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Abstract

We present a neural analysis and synthesis (NANSY) framework that can manip-
ulate voice, pitch, and speed of an arbitrary speech signal. Most of the previous
works have focused on using information bottleneck to disentangle analysis fea-
tures for controllable synthesis, which usually results in poor reconstruction quality.
We address this issue by proposing a novel training strategy based on information
perturbation. The idea is to perturb information in the original input signal (e.g.,
formant, pitch, and frequency response), thereby letting synthesis networks selec-
tively take essential attributes to reconstruct the input signal. Because NANSY
does not need any bottleneck structures, it enjoys both high reconstruction quality
and controllability. Furthermore, NANSY does not require any labels associated
with speech data such as text and speaker information, but rather uses a new set of
analysis features, i.e., wav2vec feature and newly proposed pitch feature, Yingram,
which allows for fully self-supervised training. Taking advantage of fully self-
supervised training, NANSY can be easily extended to a multilingual setting by
simply training it with a multilingual dataset. The experiments show that NANSY
can achieve significant improvement in performance in several applications such
as zero-shot voice conversion, pitch shift, and time-scale modification 1.

1 Introduction

Analyzing and synthesizing an arbitrary speech signal is inarguably a significant research topic that
has been studied for decades. Traditionally, this has been studied in the digital signal processing
(DSP) field using fundamental methods such as sinusoidal modeling or linear predictive coding
(LPC), and it is the analysis and synthesis framework that lies at the heart of those fundamental
methods [26, 3]. These traditional methods, however, are limited in terms of controllability because
the decomposed representations are still low-level representations. It is obvious that the closer we
decompose a signal into high-level/interpretable representations, the more we gain access to the
controllability. Given this consideration, we aim to design a neural analysis and synthesis (NANSY)
framework by decomposing a speech signal into analysis features that represent pronunciation, timbre,
pitch, and energy. The decomposed representations can be manipulated and re-synthesized, enabling
users to manipulate speech signals in various ways.

It is worth noting that many similar ideas have been recently proposed in the context of voice
conversion applications. We categorize the previous works in two ways, i.e., 1. Text-based approach,

1audio samples: https://tinyurl.com/eytw7hmb
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2. Information bottleneck approach. The first approach exploits the fact that the text modality is
inherently disentangled from the speaker identity. One of the most popular text-based approaches is
to use a pre-trained automatic speech recognition (ASR) network to extract a phonetic posteriogram
(PPG) and use it as a linguistic feature [41]. Then, combining the PPG with the target speaker
information, the features are re-synthesized to a speech signal. Another alternative approach is to
directly use text scripts by aligning it to a paired source signal [33]. Although these ideas have shown
promising results, it is important to note that these approaches have common problems. First, in
order to extract the PPG features, it is required to train an ASR network in a supervised manner,
which demands a lot of paired text and waveform datasets. Additionally, the language dependency of
the ASR network limits the model’s capability to be extended to multilingual settings or languages
with low-resources. To address these concerns, efforts have been made to divert from using the text
information and the most popular approach is to use an information bottleneck. The key idea is
to restrict the information flow by reducing time/channel dimension, and normalizing/quantizing
intermediate representations [36, 10, 51]. Although these ideas have been explored in many ways,
one critical problem is that there exists an inevitable trade-off between the degree of disentanglement
and the reconstruction quality. In other words, there is a trade-off between speaker similarity and the
preservation of original content such as linguistic and pitch information.

To avoid the major concern of the text-based approach, we suggest to use two analysis features which
are wav2vec and a newly proposed feature, Yingram. In order to preserve the linguistic information
without any text information, we utilize wav2vec 2.0 [4], trained on 53 languages in total [11]. While
the features from wav2vec 2.0 have mostly been used for a downstream task, we seek the possibility of
using them for an upstream/generation task. In addition, we propose a new feature that can effectively
represent and control pitch information. Although it is the fundamental frequency (f0) that is mostly
used to represent the pitch information, f0 is sometimes ill-defined when there exists sub-harmonics
in the signal (e.g., vocal fry) [16, 1, 2]. We address this issue by proposing a controllable but more
abstract feature than f0 that still includes information such as sub-harmonics. Because the proposed
feature is heavily inspired by the famous Yin algorithm [13], we refer to this feature as Yingram.

Although the analysis features above have enough information to reconstruct the original speech signal,
we have found that the information in the proposed analysis features share common information such
as pitch and timbre. To disentangle the common information so each feature can control a specific
attribute for its desired purpose (e.g., wav2vec ! linguistic information only, Yingram ! pitch
information only), we propose an information perturbation approach, a simple yet effective solution
to this problem. The idea is to simply perturb all the information we do not want to control from
the input features, thereby training the neural network to not extract the undesirable attributes from
the features. Through this way, the model no longer suffers from the unavoidable trade-off between
reconstruction quality and feature disentanglement, unlike the information bottleneck approach.

