key-value pair is stored on
a subset of peers determined by the hash function of the key.

Each participant has a unique identifier (ID) sampled uniformly from the hash function output
range. When storing a (key, value) pair, one must find k peers whose IDs are nearest to hash(key)
according to a chosen metric. After that, the participant requests each of those peers to store
(key, value). When retrieving a value for a key, one should compute hash(key), search for peers
with IDs nearest to that hash value and request the value from those peers.

Specific DHT versions, such as Chord [124] or Kademlia [55], employ different hash types and
algorithms for finding nearest peers. For instance, Kademlia DHT sorts peers based on the XOR
distance function: d(x, y) = int(x⊕ y).
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In DHT, each participant is directly aware of only a small subset of peers. When storing or retrieving
a key, the participant requests additional peers from its neighbors in a semi-greedy search, minimizing
the XOR distance until it finds k nearest peers. In Kademlia, nodes form a special navigable graph
structure that lets them find nearest peers in at most O(k + logN) requests to other peers, where N
is the total number of participants. Due to their scalability and fault-tolerance, DHTs found numerous
applications including BitTorrent, Ethereum, I2P and decentralized deep learning [36].

C Proofs of Mixing Properties of Moshpit All-Reduce

Notation. Throughout the following sections, we use the standard notation from the literature
on stochastic optimization. That is, for any n-dimensional vectors x = (x1, . . . , xn)

⊤, y =
(y1, . . . , yn)

⊤ ∈ Rn we use ⟨x, y⟩ to denote the standard inner product: ⟨x, y⟩ = x1y1 + . . .+ xnyn.
Next, we use ∥x∥ to denote the ℓ2=norm of x (∥x∥ =

√
⟨x, x⟩), E[ξ] to denote an expectation of a

random variable ξ, E[ξ | η] is used for the conditional expectation of ξ given η, and P{E} denotes
the probability of an event E.

C.1 Computing exact average in a full grid

As discussed in Section 3.1, Moshpit All-Reduce obtains the exact average of parameter vectors from
N peers arranged in a grid with d coordinates and M positions per coordinate when N ≡ Md. That
is, when the grid is full and each step averages M parameter values along a single grid coordinate
without repetitions, the algorithm needs only d steps to compute the actual average across all nodes.
In this section, we give a proof of this fact.

First, let us formally define the setting and the averaging steps of Moshpit All-Reduce in this
specific case. Let θi1i2...id be the parameter vector of the worker with coordinates i1, i2, . . . , id; each
coordinate ik takes values from 1 to M , because the hypercube of peers is completely full (thus, due
to the pigeonhole principle, there are no unoccupied coordinates). Next, arrange the coordinates of
these vector according to the order of averaging iterations: namely, at iteration 1

θ
1

i1i2...id
=

1

M

M∑
j1=1

θj1i2...id , i1 ∈ {1, . . . ,M}, (13)

which means that for the first iteration, we take the average across the first axis θ
1

and replicate it
across all M resulting vectors regardless of their index i1. The next averaging steps can be expressed
similarly with a simple recurrence relation:

θ
t

i1i2...id
=

1

M

M∑
jt=1

θ
t−1

i1...it−1jtit+1...id
. (14)

Given this formal definition, we can now state and prove the exact averaging result:

Theorem C.1 (Exact average in a full d-dimensional hypercube after d steps). Assume that Md peers
are arranged in a d-dimensional hypercube with M positions in each dimension. Also, assume that
each peer fully participates in every averaging step and M -sized groups for each averaging iteration
are determined based on the hypercube coordinates. Then, if Moshpit All-Reduce is ran in the above
setup for d iterations without repeating groups (i.e. averaging across each dimension exactly once),
its result for each participant is the average value of θ across all Md peers.

21



Proof. We can directly obtain the expression for the average by expanding the recurrence and
rearranging the sums:

θ
d

i1i2...id
=

1

M

M∑
jd=1

θ
d−1

i1...id−1jd
=

1

M

M∑
jd=1

 1

M

M∑
jd−1=1

θi1i2...jd−1jd

 = . . .

=
1

M

(
M∑

jd=1

(
1

M

M∑
jd−1=1

. . .

M∑
j2=1

(
1

M

M∑
j1=1︸ ︷︷ ︸

d summations

θj1...jd

)))

=
1

Md

M∑
jd=1

M∑
jd−1=1

. . .

M∑
j2=1

M∑
j1=1

θj1...jd =
1

Md

M∑
j1,...,jd=1

θj1...jd .

But this is exactly the global average of all θ, since there are Md participants and each vector is
represented in the sum because of summation over all possible indices.

Notice that for a given grid of peers, if some of its indices do not have corresponding parameter
vectors, Equation 14 may result in different average vectors on different workers due to different
numbers of peers along a coordinate for different indices. For example, running two iterations of
Moshpit Averaging with d = 2, M = 2 and three parameter vectors θ11, θ21, θ22 results in θ11+θ21

2

on the first worker and θ11+θ21
4 + θ22 on other workers, with neither equal to the global average.

However, the variance of the averaged vectors does decrease, which is formally proven in Section C.3.

C.2 Proof of Theorem 3.1

Below we provide the complete proof of Theorem 3.1. For the readers’ convenience, we restate the
theorem.
Theorem C.2 (Theorem 3.1). If all workers have non-zero probability of successfully running a
communication round in Moshpit Averaging and the order of peerst is random, then all local vectors
θti converge to the global average with probability 1:

∀i = 1, . . . , N

∥∥∥∥∥θti − 1

N

N∑
i=1

θ0i

∥∥∥∥∥
2

−−−→
t→∞

0. (15)

Proof of Theorem 3.1. First of all, we notice that (15) is equivalent to

∀i = 1, . . . , N, ∀j = 1, . . . , n

(
θti(j)−

1

N

N∑
i=1

θ0i (j)

)2

−−−→
t→∞

0, (16)

where θti(j) denotes j-th component of θti . Consider an arbitrary component j ∈ {1, . . . , n} and
the sequence of intervals {Ij,t}t≥0 where Ij,t = conv{θt1(j), θt2(j), . . . , θtN (j)}. Then, {Ij,t}t≥0 is
a sequence of nested intervals (Ij,t+1 ⊆ Ij,t∀t ≥ 0), since averaging in groups does not expand
the convex hull of {θt1, θt2, . . . , θtN}. For convenience, we specify the bounds of the intervals:
Ij,t = [aj,t, bj,t]. Using the Cantor’s intersection theorem, we conclude that

∞⋂
t=0

Ij,t = Ij = [aj , bj ],

where θ(j) = 1
N

∑n
i=1 θ

0
i (j) ∈ [aj , bj ]. If [aj , bj ] = {θ(j)} with probability 1, then (16) holds with

probability 1 as well. Suppose the opposite: there exist such j ∈ {1, . . . , n}, [a, b] and δ,∆ > 0 that
θ(j) ∈ [a, b], b− a = ∆ and

P

{
[a, b] ⊆

∞⋂
t=0

Ij,t︸ ︷︷ ︸
E

}
= δ > 0 and ∀ε > 0 P

{
[a− ε, b+ ε] ⊆

∞⋂
t=0

Ij,t︸ ︷︷ ︸
Eε

}
< δ.
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This implies that for all ε > 0 there exists such Tε > 0 that

P
{
∀t ≥ Tε aj,t ∈ [a− ε, a], bj,t ∈ [b, b+ ε]︸ ︷︷ ︸

E′
ε

}
= δε > 0.

Consider ε = ∆
(2N+100)2N

and assume that the event E′
ε holds. Next, we introduce new notation:

J t
left = {i ∈ {1, . . . , n} | θti(j) ∈ [a−ε, a]} and J t

right = {i ∈ {1, . . . , n} | θti(j) ∈ [b, b+ε]}. Since
E′

ε holds the sets J t
left and J t

right are non-empty for all t ≥ Tε with probability δε > 0:

P
{
∀t ≥ Tε J t

left ̸= ∅ and J t
right ̸= ∅

}
= δε > 0. (17)

We notice that every pair of workers i1, i2 has a non-zero probability of taking part in the averaging
inside the common group at each iteration since all workers have a non-zero probability of successfully
running a communication round and the order of peerst is random. This implies that every pair of
workers i1, i2 with probability 1 take part in the averaging inside the common group infinitely many
times when t goes to the infinity.

Next, we choose some t0 ≥ Tε. Let J t0
left = {il,1, . . . , il,ql} and J t0

right = {ir,1, . . . , ir,qr}. Consider
the event E′

ε,0 ⊆ E′
ε such that in E′

ε,0 peer il,1 computes an average in the group containing any peer
from J t0

right at some iteration t1 > t0. Our observations above imply that P{E′
ε,0} = P{E′

ε} = δε > 0.

Then, θt1il,1(j) ≥
N−1
N (a−ε)+ 1

N b = a−ε+ 1
N (∆+ε) = a− ∆

(2N+100)2N
+ 1

N

(
∆+ ∆

(2N+100)2N

)
>

a+ ∆
2N , i.e., θt1il,1(j) ∈ (a, b] meaning that il,1 ̸∈ J t1

left. The last part of the proof shows that for any
t ≥ t1, the peer il,1 will never be the part of J t

left and after a finite number of iterations J t
left = ∅ with

probability δε > 0 when E′
ε,0 holds, implying the contradiction with (17).

To show that, we consider the following set of peers: Ĵ t1
left = {i ∈ {1, . . . , n} | ∃t ≥ t1 : θti(j) ∈

[a − ε, a + ∆
2N )}. Next, we consider the event E′

ε,1 ⊆ E′
ε,0 such that in E′

ε,1 peer il,1 computes
an average in the group containing some peer il,avg,1 from Ĵ t1

left at some iteration t2 > t1 (and t2
is the first such moment after t1). Again, our observations imply P{E′

ε,1} = P{E′
ε,0} = δε > 0.

Then, θt2il,1(j) = θt2il,avg,1
(j) > N−1

N (a− ε) + 1
N

(
a+ ∆

2N

)
= a+ ∆

2N2 − (N−1)∆
N(2N+100)2N

> a+ ∆
4N2 .

After that, we consider the event E′
ε,2 ⊆ E′

ε,1 such that in E′
ε,2 peer il,1 or il,avg,1 computes an

average in the group containing a peer il,avg,2 ̸= il,avg,1 from Ĵ t1
left at an iteration t3 > t2 (and

t3 is the first such moment after t2). Then, θt3il,1(j), θ
t3
il,avg,1

(j) and θt3il,avg,2
(j) are greater than

N−1
N (a− ε) + 1

N

(
a+ ∆

4N2

)
= a+ ∆

4N3 − (N−1)∆
N(2N+100)2N

> a+ ∆
8N3 .

Therefore, after at least N − 1 of such averaging iterations, with probability δε all θti(j) will be
greater than a+ ∆

(2N)N
> a while E′

ε holds. This contradicts (17). Therefore,
∞⋂
t=0

Ij,t = {θ(j)}

with probability 1, which concludes the proof.

