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Abstract

Progress in machine learning (ML) stems from a combination of data availability,
computational resources, and an appropriate encoding of inductive biases. Useful
biases often exploit symmetries in the prediction problem, such as convolutional
networks relying on translation equivariance. Automatically discovering these
useful symmetries holds the potential to greatly improve the performance of ML
systems, but still remains a challenge. In this work, we focus on sequential
prediction problems and take inspiration from Noether’s theorem to reduce the
problem of finding inductive biases to meta-learning useful conserved quantities.
We propose Noether Networks: a new type of architecture where a meta-learned
conservation loss is optimized inside the prediction function. We show, theoretically
and experimentally, that Noether Networks improve prediction quality, providing a
general framework for discovering inductive biases in sequential problems.

1 Introduction

The clever use of inductive biases to exploit symmetries has been at the heart of many landmark
achievements in machine learning, such as translation invariance in CNN image classification [35],
permutation invariance in Graph Neural Networks [52] for drug design [57], or roto-translational
equivariance in SE3-transformers [25] for protein structure prediction [33]. However, for data
distributions of interest, there may be exploitable symmetries that are either unknown or difficult
to describe with code. Progress has been made in automatically discovering symmetries for finite
groups [74], but meta-learning and exploiting general continuous symmetries has presented a major
challenge. In part, this is because symmetries describe the effect of counterfactuals about perturbations
to the data, which are not directly observable.

In this work, we propose to exploit symmetries in sequential prediction problems indirectly. We take
inspiration from Noether’s theorem [44], which loosely states the following:

For every continuous symmetry property of a dynamical system,
there is a corresponding quantity whose value is conserved in time.

For example, consider a system of planets interacting via gravity: this system is translation invariant
in all three cardinal directions (i.e. translating the entire system in the x,y, or z axis conserves the
laws of motion). Noether’s theorem asserts there must be a conserved quantity for each of these
symmetries; in this case, linear momentum. Similarly, the system has a time-invariance (i.e. the laws
of motion are the same today as they will be tomorrow). In this case, the corresponding conserved
quantity is the total energy of the system.

∗Equal contribution. Our code is publicly available at https://lis.csail.mit.edu/noether.
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Figure 1: Noether Networks enforce conservation laws, meta-learned byg� , in sequential predictions
made byf � , which is tailored to the inputx0 to produce �nal predictionŝx1:T . Imposing these
meta-learned inductive biases improves video prediction quality with objects sliding down a ramp.

Inspired by this equivalence, we propose that approximate conservation laws are a powerful paradigm
for meta-learning useful inductive biases in sequential prediction problems. Whereas symmetries are
dif�cult to discover because they are global properties linked to counterfactuals about unobserved
perturbations of the data, conserved quantities can be directly observed in the true data. This provides
an immediate signal for machine learning algorithms to exploit.

Our approach involves meta-learning a parametric conservation loss function which is useful to the
prediction task. We leverage thetailoring framework [4], which proposes to encode inductive biases
by �ne-tuning neural networks with hand-designed unsupervised losses inside the prediction function.
Whereas traditional auxiliary losses are added to the task loss during training, tailoring losses are
optimized inside the prediction function both during training and testing, customizing the model to
each individual query. In doing so, we ensure there is no generalization gap for the conservation
loss. We propose to meta-learn the self-supervised loss function and parameterize it in the form
of a conservation loss; i.e.L (x0; ~x1:T ; g� ) =

P T
t =1 jg� (x0) � g� (~x t )j2. This conservation form

encodes a meta-inductive bias (inductive bias over inductive biases) which narrows the search space
exponentially (inT) and simpli�es the parameterization. Figure 1 demonstrates the Noether Network
pipeline for a video prediction task.

The main contribution of this paper is the Noether Network, an architecture class and algorithm that
can automatically learn its own inductive biases in the form of meta-learned conservation loss func-
tions. We theoretically characterize the advantages of such conservation laws as effective regularizers
that constrain the learning to lower-dimensional output manifolds, lowering the generalization gap.
Empirically, we �rst �nd that, when the meta-learned conservation loss takes the form of a synthesized
program, Noether Networks recover known conservation laws from raw physical data. Second, we
�nd that Noether Networks can learn conservation losses on raw videos, modestly improving the
generalization of a video prediction model, especially on longer-term predictions.