Lastly, we would like to deal with unseen languages at test time. To this end, we propose a new
test-time self-adaptation (TSA) strategy. The proposed self-adaptation strategy does not fine-tune
the model parameters but only the input linguistic feature, which consequently modifies the mispro-
nounced parts of the reconstructed sample. Because the proposed TSA requires only a single sample
at test-time, it adds a large flexibility for the model to be used in many scenarios (e.g., low-resource
language).

The contributions of this paper are as follows:

• We propose a neural analysis and synthesis (NANSY) framework that can be trained in a
fully self-supervised manner (no text, no speaker information needed). The proposed method
is based on a new set of analysis features and information perturbation.

• The proposed model can be used for various applications, including zero-shot voice conver-
sion, formant preserving pitch shift, and time-scale modification.

• We propose a new test-time self-adaptation (TSA) technique than can be used even on
unseen languages using only a single test-time speech sample.
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2 NANSY: Neural Analysis and Synthesis

Figure 1: The overview of the training procedure and information flow of the proposed neural analysis
and synthesis (NANSY) framework. The waveform is first perturbed using functions f and g. f
perturbs formant, pitch, and frequency response. g perturbs formant and frequency response while
preserving pitch. w2v denotes wav2vec encoder and spk denotes a speaker embedding network. L,
P, S, E denotes Linguistic, Pitch, Speaker, and Energy information, respectively. The tilde symbol
is attached when the information is perturbed using the perturbation functions. The dashed boxes
denote the modules that are being trained.

2.1 Analysis Features

Linguistic To reconstruct an intelligible speech signal, it is crucial to extract rich linguistic infor-
mation from the speech signal. To this end, we resort to XLSR-53: a wav2vec 2.0 model pre-trained
on 56k hours of speech in 53 languages [11]. The extracted features from XLSR-53 have shown
superior performance on downstream tasks such as ASR, especially on low-resource languages. We
conjecture, therefore, that the extracted features from this model can provide language-agnostic
linguistic information. Now the question is, from which layer should the features be extracted?
Recently, it has been reported that the representation from different layers of wav2vec 2.0 exhibit
different characteristics. Especially, Shah et al. [39] showed that it is the output from the middle layer
that has the most relevant characteristics to pronunciation2. In light of this empirical observation, we
decided to use the intermediate features of XLSR-53. More specifically, we used the output from the
12th layer of the 24-layer transformer encoder.

Speaker Perhaps the most common approach to extract speaker embeddings is to first train a
speaker recognition network in a supervised manner and then reuse the network for the generation
task, assuming that the speaker embedding from the trained network can represent the characteristics
of unseen speakers [21, 36]. Here we would like to take one step further and assume that we do not
have speaker labels to train a speaker recognition network in a supervised manner. To mitigate this
disadvantage, we again use the representation from XLSR-53, which makes the proposed method
fully self-supervised. To determine which layer of XLSR-53 to extract the representation from, we
first analyzed the features from each layer. Specifically, we averaged the representation of each layer
along the time-axis and visualized utterances of 20 randomly selected speakers from the VCTK
dataset using TSNE [47, 46]. In Fig. 2, we can observe that the representation from the 1st layer of
XLSR-53 already forms clusters for each speaker, while the latter layers (especially the last layer) tend
to lack them. Note that this is in accordance with the previous observation in [18]. Taking this into
consideration, we train a speaker embedding network that uses the 1st layer of XLSR-53 as an input.
For the speaker embedding network, we borrow the neural architecture from a state-of-the-art speaker
recognition network [14], which is based on 1D-convolutional neural networks (1D-CNN) with an
attentive statistics pooling layer. The speaker embedding was L2-normalized before conditioning.
The speaker embeddings of seen and unseen speakers during training are also shown in Fig. 2.

Pitch Due to the irregular periodicity of the glottal pulse, we often hear creaky voice in speech,
which is usually manifested as jitter or sub-harmonics in signals. This makes hard for f0 trackers to
estimate f0 because the f0 itself is not well defined in such cases [16, 1, 2]. We take a hint from the

2We failed to train the model when we used the wav2vec features from the last three layers.
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Figure 2: The visualization of intermediate representations of XLSR-53 using TSNE.

popular Yin algorithm to address this issue. The Yin algorithm uses the cumulative mean normalized
difference function d

0
t(⌧) to extract frame-wise features from a raw waveform, which is defined as

follows,

d
0
t(⌧) =

(
1, if ⌧ = 0
dt(⌧)/

P⌧
j=1 dt(j), otherwise.