C.3 Proof of Theorem 3.2

In this section, we provide the complete proof of Theorem 3.2. For convenience, we restate the
theorem below.
Theorem C.3 (Theorem 3.2, averaging convergence rate). Consider the modification of Moshpit
All-Reduce that works as follows: at each iteration k ≥ 1 1) peers are randomly split into r disjoint
groups of sizes Mk

1 , . . . ,M
k
r in such a way that

∑r
i=1 M

k
i = N and Mk

i ≥ 1 ∀i = 1, . . . , r and
2) peers from each group compute their group average via All-Reduce. Let θ1, . . . , θN be the input
vectors of this procedure and θT1 , . . . , θ

T
N be the outputs after T iterations. Then,

E

[
1

N

N∑
i=1

∥θTi − θ∥2
]
=

(
r − 1

N
+

r

N2

)T

· 1

N

N∑
i=1

∥θi − θ∥2, (18)

where θ = 1
N

∑N
i=1 θi.
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Proof. First of all, let us clarify the procedure of random splitting of peers in r groups. We assume
that at iteration k of the modified algorithm we generate a random permutation πk = (πk

1 , . . . , π
k
N )

of 1, . . . , N . Next, Jk
1 = {πk

1 , . . . , π
k
Mk

1
} form the indices of the first group of workers, Jk

2 =

{πk
Mk

1 +1
, . . . , πk

Mk
2
} are the indices of the second group, and Jk

r = {πk
Mk

1 +Mk
2 +...+Mk

r−1+1
, . . . , πk

N}
are the indices of group r. In other words, we generate a random permutation and take contiguous
subgroups of indices corresponding to predefined group sizes Mk

i , starting from the first group.

By definition, we have
⊔r

i=1 J
k
i = {1, 2, . . . , N}, where ⊔ defines the disjoint union operator.

Moreover, notice that group sizes Mk
1 , . . . ,M

k
r can depend on k and even be random: for our analysis,

it is sufficient that the randomness defining the permutation is independent from Mk
1 , . . . ,M

k
r . Next,

vectors θk1 , . . . , θ
k
N are obtained by the following formula:

∀j = 1, . . . , N, θkj =
1

Mk
i

∑
t∈Jk

i

θk−1
t , where Jk

i is the group for which j ∈ Jk
i .

Using this, we show that the average of vectors {θki }ni=1 remains the same throughout the iterations
of Moshpit All-Reduce:

1

N

N∑
j=1

θkj =
1

N

r∑
i=1

Mk
i · 1

Mk
i

∑
t∈Jk

i

θk−1
t =

1

N

r∑
i=1

∑
t∈Jk

i

θk−1
t =

1

N

N∑
j=1

θk−1
j .

Therefore, the quantity 1
N

∑N
j=1 ∥θkj − θ∥2 (average distortion) measures the quality of averaging.

For this quantity, we can derive the following expression:

1

N

N∑
j=1

∥θkj − θ∥2 =
1

N

r∑
i=1

Mk
i

∥∥∥∥∥∥ 1

Mk
i

∑
t∈Jk

i

θk−1
t − θ

∥∥∥∥∥∥
2

=
1

N

r∑
i=1

1

Mk
i

∑
t∈Jk

i

∥θk−1
t − θ∥2 + 2

∑
t,l∈Jk

i ,t<l

⟨θk−1
t − θ, θk−1

l − θ⟩

 .

Taking the expectation Eπk [·] with respect to the randomness coming from the choice of πk we get

Eπk

 1

N

N∑
j=1

∥θkj − θ∥2


= 1
N

r∑
i=1

1
Mk

i

(
Eπk

[ ∑
t∈Jk

i

∥θk−1
t − θ∥2

]
+2Eπk

[ ∑
t,l∈Jk

i ,t<l

⟨θk−1
t − θ, θk−1

l − θ⟩

])
.

Since ∀j, j1, j2 ∈ {1, . . . , N}, j1 ̸= j2 and for all i = 1, . . . , r

P
{
j ∈ Jk

i

}
=

Mk
i

N
, P

{
j1, j2 ∈ Jk

i

}
=

Mk
i (M

k
i − 1)

N2
,
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we have

Eπk

 1

N

N∑
j=1

∥θkj − θ∥2
 =

1

N

r∑
i=1

1

N

N∑
j=1

∥θk−1
j − θ∥2

+
1

N

r∑
i=1

2
Mk

i − 1

N2

∑
1≤j1<j2≤N

⟨θk−1
j1

− θ, θk−1
j2

− θ⟩

=
r

N2

N∑
j=1

∥θk−1
j − θ∥2 + 2

N − r

N3

∑
1≤j1<j2≤N

⟨θk−1
j1

− θ, θk−1
j2

− θ⟩

=

(
r

N2
− N − r

N3

) N∑
j=1

∥θk−1
j − θ∥2 + N − r

N3

N∑
j=1

∥θk−1
j − θ∥2

+2
N − r

N3

∑
1≤j1<j2≤N

⟨θk−1
j1

− θ, θk−1
j2

− θ⟩

=
N(r − 1) + r

N3

N∑
j=1

∥θk−1
j − θ∥2 + N − r

N3

∥∥∥∥∥∥
N∑
j=1

(θk−1
j − θ)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
∥Nθ−Nθ∥2=0

=

(
r − 1

N
+

r

N2

)
· 1

N

N∑
j=1

∥θk−1
j − θ∥2.

Finally, we take the full expectation from the both sides of the above equation and apply the tower
property E [Eπk [·]] = E [·]:

E

 1

N

N∑
j=1

∥θkj − θ∥2
 =

(
r − 1

N
+

r

N2

)
E

 1

N

N∑
j=1

∥θk−1
j − θ∥2

 .

Unrolling the recurrence for k = T , we establish (18).

Remark C.1. The result implies that increasing the group size α > 1 times implies almost α times
faster convergence to the average.
Remark C.2. Our analysis can be easily generalized to the case when number of groups r can
depend on k and be a random variable independent from the choice of permutations and the number
of groups at previous steps. In this case, (18) transforms into

E

[
1

N

N∑
i=1

∥θTi − θ∥2
]
=

1

N

N∑
i=1

∥θi − θ∥2 ·
T∏

k=1

(
E[rk]− 1

N
+

E[rk]
N2

)
, (19)

where rk is the number of groups at iteration k.

C.4 Additional Guarantees For Moshpit Averaging

In this section, we derive the result measuring the rate of variance reduction when averaging random
vectors with Algorithm 1. We start with the following technical lemma:
Lemma C.1. Let ξ ∼ Binom(M,p) have a binomial distribution with parameters M (number of
trials) and p (probability of success for each trial). Then

m1(M,p) := E
[
min

{
1

ξ
, 1

}]
= (1− p)M +

M∑
i=1

(1− p)M−i − (1− p)M

i
, (20)

m2(M,p) := E
[
min

{
1

ξ2
, 1

}]
= (1− p)M +

M∑
i=1

(1− p)M−i − (1− p)M

i

M∑
j=i

1

j
. (21)
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Proof. We start with the proof of (20). By definition of the expectation, we have

E
[
min

{
1

ξ
, 1

}]
= (1− p)M +

M∑
i=1

1

i
pi(1− p)M−i

(
M

i

)
.

For simplicity of further derivations, we introduce the following notation: m1(M,p) =

E
[
min

{
1
ξ , 1
}]

and m2(M,p) = E
[
min

{
1
ξ2 , 1

}]
. Taking the derivative of m1(M,p) by p, we

obtain

m′
1(M,p) = −M(1− p)M−1 +

M∑
i=1

pi−1(1− p)M−i

(
M

i

)

−
M∑
i=1

M − i

i
pi(1− p)M−i−1

(
M

i

)

= −M(1− p)M−1 +
1

p

(
−(1− p)M +

M∑
i=0

pi(1− p)M−i

(
M

i

))

− M

1− p

M∑
i=1

1

i
pi(1− p)M−i

(
M

i

)

+
1

1− p

(
−(1− p)M +

M∑
i=0

pi(1− p)M−i

(
M

i

))

= −M(1− p)M−1 +
1

p

(
1− (1− p)M

)
− M

1− p

(
m1(M,p)− (1− p)M

)
+

1

1− p

(
1− (1− p)M

)
=

1

p(1− p)
− (1− p)M−1

p
− M

1− p
m1(M,p).

Rearranging the terms, we get the following linear first-order ODE

m′
1(M,p) +

M

1− p
m1(M,p) =

1

p(1− p)
− (1− p)M−1

p
. (22)

To solve it, we consider the following homogeneous ODE:

m′
1(M,p) +

M

1− p
m1(M,p) = 0.

The solution of this ODE is m1(M,p) = C(1−p)M , where C ∈ R is an arbitrary real constant. Next,
we go back to the initial ODE (22) and try to find a solution of the form m1(M,p) = C(p)(1− p)M ,
where C(p) : R → R is a differentiable function:(

C(p)(1− p)M
)′
+

M

1− p
C(p)(1− p)M =

1

p(1− p)
− (1− p)M−1

p

⇓

C ′(p)(1− p)M =
1

p(1− p)
− (1− p)M−1

p

⇓

C ′(p) =
1

p(1− p)M+1
− 1

p(1− p)
.

Since
1

x(1− x)k+1
=

1

x(1− x)k
+

1

(1− x)k+1
(23)
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for all x ̸∈ {0, 1} and all non-negative integers k, we have

C ′(p) =
1

p
+

1

1− p
+

1

(1− p)2
+ . . .+

1

(1− p)M+1
− 1

p
− 1

1− p

⇓

C ′(p) =

M∑
i=1

(1− p)−i−1,

hence

C(p) = Ĉ +

M∑
i=1

1

i
(1− p)−i,

where Ĉ is a real constant. Putting all together, we obtain

m1(M,p) = C(p)(1− p)M = Ĉ(1− p)M +

M∑
i=1

1

i
(1− p)M−i.

Taking m1(M, 0) = 1 into account, we conclude that Ĉ = 1−
∑M

i=1
1
i and obtain (20).

Using a similar technique, we derive (21). By definition of the expectation, we have

m2(M,p) = (1− p)M +

M∑
i=1

1

i2
pi(1− p)M−i

(
M

i

)
.

Taking the derivative of m2(M,p) by p, we obtain

m′
2(M,p) = −M(1− p)M−1 +

M∑
i=1

1

i
pi−1(1− p)M−i

(
M

i

)

−
M∑
i=1

M − i

i2
pi(1− p)M−i−1

(
M

i

)

= −M(1− p)M−1 +
1

p

M∑
i=1

1

i
pi(1− p)M−i

(
M

i

)

− M

1− p

M∑
i=1

1

i2
pi(1− p)M−i

(
M

i

)
+

1

1− p

M∑
i=1

1

i
pi(1− p)M−i

(
M

i

)
= −M(1− p)M−1 +

1

p

(
m1(M,p)− (1− p)M

)
+

1

1− p

(
−Mm2(M,p) +M(1− p)M +m1(M,p)− (1− p)M

)
=

m1(M,p)

p(1− p)
− (1− p)M−1

p
− M

1− p
m2(M,p).

Rearranging the terms, we get the following linear first-order ODE

m′
2(M,p) +

M

1− p
m2(M,p) =

m1(M,p)

p(1− p)
− (1− p)M−1

p
. (24)

To solve this ODE, we consider the homogeneous ODE:

m′
2(M,p) +

M

1− p
m2(M,p) = 0.