2 Theoretical Advantages of Enforcing Conservation Laws

In this section, we demonstrate principled advantages of enforcing conservation laws of the form
g� (f � (x)) = g� (x) by considering a special case where preimages underg� form af�ne subspaces.

Let input x and targety be x; y 2 Rd, and let the Noether embedding beg� : Rd ! P where
P = f g� (x) : x 2 Rdg. We consider a restricted class of models, parameterized by� 2 � , of
the formf � (x) = x + v� for v� 2 Rd such that for allx, the preimage ofg� is g� 1

� [f g� (x)g] =
f x + Az : z 2 Rm g, A 2 Rd� m . Here,m � d is the dimensionality of the preimages ofg� . We
denote byC the smallest upper bound on the loss value asL (f � (x); y) � C (for all x; y and� ).

2



De�ne  (v) = Ex;y [L (f (x; v); y)] � 1
n

P n
i =1 L (f (x i ; v); yi ), with Lipschitz constant� . Therefore,

� � 0 is the smallest real number such that, for allv andv0 in V, j (v) �  (v0)j � � kv � v0k2, where
V = f v� 2 Rd : � 2 � g. Finally, we de�neR = sup � 2 � kv� k2, and the generalization gap by

G(� ) = Ex;y [L (f � (x); y)] �
1
n

nX

i =1

L (f � (x i ); yi ):

Theorem 1 shows that enforcing conservation laws ofg� (f � (x)) = g� (x) is advantageous when the
dimension of the preimages underg� is less than the dimension ofx; that is, whenm < d .
Theorem 1. Let � 2 N+ . Then, for any� > 0, with probability at least1 � � over an iid draw ofn
examples((x i ; yi ))n

i =1 , the following holds for all� 2 � :

G(� ) � C

r
� ln(max(

p
�; 1)) + � ln(2R(� 1� 1=� )

p
n) + ln(1 =� )

2n
+ 1f � � 1g

r
� 2=�

n
: (1)

where� = m if g� (f � (x)) = g� (x) for anyx 2 Rd and� 2 � , and� = d otherwise.

The proof is presented in Appendix A. In Theorem 1, when we enforce the conservation laws,d is
replaced bym, the dimension of the preimage. We now discuss various cases for the values ofm:

• (Case ofm = d) Let us consider an extreme scenario where the functiong� maps allx 2 Rd

to one single point. In this scenario, the dimensionality of preimages underg� is maximized
asm = d. Accordingly, the bounds with and without enforcing the conservation laws
become the same. Indeed, in this scenario, the conservation laws ofg� (f � (x)) = g� (x) give
us no information, because they always hold for allx 2 Rd, even without imposing them.

• (Case ofm = 0 ) Let us consider another extreme scenario where the functiong� is invertible.
In this scenario, the dimensionality of preimages underg� is zero asm = 0 . Thus, imposing
the condition ofg� (f � (x)) = g� (x) makes the bound in Theorem 1 to be very small. Indeed,
in this scenario, the condition ofg� (f � (x)) = g� (x) implies thatf � (x) = x: i.e.,x is not
moving, and thus it is easy to generalize.

• (Case of0 < m < d ) From the above two cases, we can see that the bene�t of enforcing
conservation laws comes from more practical cases in-between these, with0 < m < d .

In Theorem 1, the functiong� can differ from the true functiong�
� underlying the system. This is

because we analyze a standard generalization gap: i.e., the difference between the expected loss and
the training loss. The cost of not using the trueg�

� is captured in the training loss; i.e., the training
loss can be large with the functiong� that differs signi�cantly from the trueg�

� . Even in this case,
the generalization gap can be small. For example, in the case ofm = 0 , the generalization bound is
small, whereas the training loss will be large unlessx t +1 = x t . Therefore, our analysis gives us the
insight on the trade-off between the training loss and the dimensionality of preimages underg� .