The solution of this ODE is m2(M,p) = C(1−p)M , where C ∈ R is an arbitrary real constant. Next,
we go back to the initial ODE (24) and try to find a solution of the form m2(M,p) = C(p)(1− p)M ,
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where C(p) : R → R is a differentiable function:(
C(p)(1− p)M

)′
+

M

1− p
C(p)(1− p)M =

m1(M,p)

p(1− p)
− (1− p)M−1

p

⇓

C ′(p)(1− p)M =
m1(M,p)

p(1− p)
− (1− p)M−1

p

⇓

C ′(p) =
m1(M,p)

p(1− p)M+1
− 1

p(1− p)
.

Using (23) and (20), we derive

C ′(p)
(20)
= −

M∑
i=1

1
i

p(1− p)
+

M∑
i=1

1
i (1− p)M−i

p(1− p)M+1

= −
M∑
i=1

1

ip(1− p)
+

M∑
i=1

1

ip(1− p)i+1

(23)
= −

M∑
i=1

1

i

(
1

p
+

1

1− p

)

+

M∑
i=1

1

i

(
1

p
+

1

1− p
+

1

(1− p)2
+ . . .+

1

(1− p)i+1

)

=

M∑
i=1

1

i

(
1

(1− p)2
+ . . .+

1

(1− p)i+1

)
=

M∑
i=1

1

(1− p)i+1

M∑
j=i

1

j
,

hence

C(p) = Ĉ +

M∑
i=1

1

i
(1− p)−i

M∑
j=i

1

j
,

where Ĉ is a real constant. Putting all together, we obtain

m2(M,p) = C(p)(1− p)M = Ĉ(1− p)M +

M∑
i=1

1

i
(1− p)M−i

M∑
j=i

1

j
.

Taking m2(M, 0) = 1 into account, we conclude that Ĉ = 1−
∑M

i=1
1
i

∑M
j=i

1
j and obtain (21).

Using this lemma, we derive the following result:
Theorem C.4. Assume that peers participating in Moshpit Averaging have independent random
vectors θ1, . . . , θN with means θ1, . . . , θN and variances bounded by σ2 before the averaging. Let
θT1 , . . . , θ

T
N be the outputs of Moshpit Averaging after T iterations. Finally, we assume that each peer

from the grid can be dropped out for the whole averaging process before averaging independently
from other peers, i.e., N ∼ Binom(Md, p). Then, for all i = 1, . . . , N we have

E
[∥∥θTi − Eθ

[
θTi
]∥∥2] ≤ MT−1σ2m1(M − 1, p) (m2(M − 1, p))

T−1
, (25)

where functions m1(M,p) and m2(M,p) are defined in (20) and (21) respectively, and Eθ [·] denotes
the expectation w.r.t. the randomness from θ1, . . . , θN . Moreover, if p ≥ 2

3 and M ≥ 11, then
m1(M − 1, p) ≤ 2

M , m2(M − 1, p) ≤ 3
M2 and

E
[∥∥θTi − Eθ

[
θTi
]∥∥2] ≤ 2σ2

M(M/3)T−1
. (26)
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Proof. First of all, we recall an equivalent formulation of Moshpit Averaging. Consider a hypercube
{1, . . . ,M}d. One can consider the elements of this hypercube as hyperindices and assign a unique
hyperindex to each peer so that peers can be viewed as vertices in the hypercube. Then, during the
k-th iteration of Moshpit All-Reduce, each worker computes the average among those peers that have
hyperindices with the same values except the k-th index; in other words, peers compute averages
along the k-th dimension of the hypercube. Next, if N = 0, we assume that θTi = Eθ

[
θTi
]

and (25)
holds for free. Therefore, to derive (25), we assume that N > 0.

More formally, we use the following notation: θCi = θi for all i = 1, . . . , N , where Ci =
(ci1, c

i
2, . . . , c

i
d), c

i
j ∈ {1, . . . ,M} for all j = 1, . . . ,M , and Ci ̸= Ck for i ̸= k. Let C be the

set of hyperindices corresponding to all peers. Next, we use θtCi
to define the vector stored on i-th

peer after t iterations of Moshpit Averaging. Then, for all i = 1, . . . , N we have θ0Ci
= θCi

and for
all t = 1, . . . , d

θtCi
=

1

bi,t

∑
k∈Ji,t

θt−1
Ck

,

where Ji,t = {k ∈ N | Ck = (ck1 , . . . , c
k
d) ∈ C and ckj = cij ∀j ̸= t} and bi,t = |Ji,t|. Using this,

we derive the following formula for θtCi
:

θTi ≡ θTCi
=

1

bi,T

∑
i1∈Ji,T

1

bi1,T−1

∑
i2∈Ji1,T−1

1

bi2,T−2

∑
i3∈Ji2,T−1

. . .
1

biT−1,1

∑
iT∈JiT−1,1

θiT .

Taking the expectation w.r.t. θ1, . . . , θN , we get

Eθ

[
θTi
]
=

1

bi,T

∑
i1∈Ji,T

1

bi1,T−1

∑
i2∈Ji1,T−1

1

bi2,T−2

∑
i3∈Ji2,T−1

. . .
1

biT−1,1

∑
iT∈JiT−1,1

θiT .

Using the independence of θ1, . . . , θN , we derive

Eθ

[∥∥θTi − Eθ

[
θTi
]∥∥2] = Eθ


∥∥∥∥∥∥
∑

i1∈Ji,T

∑
i2∈Ji1,T−1

. . .
∑

iT∈JiT−1,1

θiT − θiT
bi,T bi1,T−1 . . . biT−1,1

∥∥∥∥∥∥
2


=
∑

i1∈Ji,T

∑
i2∈Ji1,T−1

. . .
∑

iT∈JiT−1,1

Eθ

[
∥θiT − θiT ∥2

]
b2i,T b

2
i1,T−1 . . . b

2
iT−1,1

≤
∑

i1∈Ji,T

∑
i2∈Ji1,T−1

. . .
∑

iT∈JiT−1,1

σ2

b2i,T b
2
i1,T−1 . . . b

2
iT−1,1

=
∑

i1∈Ji,T

∑
i2∈Ji1,T−1

. . .
∑

iT−1∈JiT−2,2

σ2

b2i,T b
2
i1,T−1 . . . b

2
iT−2,2

biT−1,1
.

Next, taking the full expectation from the both sides of the previous inequality and using the tower
property, we obtain

E
[∥∥θTi − Eθ

[
θTi
]∥∥2]≤E

 ∑
i1∈Ji,T

∑
i2∈Ji1,T−1

. . .
∑

iT−1∈JiT−2,2

σ2

b2i,T b
2
i1,T−1 . . . b

2
iT−2,2

biT−1,1

. (27)

Notice that Jik,T−k ∩ Jik+1,T−k−1 = {ik+1} for all k = 0, . . . , T − 1, where i0 = i. Moreover, for
k1, k2 ∈ {0, 1, . . . , T}, k1 < k2 either Jik1

,T−k1
∩Jik2

,T−k2
= {k2} or Jik1

,T−k1
∩Jik2

,T−k2
= ∅.

The first situation is possible iff ik1
= ik1+1 = . . . ik2−1.

Taking these observations about sets Jik,T−k into account, we consider the sets J ′
ik,T−k = Jik,T−k \

{ik} for k = 0, 1, . . . , T − 1. These sets are pairwise disjoint and their cardinalities b′ik,T−k =

|J ′
ik,T−k| satisfy the following relations: bik,T−k = 1 + b′ik,T−k ≥ max{1, b′ik,T−k} =: b̂ik,T−k for

k = 1, 2, . . . , T − 1. Moreover, b′i,T , b
′
i1,T−1, . . . , b

′
iT−1,1

are independent random variables from
the binomial distribution Binom(M − 1, p). Finally, we notice that the number of terms in (27) is
upper-bounded by MT−1, since |Ji,t| ≤ M for all i = 1, . . . , N and t = 0, . . . , T .
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Putting all together, we obtain

E
[∥∥θTi − Eθ

[
θTi
]∥∥2] ≤ E

 ∑
i1∈Ji,T

∑
i2∈Ji1,T−1

. . .
∑

iT−1∈JiT−2,2

σ2

b̂2i,T b̂
2
i1,T−1 . . . b̂

2
iT−2,2

b̂iT−1,1


≤ MT−1σ2E

[
1

ξ̂21 ξ̂
2
2 . . . ξ̂

2
T−1ξ̂T

]

= MT−1σ2E

[
1

ξ̂21

]
E

[
1

ξ̂22

]
. . .E

[
1

ξ̂2T−1

]
E
[
1

ξ̂T

]
,

where ξ̂2k = max{1, ξ21} for k = 1, . . . , T and ξ1, . . . , ξT are i.i.d. random variables having the
binomial distribution Binom(M−1, p). Then one can simplify the inequality above using Lemma C.1
and get

E
[∥∥θTi − Eθ

[
θTi
]∥∥2] ≤ MT−1σ2m1(M − 1, p) (m2(M − 1, p))

T−1
,

where functions m1(M,p) and m2(M,p) are defined in (20) and (21) respectively.

Next, we simplify the obtained upper bound under the assumption that M and p are not too small;
specifically, M ≥ 11 and p ≥ 2/3. From (20), we have

m1(M − 1, p) = (1− p)M−1 +

M−1∑
i=1

1

i

(
(1− p)M−1−i − (1− p)M−1

)
≤ (1− p)M−1

M−1∑
i=1

1

i(1− p)i
.

Since
1

(k + 1)(1− p)k+1
· k(1− p)k

1
=

k

(k + 1)(1− p)
−−−−→
k→∞

1

1− p
≥ 3,

we have

(1− p)M−1
M−1∑
i=1

1

i(1− p)i
= Θ

(
(1− p)M · 1

M(1− p)M

)
= Θ

(
1

M

)
.

Using simple algebra, one can prove that for M ≥ 11 and p ≥ 2/3 the following inequality holds:

m1(M − 1, p) ≤ (1− p)M−1
M−1∑
i=1

1

i(1− p)i
≤ 2

M
.

Similarly, we analyze m2(M − 1, p):

m2(M − 1, p) = (1− p)M−1 +

M−1∑
i=1

1

i

(
(1− p)M−1−i − (1− p)M−1

)M−1∑
j=i

1

j

≤ (1− p)M−1
M−1∑
i=1

1

i(1− p)i

M−1∑
j=i

1

j
.

Since

1
k(1−p)k

M−1∑
j=k

1
j

1
(k−1)(1−p)k−1

M−1∑
j=k−1

1
j

=

(k − 1)
M−1∑
j=k

1
j

k(1− p)

(
1

k−1 +
M−1∑
j=k

1
j

) ≥
3(k − 1) · 1

k

k
(

1
k−1 + 1

k

)

=
3(k − 1)2

k(2k − 1)
−−−−→
k→∞

3

2
,
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we have

(1− p)M−1
M−1∑
i=1

1

i(1− p)i

M−1∑
j=i

1

j
= Θ

(
(1− p)M · 1

M2(1− p)M

)
= Θ

(
1

M2

)
.

Next, one can prove with simple algebra that for M ≥ 11 and p ≥ 2/3 the following inequality holds:

m2(M − 1, p) ≤ (1− p)M−1
M−1∑
i=1

1

i(1− p)i

M−1∑
j=i

1

j
≤ 3

M2
.

Plugging the obtained upper bounds for m1(M−1, p) and m2(M−1, p) in (25), we obtain (26).

D Convergence Proofs of Moshpit SGD

In this section, we provide the complete statements of the theorems establishing the convergence
of Moshpit SGD together with the full proofs. First, we introduce all necessary definitions, basic
inequalities and auxiliary lemmas; then we prove the convergence in strongly convex and convex
cases; lastly, we provide the proofs for the non-convex case.

D.1 Definitions, Basic Facts and Auxiliary Results

Below we provide several classical definitions and results which are used in our proofs.

D.1.1 Standard Definitions from Optimization Theory

Definition D.1 (L-smoothness). A function f : Rn → R is called L-smooth if for all x, y ∈ Rn, the
following inequality holds:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (28)

If the function f is L-smooth, then for all x, y ∈ Rn

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2. (29)

Next, if f is additionally convex and x∗ is its minimizer, then for all x ∈ Rd

∥∇f(x)∥2 ≤ 2L (f(x)− f(x∗)) . (30)
Definition D.2 (µ-strong convexity). A differentiable function f : Rn → R is called µ-strongly
convex if there exists a constant µ ≥ 0 such that for all x, y ∈ Rn

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2. (31)

D.1.2 Basic Facts

For all a, b, θ1, . . . , θN ∈ Rn and α > 0, the following inequalities hold:
∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (32)∥∥∥∥∥ 1

N

N∑
i=1

θi

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥θi∥2, (33)

⟨a, b⟩ ≤ ∥a∥2

2α
+

α∥b∥2

2
. (34)

D.1.3 Properties of Expectation

Variance decomposition. For a random vector η ∈ Rd and any deterministic vector x ∈ Rd, the
variance satisfies

E
[
∥η − Eη∥2

]
= E

[
∥η − x∥2

]
− ∥Eη − x∥2 (35)

Tower property of expectation. For any random variables ξ, η ∈ Rd we have
E [ξ] = E [E [ξ | η]] (36)

under the assumption that E[ξ] and E [E [ξ | η]] are well-defined.
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D.1.4 Auxiliary Results

For the readers’ convenience, we list all auxiliary results that we use in our proofs below. The first
result is classical and establishes that the gradient descent step is a contractive operator.

Lemma D.1 (Lemma 6 from [59]). For any L-smooth and µ-strongly convex function f : Rn → R,
points x, y ∈ Rn, and stepsize γ ∈ (0, 1/L], the following inequality holds:

∥x− γ∇f(x)− y + γ∇f(y)∥2 ≤ (1− γµ)∥x− y∥2. (37)

The next two lemmas are useful for estimating typical recurrences appearing in the analysis.

Lemma D.2 (Lemma I.2 from [60]). Let {rk}k≥0 satisfy

rK ≤ a

γWK
+ c1γ + c2γ

2

for all K ≥ 0 with some constants a, c2 ≥ 0, c1 ≥ 0, where wk = (1 − γµ(1 − δpv,1))
−(k+1),

WK =
∑K

k=0 wk, µ > 0, δpv,1 ∈ [0, 1) and γ ≤ γ0 for some γ0 > 0, γ0 ≤ 1/µ(1−δpv,1). Then, for
all K such that

either
ln
(
max

{
2,min

{
aµ2(1−δpv,1)

2K2
/c1, aµ

3(1−δpv,1)
3K3

/c2
}})

K
≤ 1

or γ0 ≤
ln
(
max

{
2,min

{
aµ2(1−δpv,1)

2K2
/c1, aµ

3(1−δpv,1)
3K3

/c2
}})

(1− δpv,1)µK

and

γ = min

{
γ0,

ln
(
max

{
2,min

{
aµ2(1−δpv,1)

2K2
/c1, aµ

3(1−δpv,1)
3K3

/c2
}})

(1− δpv,1)µK

}
we have that

rK = Õ
(

a

γ0
exp (−γ0µ(1− δpv,1)K) +

c1
(1− δpv,1)µK

+
c2

(1− δpv,1)2µ2K2

)
.

Lemma D.3 (Lemma I.3 from [60]). Let {rk}k≥0 satisfy

rK ≤ a

γK
+ c1γ + c2γ

2

for all K ≥ 0 with some constants a, c2 ≥ 0, c1 ≥ 0 where γ ≤ γ0 for some γ0 > 0. Then for all K
and

γ = min

{
γ0,

√
a

c1K
, 3

√
a

c2K

}
we have that

rK = O
(

a

γ0K
+

√
ac1
K

+
3
√
a2c2
K2/3

)
.

Finally, the lemma below is useful for our convergence analysis in the non-convex case.

Lemma D.4 (Lemma I.1 from [60]). For any τ random vectors ξ1, . . . , ξτ ∈ Rd such that ∀t =
2, . . . , τ the random vector ξt depends on ξ1, . . . , ξt−1 and does not depend on ξt+1, . . . , ξτ the
following inequality holds

E

∥∥∥∥∥
τ∑

t=1

ξt

∥∥∥∥∥
2
 ≤ eτ

τ∑
t=1

E
[
∥Et[ξt]∥2

]
+ e

τ∑
t=1

E
[
∥ξt − Et[ξt]∥2

]
, (38)

where Et[·] denotes the conditional expectation E[ · | ξt−1, . . . , ξ1].
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D.2 Convex Case

In this section, we give the full proof of Theorem 3.3 about the convergence of Moshpit SGD for
convex and strongly convex problems. The scheme of the proof follows the similar steps as in the
state-of-the-art analysis of Local-SGD [61, 62, 60]. We start with the following lemma:
Lemma D.5. Let f1 = . . . = fN = f , function f be µ-strongly convex (Def. D.2) and L-smooth
(see Def. D.1), and Assumptions 3.1 and 3.2 hold with ∆k

pv = δpv,1γµE[∥θk − θ∗∥2] + γ2δ2pv,2 and
θ̃ = θ∗, where θ∗ ∈ argminθ∈Rn f(θ) and δpv,1 ∈ [0, 1), δpv,2 ≥ 0. Then, for any k ≥ 0 the iterates
produced by Moshpit SGD with γ ≤ 1/4L satisfy

γE
[
f(θk)− f(θ∗)

]
≤ (1− γµ(1− δpv,1))E

[
∥θk − θ∗∥2

]
− E

[
∥θk+1 − θ∗∥2

]
+
3Lγ

2
E[Vk] + γ2

(
σ2

Nmin
+ δ2pv,2

)
, (39)

where Vk = 1
Nk

∑
i∈Pk

∥θki − θk∥2 and θk = 1
Nk

∑
i∈Pk

θki .

Proof. Recall that Assumption 3.2 with ∆k
pv = δpv,1γµE[∥θk − θ∗∥2] + γ2δ2pv,2 and θ̃ = θ∗ states

E
[
⟨θk+1 − θ̂k+1, θk+1 + θ̂k+1 − 2θ∗⟩

]
≤ δpv,1γµE[∥θk − θ∗∥2] + γ2δ2pv,2, (40)

where θ̂k+1 = 1
Nk

∑
i∈Pk

(θki − γgki ). Next, the definition of θ̂k+1 implies

θ̂k+1 =
1

Nk

∑
i∈Pk

θki − γ

Nk

∑
i∈Pk

gki = θk − γgk,

where gk = 1
Nk

∑
i∈Pk

gki . Using this, we derive

∥θk+1 − θ∗∥2 = ∥θ̂k+1 − θ∗∥2 + 2⟨θk+1 − θ̂k+1, θ̂k+1 − θ∗⟩+ ∥θk+1 − θ̂k+1∥2

= ∥θk − θ∗ − γgk∥2 + ⟨θk+1 − θ̂k+1, θk+1 + θ̂k+1 − 2θ∗⟩
= ∥θk − θ∗∥2 − 2γ⟨θk − θ∗, gk⟩+ γ2∥gk∥2

+⟨θk+1 − θ̂k+1, θk+1 + θ̂k+1 − 2θ∗⟩.

Taking the conditional expectation E
[
· | θk

]
:= E

[
· | Pk, θ

k
i , i ∈ Pk

]
from the both sides of the

previous equation and using Assumption 3.1, we obtain

E
[
∥θk+1 − θ∗∥2 | θk

]
= ∥θk − θ∗∥2 − 2γ

〈
θk − θ∗,

1

Nk

∑
i∈Pk

∇f(θki )

〉

+γ2E

∥∥∥∥∥ 1

Nk

∑
i∈Pk

gki

∥∥∥∥∥
2

| θk


+E
[
⟨θk+1 − θ̂k+1, θk+1 + θ̂k+1 − 2θ∗⟩ | θk

]
. (41)

Next, we estimate the second and the third terms in the right-hand side of (41). First,

−2γ

〈
θk − θ∗,

1

Nk

∑
i∈Pk

∇f(θki )

〉
=

2γ

Nk

∑
i∈Pk

(
⟨θ∗ − θki ,∇f(θki )⟩+ ⟨θki − θk,∇f(θki )⟩

)
(31),(29)
≤ 2γ

Nk

∑
i∈Pk

(
f(θ∗)− f(θki )−

µ

2
∥θki − θ∗∥2

)
+

2γ

Nk

∑
i∈Pk

(
f(θki )− f(θk) +

L

2
∥θki − θk∥2

)
(33)
≤ 2γ

(
f(θ∗)− f(θk)

)
− γµ∥θk − θ∗∥2 + LγVk, (42)
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where Vk = 1
Nk

∑
i∈Pk

∥θki − θk∥2. Secondly, since stochastic gradients {gki }i∈Pk
are computed

independently, we get

γ2E

∥∥∥∥∥ 1

Nk

∑
i∈Pk

gki

∥∥∥∥∥
2

| θk
 (35)

= γ2

∥∥∥∥∥ 1

Nk

∑
i∈Pk

∇f(θki )

∥∥∥∥∥
2

+γ2E

∥∥∥∥∥ 1

Nk

∑
i∈Pk

(gki −∇f(θki ))

∥∥∥∥∥
2

| θk


(33)
≤ 2γ2

∥∥∥∥∥ 1

Nk

∑
i∈Pk

(∇f(θki )−∇f(θk))

∥∥∥∥∥
2

+ 2γ2∥∇f(θk)∥2

+
γ2

N2
k

∑
i∈Pk

E
[
∥gki −∇f(θki )∥2 | θk

]
(33),(30),(7)

≤ 2γ2

Nk

∑
i∈Pk

∥∇f(θki )−∇f(θk)∥2

+4Lγ2
(
f(θk)− f(θ∗)

)
+

γ2σ2

Nk

(28)
≤ 2L2γ2

Nk

∑
i∈Pk

∥θki − θk∥2︸ ︷︷ ︸
2L2γ2Vk

+4Lγ2
(
f(θk)− f(θ∗)

)
+

γ2σ2

Nmin
. (43)

Plugging (42) and (43) in (41), we obtain

E
[
∥θk+1 − θ∗∥2 | θk

]
≤ (1− γµ)∥θk − θ∗∥2 − 2γ (1− 2Lγ)

(
f(θk)− f(θ∗)

)
+Lγ (1 + 2Lγ)Vk +

γ2σ2

Nmin

+E
[
⟨θk+1 − θ̂k+1, θk+1 + θ̂k+1 − 2θ∗⟩ | θk

]
,

and

E
[
∥θk+1 − θ∗∥2

] (40)
≤ (1− γµ(1− δpv,1))E

[
∥θk − θ∗∥2

]
− 2γ (1− 2Lγ)E

[
f(θk)− f(θ∗)

]
+Lγ (1 + 2Lγ)E[Vk] + γ2

(
σ2

Nmin
+ δ2pv,2

)
≤ (1− γµ(1− δpv,1))E

[
∥θk − θ∗∥2

]
− γE

[
f(θk)− f(θ∗)

]
+
3Lγ

2
E[Vk] + γ2

(
σ2

Nmin
+ δ2pv,2

)
,

where in the last inequality we use γ ≤ 1/4L.