3 Noether Networks

Leveraging tailoring to encode inductive biases. We perform a prediction-time optimization to
encourage outputs to follow conservation laws using the tailoring framework [4]. Tailoring encodes
inductive biases in the form of unsupervised losses optimized inside the prediction function. In doing
so, tailoring �ne-tunes the model to each query to ensure that it minimizes the unsupervised loss for
that query. For example, we may optimize for energy conservation in a physics prediction problem.
In meta-tailoring, we train the model to do well on the task loss after the tailoring step has �ne-tuned
its parameters. In contrast to auxiliary losses, which would optimise the conservation loss only for
the training points, tailoring allows us to ensure conservation at test time. Since we aim to build in the
conservation in the architecture, we want to ensure it is also satis�ed for unseen test samples. Another
advantage of tailoring losses is that they are easier to meta-learn. Auxiliary losses are pooled over all
examples and training epochs and their effect is only known at validation/test time. We would need to
use implicit gradients [39, 47] to know their eventual effect on the �nal weights at the end of training.
With tailoring, we can directly measure the effect of the meta-learned update on the same sample.

A limitation of tailoring framework is that the tailoring loss must be user-speci�ed. This is acceptable
in domains where the desired inductive bias is both known and easily encoded, but problematic in
general — we address this issue with Noether Networks. Our approach can be seen as a generalization
of tailoring where the unsupervised loss is meta-learned and takes the form of a conservation loss.
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Noether Networks: discoveringuseful conservation laws. We build on the paradigm of conser-
vation laws; i.e. quantities that are conserved over time. This has the following two challenges:

1. Real data often has noise, breaking any exact conservation law. Moreover, many conser-
vation laws are only approximately satis�ed given only partial information of the system.
For example, conservation of energy is not fully satis�ed in real dissipative systems and
estimating conservation of mass from pixels is bound to be inexact in the case of occlusions.

2. Optimizing for conservation alone can lead to trivial quantities, such as predicting a constant
valueg� (x) = C independent ofx.

We search forusefulconservation laws, whose (approximate) enforcing brings us closer to the
true data manifold for the current sequence. Note that a useful conserved quantity doesn't need
to be exactly conserved in the training data to improve prediction performance. We only need its
conservation to be informative of the data manifold. This allows us to discover conservation laws
even in imperfect, noisy environments. Conversely, tailoring with a trivial conserved quantity cannot
improve the �nal predictions (see App. B for a detailed explanation). Finally, viewing conserved
quantities as useful inductive biases aligns well with their use, since we often care about biases only
insofar as they help improve task performance.

The search for such useful conserved quantities can take many forms. In this work, we focus on
two: �rst, in the beginning of section 4.1, we use a combination of program synthesis and gradient
descent to generate a large, but �nite, number of candidate parametric formulas for physical system
prediction. We then try meta-tailoring with each formula on the training set and pick the conservation
formula with the best loss. Formulas can be a useful, interpretable description in scienti�c domains
given the appropriate state-space. However, for general descriptions from raw data, we would like to
describe the loss with a neural network, as we describe in the next section.

Meta-learning a neural loss function. We propose Noether Networks, an architecture class for
sequential prediction that consists of a base predictorf � : ~x t 7! ~x t +1 and a meta-learnedtailoring
loss, parameterized as the conservation of a neural embeddingg� : ~x t 7! Rk . This embedding takes
raw predictions as input (such as images in the case of video prediction). The conservation form
induces a meta-inductive bias over potential learned tailoring losses. The Noether loss is formulated as

L Noether (x0; ~x1:T ; g� ) =
TX

t =1

jg� (x0) � g� (~x t )j
2

| {z }
(a)

�
TX

t =1

jg� (~x t � 1) � g� (~x t )j
2

| {z }
(b)

(2)

wherex0 is the ground-truth input, the~x t = f � (~x t � 1) are the model's predictions, and~x0 , x0.
Expressions 2(a) and 2(b) are equivalent if we fully enforce the conservation law, but they differ
if conservation is not fully enforced. When not fully conserving, 2(a) propagates information from
ground truth more directly to the prediction, but 2(b) may be a useful approximation which better
handles imperfectly conserved quantities, where the quantity should be Lipschitz but not exactly
constant. In both cases, if we tailor� with a single gradient step; the gradient update takes the form