Next, we estimate the term E[Vk] measuring the expected dissimilarity between local iterates and
their global average at iteration k.
Lemma D.6. Let f1 = . . . = fN = f , function f be µ-strongly convex (Def. D.2) and L-smooth
(see Def. D.1), and Assumptions 3.1 and 3.2 hold with ∆k

pv = δpv,1γµE[∥θk − θ∗∥2] + γ2δ2pv,2 and
θ̃ = θ∗, where θ∗ ∈ argminθ∈Rn f(θ) and δpv,1 ∈ [0, 1), δpv,2 ≥ 0. Then, for any k ≥ 0 the iterates
produced by Moshpit SGD with γ ≤ 1/4L satisfy

E[Vk] ≤ 2γ2
(
4δ2aq + (τ − 1)σ2

)
, (44)

where Vk = 1
Nk

∑
i∈Pk

∥θki − θk∥2 and θk = 1
Nk

∑
i∈Pk

θki .
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Proof. First of all, if k = aτ for some integer a ≥ 0, then (44) follows from Assumption 3.2
(eq. (10)). Therefore, we consider such k that k = aτ + t′ for some t′ ∈ (0, τ). Then, for any
i, j ∈ Pk, i ̸= j

E
[
∥θki − θkj ∥2 | θk−1

]
= E

[
∥θk−1

i − γgk−1
i − θk−1

j + γgk−1
j ∥2 | θk−1

]
(35)
= ∥θk−1

i − γ∇f(θk−1
i )− θk−1

j + γ∇f(θk−1
j )∥2

+γ2E
[
∥gk−1

i −∇f(θk−1
i ) + gk−1

j −∇f(θk−1
j )∥2 | θk−1

]
.

Using Lemma D.1 and independence of gk−1
i and gk−1

j for given θk−1
i , θk−1

j , i ̸= j we derive

E
[
∥θki − θkj ∥2 | θk−1

] (37)
≤ (1− γµ)∥θk−1

i − θk−1
j ∥2 + γ2E

[
∥gk−1

i −∇f(θk−1
i )∥2 | θk−1

]
+γ2E

[
∥gk−1

j −∇f(θk−1
j )∥2 | θk−1

]
(7)
≤ (1− γµ)∥θk−1

i − θk−1
j ∥2 + 2γ2σ2,

from which we get the following:

Eg

[
∥θki − θkj ∥2

]
≤ (1− γµ)Eg

[
∥θk−1

i − θk−1
j ∥2

]
+ 2γ2σ2 ≤ Eg

[
∥θk−1

i − θk−1
j ∥2

]
+ 2γ2σ2.

Here, Eg[·] denotes the expectation conditioned on {Pk}(a+1)τ−1
k=aτ . Unrolling the recurrence, we get

Eg

[
∥θki − θkj ∥2

]
≤ Eg

[
∥θaτi − θaτj ∥2

]
+ 2(k − aτ)γ2σ2

≤ Eg

[
∥θaτi − θaτj ∥2

]
+ 2(τ − 1)γ2σ2. (45)

Using this, we estimate Eg[Vk]:

Eg[Vk] =
1

Nk

∑
i∈Pk

Eg


∥∥∥∥∥∥θki − 1

Nk

∑
j∈Pk

θkj

∥∥∥∥∥∥
2
 (33)

≤ 1

N2
k

∑
i,j∈Pk

Eg

[
∥θki − θkj ∥2

]
(45)
≤ 1

N2
k

∑
i,j∈Pk

Eg

[
∥θaτi − θaτj ∥2

]
+ 2(τ − 1)γ2σ2

(32)
≤ 2

N2
k

∑
i,j∈Pk

(
Eg

[
∥θaτi − θaτ∥2

]
+ Eg

[
∥θaτj − θaτ∥2

])
+ 2(τ − 1)γ2σ2

=
4

Nk

∑
i∈Pk

Eg

[
∥θaτi − θaτ∥2

]
+ 2(τ − 1)γ2σ2

≤ 4

Naτ
· Naτ

Nk

∑
i∈Paτ

Eg

[
∥θaτi − θaτ∥2

]
+ 2(τ − 1)γ2σ2

≤ Eg

[
8

Naτ

∑
i∈Paτ

∥θaτi − θaτ∥2
]
+ 2(τ − 1)γ2σ2,

where in the last inequality we use 2N(a+1)τ = 2|P(a+1)τ | ≥ |Paτ | = Naτ and |Nk| ≤ |Nk−1|
following from Assumption 3.2. Finally, we take the full expectation from the previous inequality:

E[Vk]
(36)
≤ 8E

[
1

Naτ

∑
i∈Paτ

∥θaτi − θaτ∥2
]
+ 2(τ − 1)γ2σ2

(10)
≤ 2γ2

(
4δ2aq + (τ − 1)σ2

)
.

This finishes the proof.

Combining Lemmas D.5 and D.6, we get the following result:

Theorem D.1 (Theorem 3.3, convergence in the convex case). Let f1 = . . . = fN = f be µ-
strongly convex (Def. D.2) and L-smooth (see Def. D.1), and Assumptions 3.1 and 3.2 hold with
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∆k
pv = δpv,1γµE[∥θk−θ∗∥2]+γ2δ2pv,2 and θ̃ = θ∗, where θ∗ ∈ argminθ∈Rn f(θ) and δpv,1 ∈ [0, 1),

δpv,2 ≥ 0. Then, for any K ≥ 0, the iterates produced by Moshpit SGD with γ ≤ 1/4L satisfy

E
[
f(θ

K
)− f(θ∗)

]
≤ (1− γµ(1− δpv,1))

K R2
0

γ

+γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
, (46)

when µ > 0, and

E
[
f(θ

K
)− f(θ∗)

]
≤ R2

0

γK
+ γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
, (47)

when µ = 0, where R0 = ∥θ0−θ∗∥, θ
K

= 1
WK

∑K
k=0 wkθ

k = 1
WK

∑K
k=0

wk

Nk

∑
i∈Pk

θki , wk = (1−
γµ(1− δpv,1))

−(k+1), and WK =
∑K

k=0 wk. That is, Moshpit SGD achieves E[f(θK)− f(θ∗)] ≤ ε
after

K = Õ

(
L

(1− δpv,1)µ
+

σ2

Nmin(1− δpv,1)µε
+

δ2pv,2
(1− δpv,1)µε

+

√
L((τ − 1)σ2 + δ2aq)

(1− δpv,1)2µ2ε

)
(48)

iterations with

γ = min


1

4L
,

ln

(
max

{
2,min

{
R2

0µ
2(1−δpv,1)

2K2

(δ2pv,2+
σ2/Nmin)

,
R2

0µ
3(1−δpv,1)

3K3

3L(4δ2aq+(τ−1)σ2)

}})
(1− δpv,1)µK


when µ > 0, and after

K = O

LR2
0

ε
+

R2
0σ

2

Nminε2
+

R2
0δ

2
pv,2

ε2
+

R2
0

√
L((τ − 1)σ2 + δ2aq)

ε3/2

 (49)

iterations with

γ = min

{
1

4L

√
R0

(δ2pv,2 + σ2
/Nmin)K

, 3

√
R2

0

3L
(
4δ2aq + (τ − 1)σ2

)
K

}

when µ = 0.

Proof. Plugging the result of Lemma D.6 in inequality (39) from Lemma D.5, we obtain

γE
[
f(θk)− f(θ∗)

]
≤ (1− γµ(1− δpv,1))E

[
∥θk − θ∗∥2

]
− E

[
∥θk+1 − θ∗∥2

]
+3Lγ3

(
4δ2aq + (τ − 1)σ2

)
+ γ2

(
σ2

Nmin
+ δ2pv,2

)
.

36



Next, we sum up these inequalities for k = 0, . . . ,K with weights wk = (1− γµ(1− δpv,1))
−(k+1)

and divide both sides by γWK , where WK =
∑K

k=0 wk:

1

WK

K∑
k=0

wkE
[
f(θk)− f(θ∗)

]
≤ 1

γWK

K∑
k=0

(1− γµ(1− δpv,1))wkE
[
∥θk − θ∗∥2

]
− 1

γWK

K∑
k=0

wkE
[
∥θk+1 − θ∗∥2

]
+γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
=

1

γWK

K∑
k=0

(
wk−1E

[
∥θk − θ∗∥2

]
− wkE

[
∥θk+1 − θ∗∥2

])
+γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
=

w−1∥θ0 − θ∗∥2 − wKE
[
∥θK+1 − θ∗∥2

]
γWK

+γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
≤ ∥θ0 − θ∗∥2

γWK

+γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
.

Since f is convex, we apply the Jensen’s inquality

f

(
1

WK

K∑
k=0

wkθ
k

)
≤ 1

WK

K∑
k=0

wkf(θ
k)

to the previous result and get

E
[
f(θ

K
)− f(θ∗)

]
≤ R2

0

γWK
+ γ

(
σ2

Nmin
+ δ2pv,2 + 3Lγ

(
4δ2aq + (τ − 1)σ2

))
,

where R0 = ∥θ0 − θ∗∥ and θ
K

= 1
WK

∑K
k=0 wkθ

k = 1
WK

∑K
k=0

wk

Nk

∑
i∈Pk

θki . If µ > 0, then
WK ≥ wK ≥ (1 − γµ(1 − δpv,1))

−K , implying (46). Next, wk = 1 and WK = K when µ = 0
gives (47). It remains to estimate the total number of iterations K required by Moshpit SGD to find
an ε-solution, i.e., to achieve E[f(θK) − f(θ∗)] ≤ ε. Applying Lemma D.2 to (46), we get the
following result: if µ > 0 and

γ = min


1

4L
,

ln

(
max

{
2,min

{
R2

0µ
2(1−δpv,1)

2K2

δ2pv,2+
σ2/Nmin

,
R2

0µ
3(1−δpv,1)

3K3

3L(4δ2aq+(τ−1)σ2)

}})
(1− δpv,1)µK

 ,

then E
[
f(θ

K
)− f(θ∗)

]
equals

Õ

(
LR2

0 exp
(
−µ

L
(1− δpv,1)K

)
+

δ2pv,2 + σ2
/Nmin

(1− δpv,1)µK
+

L
(
δ2aq + (τ − 1)σ2

)
(1− δpv,1)2µ2K2

)
,

implying (48). Similarly, we apply Lemma D.3 to (47) and get that for µ = 0 and

γ = min

{
1

4L

√
R0

(δ2pv,2 + σ2
/Nmin)K

, 3

√
R2

0

3L
(
4δ2aq + (τ − 1)σ2

)
K

}
,

37



E
[
f(θ

K
)− f(θ∗)

]
= O

LR2
0

K
+

√
R2

0(δ
2
pv,2 + σ2

/Nmin)

K
+

3

√
R4

0L
(
δ2aq + (τ − 1)σ2

)
K2/3

 ,

implying (49).

D.3 Non-Convex Case

In this section, we give the full proof of Theorem 3.4 about convergence of Moshpit SGD for general
non-convex problems. The proof follows the similar steps as in the state-of-the-art analysis of
Local-SGD in non-convex case [64, 63]. We start with the following lemma:

Lemma D.7. Let f1 = . . . = fN = f , function f be L-smooth and bounded from below by f∗,
and Assumptions 3.1 and 3.2 hold with ∆k

pv = δpv,1γE[∥∇f(θk)∥2] + Lγ2δ2pv,2, δpv,1 ∈ [0, 1/2),
δpv,2 ≥ 0. Then, for any K ≥ 0 the iterates produced by Moshpit SGD with γ ≤ (1−2δpv,1)/8L satisfy

(1− 2δpv,1)γ

4

K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤ f(θ0)− f∗ + γL2

K−1∑
k=0

E[Vk]

+KLγ2

(
σ2

Nmin
+ δ2pv,2

)
, (50)

where Vk = 1
Nk

∑
i∈Pk

∥θki − θk∥2 and θk = 1
Nk

∑
i∈Pk

θki .

Proof. Recall that Assumption 3.2 with ∆k
pv = δpv,1γE[∥∇f(θk)∥2] + Lγ2δ2pv,2 states

E
[
⟨∇f(θk), θk+1 − θ̂k+1⟩+ L∥θ̂k+1 − θk+1∥2

]
≤ δpv,1γE[∥∇f(θk)∥2] + Lγ2δ2pv,2, (51)

where θ̂k+1 = 1
Nk

∑
i∈Pk

(θki − γgki ). As for the convex case, the definition of θ̂k+1 implies

θ̂k+1 =
1

Nk

∑
i∈Pk

θki − γ

Nk

∑
i∈Pk

gki = θk − γgk,

where gk = 1
Nk

∑
i∈Pk

gki . Using this and L-smoothness of f , we derive

f(θk+1)− f(θk)
(29)
≤ ⟨∇f(θk), θk+1 − θk⟩+ L

2
∥θk+1 − θk∥2

(32)
≤ ⟨∇f(θk), θ̂k+1 − θk⟩+ ⟨∇f(θk), θk+1 − θ̂k+1⟩

+L∥θ̂k+1 − θk∥2 + L∥θk+1 − θ̂k+1∥2

= −γ⟨∇f(θk), gk⟩+ Lγ2∥gk∥2 + ⟨∇f(θk), θk+1 − θ̂k+1⟩
+L∥θk+1 − θ̂k+1∥2,

from which it follows that

E
[
f(θk+1)− f(θk) | θk

]
≤ −γ

〈
∇f(θk),

1

Nk

∑
i∈Pk

∇f(θki )

〉
+E

[
⟨∇f(θk), θk+1 − θ̂k+1⟩ | θk

]
+E

[
L∥θk+1 − θ̂k+1∥2 | θk

]
+Lγ2E

∥∥∥∥∥ 1

Nk

∑
i∈Pk

gki

∥∥∥∥∥
2

| θk
 , (52)
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where E
[
· | θk

]
:= E

[
· | Pk, θ

k
i , i ∈ Pk

]
. Next, we estimate the last three terms in the right-hand

side of (52). First of all,

−γ

〈
∇f(θk),

1

Nk

∑
i∈Pk

∇f(θki )

〉
= −γ∥∇f(θk)∥2

−γ

〈
∇f(θk),

1

Nk

∑
i∈Pk

∇f(θki )−∇f(θk)

〉
(34)
≤ −γ∥∇f(θk)∥2 + γ

2
∥∇f(θk)∥2

+
γ

2

∥∥∥∥∥ 1

Nk

∑
i∈Pk

(∇f(θki )−∇f(θk))

∥∥∥∥∥
2

(33)
≤ −γ

2
∥∇f(θk)∥2 + γ

2Nk

∑
i∈Pk

∥∇f(θki )−∇f(θk)∥2

(28)
≤ −γ

2
∥∇f(θk)∥2 + γL2

2
Vk, (53)

where Vk = 1
Nk

∑
i∈Pk

∥θki − θk∥2. Secondly, since the stochastic gradients {gki }i∈Pk
are computed

independently, we derive

Lγ2E

∥∥∥∥∥ 1

Nk

∑
i∈Pk

gki

∥∥∥∥∥
2

| θk
 (35)

= Lγ2

∥∥∥∥∥ 1

Nk

∑
i∈Pk

∇f(θki )

∥∥∥∥∥
2

+Lγ2E

∥∥∥∥∥ 1

Nk

∑
i∈Pk

(gki −∇f(θki ))

∥∥∥∥∥
2

| θk


(33)
≤ 2Lγ2

∥∥∥∥∥ 1

Nk

∑
i∈Pk

(∇f(θki )−∇f(θk))

∥∥∥∥∥
2

+2Lγ2∥∇f(θk)∥2

+
γ2L

N2
k

∑
i∈Pk

E
[
∥gki −∇f(θki )∥2 | θk

]
(33),(7)
≤ 2γ2L

Nk

∑
i∈Pk

∥∇f(θki )−∇f(θk)∥2

+2Lγ2∥∇f(θk)∥2 + γ2Lσ2

Nk

(28)
≤ 2L3γ2

Nk

∑
i∈Pk

∥θki − θk∥2︸ ︷︷ ︸
2L3γ2Vk

+2Lγ2∥∇f(θk)∥2

+
γ2Lσ2

Nmin
. (54)

Plugging (53) and (54) in (52), we obtain

E
[
f(θk+1)− f(θk) | θk

]
≤ −γ

2
(1− 4Lγ) ∥∇f(θk)∥2 + γL2

2
(1 + 4Lγ)Vk +

Lγ2σ2

Nmin

+E
[
⟨∇f(θk), θk+1 − θ̂k+1⟩+ L∥θk+1 − θ̂k+1∥2 | θk

]
.
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Next, we take the full expectation from the both sides of the above inequality, apply the tower property
(36) and take into account that γ ≤ (1−2δpv,1)/8L:

E
[
f(θk+1)− f(θk)

]
≤ −γ

2
(1− 4Lγ)E

[
∥∇f(θk)∥2

]
+

γL2

2
(1 + 4Lγ)E[Vk] +

Lγ2σ2

Nmin

+E
[
⟨∇f(θk), θk+1 − θ̂k+1⟩+ L∥θk+1 − θ̂k+1∥2

]
(51)
≤ −γ

2
(1− 2δpv,1 − 4Lγ)E

[
∥∇f(θk)∥2

]
+

γL2

2
(1 + 4Lγ)E[Vk]

+Lγ2

(
σ2

Nmin
+ δ2pv,2

)
≤ − (1− 2δpv,1)γ

4
E
[
∥∇f(θk)∥2

]
+ γL2E[Vk]

+Lγ2

(
σ2

Nmin
+ δ2pv,2

)
.

Summing up the obtained inequalities for k = 0, . . . ,K − 1 and rearranging the terms, we derive

(1− 2δpv,1)γ

4

K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤

K−1∑
k=0

E
[
f(θk)− f(θk+1)

]
+ γL2

K−1∑
k=0

E[Vk]

+KLγ2

(
σ2

Nmin
+ δ2pv,2

)
= f(θ0)− E[f(θK)] + γL2

K−1∑
k=0

E[Vk]

+KLγ2

(
σ2

Nmin
+ δ2pv,2

)
≤ f(θ0)− f∗ + γL2

K−1∑
k=0

E[Vk]

+KLγ2

(
σ2

Nmin
+ δ2pv,2

)
,

where f∗ is a uniform lower bound for f .

The next step towards completing the proof of Theorem 3.4 gives the upper bound for
∑K−1

k=0 E[Vk]
that appeared in (50).

Lemma D.8. Let f1 = . . . = fN = f be L-smooth and bounded from below by f∗, and Assump-
tions 3.1 and 3.2 hold with ∆k

pv = δpv,1γE[∥∇f(θk)∥2] + Lγ2δ2pv,2, δpv,1 ∈ [0, 1/2), δpv,2 ≥ 0.
Then, for any K ≥ 0 the iterates produced by Moshpit SGD with γ ≤ 1/(4

√
eL(τ−1)) satisfy

K−1∑
k=0

E[Vk] ≤ 8eγ2(τ − 1)2
K−1∑
k=0

E[∥∇f(θk)∥2] + 4γ2K
(
2δ2aq + e(τ − 1)σ2

)
, (55)

where Vk = 1
Nk

∑
i∈Pk

∥θki − θk∥2 and θk = 1
Nk

∑
i∈Pk

θki .
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Proof. First of all, consider k such that k = aτ + t′ for some t′ ∈ [0, τ). Let Eg[·] denote the
expectation conditioned on {Pt}(a+1)τ−1

t=aτ . Then

Eg[Vk] =
1

Nk

∑
i∈Pk

Eg

[
∥θki − θk∥2

] (35)
≤ 1

Nk

∑
i∈Pk

Eg

[
∥θki − θaτ∥2

]
=

1

Nk

∑
i∈Pk

Eg

∥∥∥∥∥θaτi − θaτ − γ

k−1∑
t=aτ

gti

∥∥∥∥∥
2


(32)
≤ 2

Nk

∑
i∈Pk

Eg

[
∥θaτi − θaτ∥2

]
+

2γ2

Nk

∑
i∈Pk

Eg

∥∥∥∥∥
k−1∑
t=aτ

gti

∥∥∥∥∥
2
 . (56)

Next, we estimate the second term in the right-hand side of (56) using Lemma D.4:

2γ2

Nk

∑
i∈Pk

Eg

∥∥∥∥∥
k−1∑
t=aτ

gti

∥∥∥∥∥
2
 (38)

≤ 2eγ2(k − aτ)

Nk

∑
i∈Pk

k−1∑
t=aτ

Eg[∥∇f(θti)∥2]

+
2eγ2

Nk

∑
i∈Pk

k−1∑
t=aτ

Eg[∥gti −∇f(θti)∥2]

(32),(7)
≤ 4eγ2(τ − 1)

k−1∑
t=aτ

Eg[∥∇f(θt)∥2]

+4eγ2(τ − 1)

k−1∑
t=aτ

1

Nk

∑
i∈Pk

Eg[∥∇f(θti)−∇f(θt)∥2]

+2eγ2(k − aτ)σ2

(28)
≤ 4eγ2(τ − 1)

k−1∑
t=aτ

Eg[∥∇f(θt)∥2]