� (x0; � ) = � � � in r � L Noether (x0; ~x1:T (� ); g� ): (3)

We compute �nal predictions aŝx t = f � (x 0 ;� ) (x̂ t � 1). We can now backpropagate from
L task (x1:T ; x̂1:T ) back to� , which will be optimized so that the unsupervised adaptation� 7!
� (x0; � ) helps lowerL task .The optimization requires second-order gradients to express how� affects
L task through� (x0; � ). This is similar to MAML [23], as well as works on meta-learning loss func-
tions for few-shot learning [5] and group distribution shift [71]. Algorithm 1 provides pseudo-code.

For deep learning frameworks that allow per-example weights, such as JAX [9], the loop over
sequences in Alg. 1 can be ef�ciently parallelized. To parallelize it for other frameworks we use the
CNGRAD algorithm [4], which adapts only the Conditional Normalization (CN) layers in the inner
loop. Similar to BN layers, CN only performs element-wise af�ne transformations:y = x �  + � ,
which can be ef�ciently parallelized in most deep learning frameworks even with per-example; � .

Finally, even though we use the two-layer optimization typical of meta-learning, we are still in the
classical single-task single-distribution setting. Noether Networks learn to impose their own inductive
biases via a learned loss and to leverage it via an adaptation of its parameters� . This is useful as we
often do not have access to meta-partitions that distinguish data between distributions or tasks.
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Algorithm 1 Prediction and training procedures for Noether Networks with neural conservation loss

Given: predictive model classf ; embedding model classg; prediction horizonT; training
dist.Dtrain ; batch sizeN ; learning rates� in , � out , � emb ; task lossL task ; Noether lossL Noether

1: procedure PREDICTSEQUENCE(x0; �; � )
2: ~x0; x̂0  x0; x0
3: ~x t  f � (~x t � 1) 8t 2 f 1; : : : ; Tg . Initial predictions
4: � (x0; � )  � � � in r � L Noether (x0; ~x1:T ; g� ) . Inner step with Noether loss
5: x̂ t  f � (x 0 ;� ) (x̂ t � 1) 8t 2 f 1; : : : ; Tg . Final prediction with tailored weights
6: return x̂1:T

7: procedure TRAIN
8: �  randomly initialized weights . Initialize weights for Noether embeddingg
9: �  randomly initialized weights . Initialize weights for predictive modelf

10: while not donedo
11: Sample batchx (0)

0:T ; : : : ; x (N )
0:T � D train

12: for 0 � n � N do
13: x̂ (n )

1:T  PREDICTSEQUENCE(x (n )
0 ; �; � )

14: �  � � � emb r �
P N

n =0 L task (x̂ (n )
1:T ; x (n )

1:T ) . Outer step with task loss for embedding
15: �  � � � out r �

P N
n =0 L task (x̂ (n )

1:T ; x (n )
1:T ) . Outer step for predictive model

16: return �; �

4 Experiments

Our experiments are designed to answer the following questions:

1. Can Noether Networks recover known conservation laws in scienti�c data?

2. Are Noether Networks useful for settings with controlled dynamics?

3. Can Noether Networks parameterize useful conserved quantities from raw pixel information?

4. How does the degree of conservation affect performance on the prediction task?

4.1 Experimental domains

To answer the above questions, we consider a number of different experimental domains, which we
overview in this subsection, before moving on to the evaluation and results.

Spring and pendulum from state coordinates. Greydanus et al.[28] propose the setting of an
ideal spring and ideal pendulum, which will allow us to understand the behavior of Noether Networks
for scienti�c data where we know a useful conserved quantity: the energy. They also provide
data from a real pendulum from [53]. In contrast to the ideal setups, here the data is noisy and the
Hamiltonian is only approximately conserved, as the system is dissipative. For the two pendulum,
inputx = ( p; q) 2 R2 contains its angleq and momentump. Given the parameters in [28] the energy
is H = 3(1 � cosq) + p2, with p2 � 3 � cosq being a simpler equivalent. For the spring, input
x = ( p; q) 2 R2 contains the displacementq and momentump and the energy isH = 1

2 (q2 + p2).
Thus,q2 + 1 :0 � p2 is a conserved quantity, where the coef�cient1:0 has appropriate units.