+4eγ2L2(τ − 1)

k−1∑
t=aτ

Nt

Nk
· 1

Nt

∑
i∈Pt

Eg[∥θti − θt∥2]

+2eγ2(τ − 1)σ2

≤ 4eγ2(τ − 1)

k−1∑
t=aτ

Eg[∥∇f(θt)∥2]

+8eγ2L2(τ − 1)

k−1∑
t=aτ

Eg[Vt] + 2eγ2(τ − 1)σ2,

where in the last two inequalities we use Nk = |Pk| ≤ |Pk−1| = Nk−1 for all k ≥ 1 and
Naτ ≤ 2N(a+1)τ for all integer a ≥ 0. Plugging this inequality in (56) and taking the full expectation
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from the result, we get

E[Vk] ≤ 2E

[
1

Nk

∑
i∈Pk

∥θaτi − θaτ∥2
]
+ 4eγ2(τ − 1)

k−1∑
t=aτ

E[∥∇f(θt)∥2]

+8eγ2L2(τ − 1)

k−1∑
t=aτ

E[Vt] + 2eγ2(τ − 1)σ2

≤ 4E

[
1

Naτ

∑
i∈Paτ

∥θaτi − θaτ∥2
]
+ 4eγ2(τ − 1)

k−1∑
t=aτ

E[∥∇f(θt)∥2]

+8eγ2L2(τ − 1)

k−1∑
t=aτ

E[Vt] + 2eγ2(τ − 1)σ2

(10)
≤ 4eγ2(τ − 1)

k−1∑
t=aτ

E[∥∇f(θt)∥2] + 8eγ2L2(τ − 1)

k−1∑
t=aτ

E[Vt]

+2γ2
(
2δ2aq + e(τ − 1)σ2

)
,

where in the second inequality we also use Nk = |Pk| ≤ |Pk−1| = Nk−1 for all k ≥ 1 and Naτ ≤
2N(a+1)τ for all integer a ≥ 0. Summing up the obtained inequalities for k = aτ, aτ + 1, . . . ,K ′

for some K ′ ∈ [aτ, (a+ 1)τ − 1] we derive
K′∑

k=aτ

E[Vk] ≤ 4eγ2(τ − 1)

K′∑
k=aτ

k−1∑
t=aτ

E[∥∇f(θt)∥2] + 8eγ2L2(τ − 1)

K′∑
k=aτ

k−1∑
t=aτ

E[Vt]

+2γ2(K ′ − aτ + 1)
(
2δ2aq + e(τ − 1)σ2

)
≤ 4eγ2(τ − 1)2

K′∑
k=aτ

E[∥∇f(θk)∥2] + 8eγ2L2(τ − 1)2
K′∑

k=aτ

E[Vk]

+2γ2(K ′ − aτ + 1)
(
2δ2aq + e(τ − 1)σ2

)
≤ 4eγ2(τ − 1)2

K′∑
k=aτ

E[∥∇f(θk)∥2] + 1

2

K′∑
k=aτ

E[Vk]

+2γ2(K ′ − aτ + 1)
(
2δ2aq + e(τ − 1)σ2

)
,

where in the last inequality we use γ ≤ 1/(4
√
eL(τ−1)). Rearranging the terms, we get that for K ′ ≥ 0

K′∑
k=aτ

E[Vk] ≤ 8eγ2(τ − 1)2
K′∑

k=aτ

E[∥∇f(θk)∥2] + 4γ2(K ′ − aτ + 1)
(
2δ2aq + e(τ − 1)σ2

)
,

where a ≥ 0 is an integer such that aτ ≤ K ′ ≤ (a+ 1)τ − 1. Summing up the obtained inequalities
for K ′ = τ − 1, 2τ − 1, . . . , τ⌊(K−1)/τ⌋ − 1,K − 1, we derive (55).

Combining Lemmas D.7 and D.8, we get the following result:
Theorem D.2 (Theorem 3.4). Let f1 = . . . = fN = f , function f be L-smooth and bounded
from below by f∗, and Assumptions 3.1 and 3.2 hold with ∆k

pv = δpv,1γE[∥∇f(θk)∥2] + Lγ2δ2pv,2,
δpv,1 ∈ [0, 1/2), δpv,2 ≥ 0. Then, for any K ≥ 0 the iterates produced by Moshpit SGD with

γ ≤ min

{
1− 2δpv,1

8L
,

√
1− 2δpv,1

8
√
eL(τ − 1)

}
satisfy

E
[
∥∇f(θKrand)∥2

]
≤ 8∆0

(1− 2δpv,1)Kγ

+
8Lγ

1− 2δpv,1

(
σ2

Nmin
+ δ2pv,2 + 4γL

(
2δ2aq + e(τ − 1)σ2

))
, (57)
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where ∆0 = f(θ0)− f∗ and θKrand is chosen uniformly at random from {θ0, θ1, . . . , θK−1}. That is,
Moshpit SGD achieves E

[
∥∇f(θKrand)∥2

]
≤ ε2 after

O

(
L∆0

(1− 2δpv,1)2ε2

[
1 + (τ − 1)

√
1− 2δpv,1 +

δ2pv,2 + σ2
/Nmin

ε2

+

√
(1−2δpv,1)(δ2aq+(τ−1)σ2)

ε

])
(58)

iterations with

γ = min

{
1− 2δpv,1

8L
,

√
1− 2δpv,1

8
√
eL(τ − 1)

,

√
∆0

LK
(
δ2pv,2 + σ2

/Nmin

) , 3

√
∆0

4L2
(
2δ2aq + e(τ − 1)σ2

)} .

Proof of Theorem 3.4. Plugging the result of Lemma D.8 in the inequality (50) from Lemma D.7,
we obtain

(1− 2δpv,1)γ

4

K−1∑
k=0

E
[
∥∇f(θk)∥2

]
≤ f(θ0)− f∗ + 8eγ3L2τ(τ − 1)

K−1∑
k=0

E[∥∇f(θk)∥2]

+KLγ2

(
σ2

Nmin
+ δ2pv,2

)
+4KL2γ3

(
2δ2aq + e(τ − 1)σ2

)
≤ f(θ0)− f∗ +

(1− 2δpv,1)γ

8

K−1∑
k=0

E
[
∥∇f(θk)∥2

]
+KLγ2

(
σ2

Nmin
+ δ2pv,2

)
+4KL2γ3

(
2δ2aq + e(τ − 1)σ2

)
.

Next,

1

K

K∑
k=0

E
[
∥∇f(θk)∥2

]
≤ 8∆0

(1− 2δpv,1)Kγ

+
8Lγ

1− 2δpv,1

(
σ2

Nmin
+ δ2pv,2 + 4γL

(
2δ2aq + e(τ − 1)σ2

))
,

where ∆0 = f(θ0)− f∗. Since θKrand is chosen uniformly at random from {θ0, θ1, . . . , θK−1},

E
[
∥∇f(θKrand)∥2

] (36)
=

1

K

K∑
k=0

E
[
∥∇f(θk)∥2

]
and (57) holds. Applying Lemma D.3 to (57), we get the following result: if

γ = min

{
1− 2δpv,1

8L
,

√
1− 2δpv,1

8
√
eL(τ − 1)

,

√
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LK
(
δ2pv,2 + σ2
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) , 3

√
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4L2
(
2δ2aq + e(τ − 1)σ2

)} ,

then E
[
∥∇f(θKrand)∥2

]
equals

O

L∆0

(
1+(τ−1)

√
1−2δpv,1

)
(1−2δpv,1)2K

+

√
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(
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(1−2δpv,1)2K

+

3

√
L2∆2

0(δ
2
aq+(τ−1)σ2)

(1−2δpv,1)K
2/3

,

which implies the desired convergence result from (58).
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E Decentralized matchmaking

In order to run group all-reduce over unreliable devices, Moshpit Averaging must be able to dynami-
cally form groups of active devices that share the same key Ci. In theory, this matchmaking can be
implemented precisely as described in Algorithm 1: each peer adds itself to a certain DHT key, waits
for a said period of time, and then reads the same key to retrieve a list of its groupmates.

However, in practice, this kind of matchmaking would be extremely fragile: if any peer arrives
late (for example, due to latency), it may join the group when other peers have already finished
matchmaking. As a result, some workers will treat this peer as active, while others will behave as
though there is no such peer at all, breaking the consensus and rendering all peers unable to run
all-reduce in a stable manner.

To avoid this and other similar inconsistencies, Moshpit All-Reduce employs a more sophisticated
matchmaking protocol with the following guarantees

1. Peers that join the same group are guaranteed to have the same list of groupmates;

2. The group will have the maximum possible number of peers, unless some of them fail;

3. If some peers fail, matchmaking will still form the group out of the remaining ones.

To achieve this, each peer first declares itself onto the DHT (as in Algorithm 1). Then, peers attempt
to form groups by calling the REQUEST_JOIN_GROUP remote procedure call. Intuitively, if peer A
calls this RPC on peer B, then peer A requests to join peer B’s group, which can be either accepted or
rejected by the group “leader” B, which may or may not have other “followers”.

If a peer is accepted to a group, it commits to stay active (i.e. to await other peers) for a set period of
time and perform all-reduce with the peers supplied by the group “leader”. On the other hand, a peer
can be rejected if (a) the potential “leader” is already a follower in another group, (b) the group is
already running all-reduce, or (c) if the “leader” failed or left during matchmaking.

To ensure that this protocol forms groups of maximum size, each peer generates a unique “priority”
based on its local timestamp9. Peers prioritize joining the group of neighbors that have the lowest
“priority”. Under normal circumstances, all workers will join the group of a peer that was first to start
matchmaking according to its own local time. However, if this peer has failed or already finished
matchmaking, the group will be formed around one of the remaining peers.

Matchmaking for 64 peers can take less than 1 second if all workers are located in the same cloud
region and are highly synchronized. However, this can grow to 2.9 seconds for two different cloud
regions and up to 9 seconds when training with commodity hardware around the world.

To ensure that this latency does not affect the training performance, Moshpit SGD performs matchmak-
ing asynchronously in the background thread, while the model is accumulating gradients. All peers
begin matchmaking 15 seconds before the estimated averaging round, so that in ≥ 95% of averaging
iterations, the matchmaking step is already finished by the time peers need to run all-reduce.

F Training with a dynamic number of peers

Many practical setups with unreliable devices allow peers to join or leave at any time, which can
produce undesirable side-effects. For instance, consider a participant that joins the “swarm” midway
through the training process. If this participant starts with the initial model parameters, it can undo
some of the progress made by other peers.

To circumvent this issue, we require each new participant to download the latest parameters from
a random up-to-date peer discovered through DHT. The same technique is used to synchronize the
optimizer statistics and the learning rate schedule. This protocol is also triggered if a peer becomes
desynchronized with others, e.g., after a network freeze.

9More specifically, the priority is a tuple of (timestamp, peer_id), where peer_id is used to break ties.
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G Load balancing via linear programming

When running Moshpit Averaging on heterogeneous devices, one must regularly perform Butterfly
All-Reduce among peers with uneven network bandwidth. In order to speed up the protocol, we
can make low-throughput peers receive, average, and send smaller partitions of the averaged vector;
conversely, the high-throughput peers can process greater fractions of the input vector. To compute
the optimal partitioning, peers must solve an optimization problem that minimizes the total time spent
on communication during all-reduce.

Consider a group of M peers with network bandwidths b1, ..., bM , defined for simplicity as the
minimum of the upload and download speed for each peer. Our objective is to find wi — a fraction
of all input vectors to be processed by the i-th peer.

In Butterfly All-Reduce, each peer i splits its vector into parts and sends these parts to corresponding
peers. Since there is no need to send wi to itself, i-th peer will upload a total of 1− wi of the vector
to its peers. On the receiving side, peer i will average wi of the vector from all peers in its group. To
do so, it must download M − 1 vector parts of size wi from all other peers. After that, peers distribute
the averaged parts by running the same procedure in reverse (see Figure 1).

Thus, the communication time for each peer is proportional to ti = (1 − wi + (M − 1)wi) · 1
bi

and the total runtime of Butterfly All-Reduce is the maximum communication time over all peers:
T = maxi ti = maxi(1− wi + (M − 1)wi) · 1

bi
. Formally, we minimize T with respect to wi with

two constraints on the fraction weights:

min
w

max
i

(1− wi+(M − 1)wi) ·
1

bi

subject to
M∑
i=1

wi = 1

wi ≥ 0 ∀i = 1, . . . ,M

Because the functions being maximized and the constraints are linear in wi, this problem can be
reduced to linear programming [125]. Namely, we can minimize a surrogate variable ξ such that
∀i, ξ ≥ (1− wi + (M − 1) · wi) · 1

bi
. The resulting linear program is formulated as follows:

min
w,ξ

ξ

subject to
M∑
i=1

wi = 1

wi ≥ 0 ∀i = 1, . . . ,M

ξ ≥ (1−wi + (M − 1)wi) ·
1

bi
∀i = 1, . . . ,M

We solve this problem using the interior point method [126] implemented as part of the SciPy
package (scipy.optimize.linprog). Note that depending on the conditions given by participant
bandwidth, optimal weights of specific peers might be equal to 0 in some cases. In essence, this
allows our method to smoothly interpolate between data parallelism [9], parameter server [18] and
sharded parameter server [25] in manner similar to BytePS [26].

H Detailed experimental setup

In this section, we provide the detailed hardware configuration of servers used for each of our
distributed training experiments.

H.1 ImageNet training

Both homogeneous and heterogeneous training setups for ImageNet are provisioned in our on-premise
infrastructure across multiple data centers and an office space (for the heterogeneous setup only).
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Homogeneous. For the homogeneous setup, we use 16 identical instances with the following
specifications:

• GPU: V100-PCIe,
• CPU: 6 vCPUs (Xeon E5-2650v4),
• RAM: 64GB.

Heterogeneous. In turn, the heterogeneous setup contains multiple instance types listed in Table 2:

Table 2: Heterogeneous setup for ImageNet training.
Instances GPUs GPU type Cores RAM, GB CPU type

4 1 V100-PCIe 6 64 E5-2650v4
17 2 GTX 1080Ti 8 64 E5-2650v4
7 1 GTX 1080Ti 4 32 E5-2650v4
16 1 P40 4 32 E5-2667v2
20 1 M40-24GB 4 32 E5-2667v2

H.2 ALBERT training

Homogeneous. For the homogeneous setup, we use a single virtual machine with the following
specifications:

• GPU: 8× V100-PCIe,
• CPU: 48 vCPUs (Xeon E5-2650v4),
• RAM: 488GB.

At the time of writing, the cloud rent cost for this instance is $24.48 per hour.

Heterogeneous. Our heterogeneous setup is composed of two parts: AWS EC2 Spot instances and
crowdsourced machines from the Vast.ai marketplace. For spot instances, we picked the smallest
suitable instance size available from the cloud provider and further limited their bandwidth to 1Gb/s10.
As for marketplace instances, we report the hardware specifications for each worker gathered 1 hour
after the start of ALBERT training.

Since both cloud and marketplace instances are preemptible, the actual cost of the server fleet will vary
based on the current price. For simplicity, we report the maximum hourly price we ended up paying
for this instance (enforced via maximum bid). Finally, some marketplace instances have missing
specifications, such as unknown CPU type. This is likely caused by non-standard virtualization
configured by the device owner. The resulting fleet configuration, shown in Table 3, costs up to
$15.43/hour, depending on the number of active instances.

I Additional averaging experiments

In this section, we evaluate the averaging precision with the same methodology as in 4.1, but for
multiple different worker configurations.

Table 4 provides the complete results of our experiments that were used to make conclusions in the
main experimental section: instead of reporting the mean squared error for different iterations, we
provide the number of rounds that was required to achieve the error of 10−9 and 10−4.

In Figure 5, plots 1–5 explore several combinations of grid sizes and failure rates, whereas plot
6 (bottom right) demonstrates a setup with the same number of peers (106) arranged into several
different grid sizes and its relation to convergence. Note that M=32 outperforms the alternatives
only for the specific failure rate of 0.001.

10We use tc qdisc Linux utility to artificially limit the network throughput, similarly to [127]
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Table 3: Heterogeneous setup for ALBERT training.

GPU Cores RAM, GB CPU type Download, Mb/s Upload, Mb/s Cost, $/hour

Preemptible g4dn.xlarge instances (32×)

T4 4 16 Xeon Platinum 8259CL 1000 1000 0.1578

Marketplace instances

GTX 1070Ti 6 16 E5-2640 425 255 0.036
GTX 1070Ti 6 16 i3-6100T 121 36 0.06
GTX 1080Ti 4 20 i3-6096P 817 308 0.101
GTX 1080Ti 20 129 E5-2630v4 660 475 0.182
GTX 1080Ti 1 16 i7-7700K 245 210 0.302
GTX 1080Ti 48 97 Xeon Platinum 8124 583 539 0.217
GTX 1080Ti 10 16 Unknown n/a n/a 0.15
GTX 1080Ti 4 16 Xeon Gold 6149 98 100 0.2
GTX 1080Ti 4 16 Xeon Gold 6149 99 98 0.2
GTX 1080Ti 4 16 Xeon Gold 6149 99 99 0.2
GTX 1080Ti 4 16 Xeon Gold 6149 99 99 0.2
RTX 2070S 24 32 E5-2620v2 199 25 0.199
RTX 2070S 32 97 E5-2650 162 64 0.285
RTX 2080 6 16 E5-2620v3 271 287 0.25
RTX 2080 24 32 E5-2630v3 199 25 0.302

RTX 2080S 4 32 E5-2697v4 101 99 0.292
RTX 2080S 4 32 E5-2697v4 93 99 0.292
RTX 2080S 4 32 E5-2697v4 94 98 0.292
RTX 2080S 4 32 E5-2697v4 94 98 0.292
RTX 2080S 4 32 E5-2697v4 100 99 0.292
RTX 2080Ti 4 16 Ryzen Threadripper 3960x 279 271 0.35
RTX 2080Ti 8 129 E5-2670v3 616 672 0.201
RTX 2080Ti 6 32 E5-2620v3 217 61 0.22
RTX 2080Ti 8 16 E5-2697v2 100 58 0.3
RTX 2080Ti 8 21 E5-2697v2 145 49 0.243
RTX 2080Ti 12 32 Unknown 111 92 0.326
RTX 2080Ti 12 64 E5-2690v3 205 61 0.549
RTX 3080 16 16 i7-10700K 69 49 0.462
RTX 3090 14 32 E5-2695v3 93 37 0.498
RTX 3090 16 32 Ryzen 9 3950X 338 38 0.511
Titan RTX 4 32 Xeon W-3223 321 115 1
Titan RTX 4 32 Xeon Gold 6149 99 100 0.702

Titan V 8 32 i7-7700K 97 50 0.282
V100-FHHL 8 60 Xeon Gold 6148 544 584 0.39

Total hourly cost (as listed): 15.43

J Additional image classification experiments

Aside from the two evaluation scenarios provided in 4.2, we also measure the performance of
Moshpit-SGD in a non-distributed setup, i.e. on a single server with multiple GPUs. We conduct
this experiment on the same 8× V100 machine that was used in the homogeneous setup for training
ALBERT (see Appendix H.2).

As Figure 6 demonstrates, Moshpit SGD is slower than AR-SGD by approximately 25%. This result
is expected, since our implementation of Moshpit All-Reduce is more general and communicates
over a TCP connection, whereas AR-SGD uses direct peer-to-peer GPU communication over PCIe.
On average, this incurs a slowdown of 27% in terms of training time.
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Table 4: Averaging performance of different algorithms. Values denote the number of iterations
required to achieve the error of 10−9 (10−4 in parentheses), the best result is in bold.

N p All-Reduce Gossip PushSum Random groups Moshpit

512 0 1.0 (1.0) 50.0 (50.0) 47.6 (15.6) 6.1 (3.0) 8.2 (3.5)
512 0.001 1.6 (1.6) 50.0 (50.0) 47.6 (15.6) 6.3 (3.0) 8.1 (3.7)
512 0.005 10.9 (10.9) 50.0 (50.0) 47.8 (15.6) 6.3 (3.0) 8.7 (3.9)
512 0.01 41.7 (41.7) 50.0 (50.0) 47.8 (15.6) 6.6 (3.0) 9.1 (3.9)

768 0 1.0 (1.0) 50.0 (50.0) 43.2 (13.8) 6.2 (3.0) 6.0 (3.0)
768 0.001 1.8 (1.8) 50.0 (50.0) 43.2 (13.8) 6.5 (3.0) 6.2 (3.0)
768 0.005 28.7 (28.7) 50.0 (50.0) 43.2 (14.1) 6.6 (3.0) 6.6 (3.0)
768 0.01 50.0 (50.0) 50.0 (50.0) 43.9 (14.2) 7.0 (3.0) 6.8 (3.0)
900 0 1.0 (1.0) 50.0 (50.0) 45.0 (14.7) 6.4 (3.0) 5.0 (2.8)
900 0.001 1.8 (1.8) 50.0 (50.0) 45.0 (14.7) 6.3 (3.0) 5.5 (3.0)
900 0.005 50.0 (50.0) 50.0 (50.0) 45.2 (14.7) 6.7 (3.0) 5.9 (3.0)
900 0.01 50.0 (50.0) 50.0 (50.0) 45.6 (14.9) 7.0 (3.1) 6.4 (3.1)
1024 0 1.0 (1.0) 50.0 (50.0) 49.0 (16.2) 6.2 (3.0) 2.0 (2.0)
1024 0.001 2.0 (2.0) 50.0 (50.0) 49.0 (16.3) 6.5 (3.0) 3.4 (2.2)
1024 0.005 42.6 (42.6) 50.0 (50.0) 49.5 (16.3) 6.7 (3.0) 5.4 (2.9)
1024 0.01 50.0 (50.0) 50.0 (50.0) 49.5 (16.3) 6.9 (3.1) 5.9 (3.0)
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Figure 5: Averaging error of Moshpit All-Reduce as a function of the iteration number for different
configurations and failure rates.
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Figure 6: ResNet-50 top-1 validation accuracy on ImageNet when training on a single node with 8×
V100-PCIe GPUs. (Left) Convergence in terms of training time, (Right) Convergence in terms of
training epochs
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