We build on their vanilla MLP baseline and discover conservation laws that, when used for meta-
tailoring, improve predictions. Since the baseline predictsd

dt (x t ) rather thanx t +1 , we apply the loss
to a �nite-difference approximation, i.e.L Noether

�
x t ; x t + dx

dt � t
�

= L Noether (x t ; x t + f � (x t )� t ).

Domain speci�c language for scienti�c formulas. To search over Hamiltonians, we program a
simple domain speci�c language (DSL) for physical formulas. Since formulas in the DSL have
physical meaning, each sub-formula carries its own associated physical units and is checked for
validity. This allows us to signi�cantly prune the exponential space, as done in AI-Feynman [63].
The vocabulary of the DSL is the following:Input(i) : returns thei -th input,Operation : one of
f + ; � ; �; =;sin; cos; x2g, Parameter(u) : trainable scalar with units[u].
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Table 1: RecoveringH for the ideal pendulum.

Method Description RMSE

Vanilla MLP N/A 0:0563
Noether Nets p2 � 2:99 cos(q) 0:0423

TrueH [oracle] p2 � 3:00 cos(q) 0:0422

Table 2: RecoveringH for the ideal spring.

Method Description RMSE

Vanilla MLP N/A :0174
Noether Nets q2 + 1 :002p2 :0165

TrueH [oracle] q2 + 1 :000p2 :0166

Figure 2: Noether Networks can recover
the energy of a real pendulum, even
though it is not fully conserved. This
is because they only look for quantities
whose conservation helps improve pre-
dictions. Moreover, by only softly en-
couraging conservation, it better encodes
imperfect conservations.

Pixel pendulum with controls. In settings such as robotics we may be interested inaction-
conditionedvideo prediction [45]: predicting future frames given previous frames and an agent's
actions. We recorded videos of episodes in OpenAI Gym's pendulum swing up environment, using a
scripted policy. Each model receives four history frames and a sequence of26policy actions starting
from the current timestep, and must predict26 future frames. As this is a visually simple environment
we limit the training dataset to5 episodes of200frames each, holding out195episodes for testing.

Video prediction with real-world data. To characterize the bene�ts provided by Noether Net-
works in a real-world video prediction setting, we evaluate the effect of adding a Noether conservation
loss to the stochastic video generation (SVG) model [18] on the ramp scenario of the Physics 101
dataset [69]. The dataset contains videos of various real-world objects sliding down an incline and
colliding with a second object. Each model is conditioned on the �rst two frames and must predict
the subsequent 20 frames. To increase dif�culty, we restrict our data to the 20-degree incline.

4.2 Evaluation

Can Noether Networks recover known conservation laws in scienti�c data? We �rst generate
all valid formulas up to depth 7, removing operations between incompatible physical units and formu-
las equivalent up to commutativity. We obtain 41,460 and 72,372 candidate conserved formulas for
the pendulum and spring, respectively, which neednothave units of energy. These formulas are purely
symbolic, with some trainable parameters still to be de�ned. We thus optimize their parameters via gra-
dient descent to have low variance within sequences of true data. We then do the same for random se-
quences; if conservation is two orders of magnitude smaller for the true data, we accept it as an approx-
imate conservation. This measure is similar to others used before [38], but is not suf�cient when the
data is noisy, the minimisation is sub-optimal, or there are numerical issues. As a result, we obtain 210
and 219 candidates for approximately conserved quantities for the pendulum and spring, respectively.

Finally, for each potentially conserved quantity, we try it as meta-tailoring loss: starting from the
pre-trained vanilla MLP, we �ne-tune it for 100 epochs using meta-tailoring, with one inner step
and a range of inner learning rates10k for k 2 f� 3; � 2:5; : : : ; 1g. We then evaluate the �ne-tuned
model on long-term predictions, keeping the expression with the best MSE loss in the training data.
We observe that this process correctly singles out equations of the same form as the true Hamiltonian
H, with almost the exact parameters. Using these as losses reaches equivalent performance with that
of the oracle, which uses the true formula (see Tables 1 and 2).

Finally, we run the same process for a real pendulum [53], where energy is not conserved. We use
largely the same pipeline as for the ideal pendulum, the differences are explained in Appendix C.
Noether Networks discoverp2 � 2:39 cos(q), close to the (potentially sub-optimal)H = p2 �
2:4 cos(q) described in [28]. This Noether Network improves the baseline by more than one order of
magnitude, matches the performance of hand-coding the conservation loss, and improves over Hamil-
tonian Neural Networks, which fully impose conservation of energy. Results can be seen in �gure 2.
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Figure 3: In controlled pendulum environment,
the Noether Network has lower mean squared
error (left) and slightly better structural similar-
ity (right). Metrics are computed and plotted by
prediction timestep, where timestep0 is a given
history frame. Note that simply training SVG for
more steps does not increase performance.

Figure 4: The Noether Network outperforms the baseline by a small margin in all four metrics in real-
world video prediction, showing they can meta-learn useful conserved quantities from raw pixel data.

Are Noether Networks useful in settings with controlled dynamics? For the controlled
pendulum experiments, we begin with an SVG model but modify it to (1) remove the prior
sampling component since the environment is deterministic and (2) concatenate each action to the
corresponding frame encoder output and feed the result to the LSTM. After training the SVG model
for 50 epochs and �xing its weights, we run Algorithm 1 for 20 epochs to learn an embedding network
for conserving useful quantities. We found that Noether Networks perform better in this setting by
directly adapting the latent LSTM activations against the conservation loss, rather than adapting any
network parameters. Since Noether Networks take additional training steps starting from a pre-trained
SVG model, we also continued training the SVG model for 20 further epochs, which we call “SVG
(more steps).” Figure 3 shows the results of each method on held out sequences. Noether Networks
improve the overall mean squared error (MSE) and structural similarity (SSIM) over the base SVG.

Can Noether Networks parameterize useful conserved quantities from raw pixel information?
We train on only 311 training sequences, which makes generalization dif�cult. In this setting, the base
SVG model struggles with over�tting — novel test objects often morph into objects seen at train-time,
and the object in motion often morphs with the target object (as shown in �gure 1). Our Noether
Network uses the inner loss formulation of Equation 2(b), whereg� is a two-layer CNN receiving two
consecutive frames followed by a fully-connected projection layer producing 64-dimensional embed-
dings. We meta-tailor the embedding and the base model for 400 epochs. As seen in �gure 4, taking
a single inner tailoring step improves performance slightly over the baseline SVG model with respect
to all four considered metrics: learned perceptual image patch similarity (LPIPS) [72], mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). As the prediction
horizon increases, the Noether Network performs comparatively better, likely because conservations
encourage the model to retain aspects of the ground-truth input. These results provide some evidence
that Noether Networks are capable of learning useful inductive biases from raw video data.

To investigate whether the Noether embeddings learn relevant features, we use Gradient-weighted
Class Activation Mapping (Grad-CAM) [54] to compute importance maps for sequences in the test set.
Since the Noether embedding has 64 dimensions, we perform principal component analysis (PCA)
before Grad-CAM to reduce the dimensionality of the embedding, and to sort dimensions by the
percentage of variance they explain in the test set frames. Interestingly, we �nd that the �rst PCA
dimension captures 83.6% of the variance, and the �rst four dimensions capture 99.9% of the variance.

Figure 5 shows Grad-CAM localization maps for two example test-set sequences, (a) depicts an orange
torus and (b) shows a blue brick, where warmer colors (red) indicate high importance and cooler colors
(blue) indicate low importance. Our interpretations of Grad-CAM localization maps are consistent
across examples, see Appendix F for additional ones. The �rst dimension, which explains the vast
majority of the variance, primarily focuses on the sliding object in both examples. It also attends to the
object on the table, and to the edge of the ramp. The attention to the objects suggests that the Noether
Network learns to conserve quantities related to the objects' pixels and their motion (since it takes
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