(1)

The dt(⌧) is a difference function that outputs a small value when there exists a periodicity on
time-lag ⌧ and it is defined as follows,

dt(⌧) =
WX

j=1

(xj � xj+⌧ )
2 = rt(0) + rt+⌧ (0)� 2rt(⌧), (2)

where t, ⌧ , W , and rt denote frame index, time lag, window size, and the auto-correlation function,
respectively. After some post processing steps, the Yin algorithm selects f0 from multiple f0 can-
didates. See [13] for more details. Rather than explicitly selecting f0, we would like to train the
network to generate pitch harmonics from the output of the function d

0
t(⌧). However, d0t(⌧) itself is

limited to be used as a pitch feature because it lacks controllability, unlike f0. Therefore, we propose
Yingram Y by converting the time-lag axis to the midi-scale axis as follows,

Yt(m) =
d

0

t(dc(m)e)� d
0

t(bc(m)c)
dc(m)e � bc(m)c · (c(m)� bc(m)c) + d

0

t(bc(m)c), (3)

c(m) =
sr

440 · 2(m�69
12 )

, (4)

where m, c(m), and sr denote midi note, midi-to-lag conversion function, and sampling rate, re-
spectively. We set 20 bins of Yingram to represent a semitone range. In addition, we set Yingram to
represent the frequency between 10.77 hz and 1000.40 hz by setting W to 2048 and the range of ⌧
between 22 and 2047. In the training stage, the input to the synthesis network is the frequency range
between 25.11 hz and 430.19 hz, which is shown as scope in Fig. 3. After the training is finished, we
can change the pitch by shifting the scope. That is, in the inference stage, one could simply change
the pitch of the speech signal by shifting the scope. For example, if we move the scope down 20 bins,
the pitch can be raised by a semitone.

Figure 3: The visualization of Yingram and the corresponding mel spectrogram.

Energy For the energy feature, we simply took an average from a log-mel spectrogram along the
frequency axis.
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2.2 Synthesis Network

Figure 4: The outputs of GS and GF . The two outputs from each generator are summed to reconstruct
a mel spectrogram.

It is well-known that speech production can be explained by source-filter theory. Inspired by this, we
separate synthesis networks into two parts, source generator GS and filter generator GF . While the
energy and speaker features are common inputs for both generators, GS and GF differ in that they
take Yingram and wav2vec features, respectively. Because the acoustic feature can be interpreted as a
sum of source and filter in the log magnitude domain, we incorporate inductive bias in the model by
summing the outputs from each generator similarly to [25]. As will be discussed in more detail in the
next section, even though the training loss is only defined using mel spectrograms, the network learns
to separately generate the spectral envelope and pitch harmonics as shown in Fig. 4. Note that this
separation not only provides the interpretability to the model but also enables formant preserving
pitch shifting. To summarize, the acoustic feature, mel spectrogram M̂ , is generated as follows,

M̂ = GS(Yingram, S, E) + GF (wav2vec, S, E), (5)

where S and E denote speaker embedding and energy features. We used stacks of 1D-CNN layers
with gated linear units (GLU) [12] for generators. The detailed neural architecture of the generator
is described in Appendix B. Note that each generator shares the same neural architecture. The only
difference is the input features to the networks. Finally, the generated mel spectrogram is converted
to waveform using the pre-trained HiFi-GAN vocoder [24].

3 Training

3.1 Information Perturbation

In our initial experiments, a neural network can be easily trained to reconstruct mel spectrograms
using only the wav2vec feature. This implies that the wav2vec feature contains not only rich linguistic
information but also information related to pitch and speaker. For that reason, we would like to
train GF to selectively extract only the linguistic-related information from the wav2vec feature, not
pitch and speaker information. In addition, we would like to train GS to selectively extract only the
pitch-related information from the Yingram feature, not speaker information. To this end, we propose
to perturb the information included in input waveform x by using three functions that are 1. formant
shifting (fs), 2. pitch randomization (pr), and 3. random frequency shaping using a parametric
equalizer (peq)3. We applied a function f on the wav2vec input, which is a chain of all three functions
as follows, f(x) = fs(pr(peq(x))). On the Yingram side, we applied function g, which is a chain
of two functions fs and peq so that f0 information is still preserved as follows, g(x) = fs(peq(x)).
This way, we expect GF to take only the linguistic-related information from the wav2vec feature, and
GS to take only pitch-related from the Yingram feature. Since the wav2vec and Yingram features
can no longer provide the speaker-related information, the control of speaker information becomes
uniquely dependent on the speaker embedding. The overview of the information flow is shown in Fig.
1. The hyperparameters of the perturbation functions are described more in Appendix A.

3.2 Training Loss

We used L1 loss between the generated mel spectrogram M̂ and ground truth mel spectrogram M

to train the generators and speaker embedding network. However, it is well-known that the speech
synthesis networks trained with L1 or L2 loss suffer from over-smootheness of the generated acoustic
feature, which results in poor quality of the speech signal. Therefore, in addition to the L1 loss,
we used the recent speaker conditional generative adversarial training method to mitigate this issue
[8]. Writing the discriminator as D(M, c+, c�) := �(h(M, c+, c�)), Choi et al. [8] proposed to

3We used Parselmouth for fs and pr [20]. PEQ was implemented following [53].
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use projection conditioning [27] not only with the positive pairs but also with the negative pairs as
follows,

h(M, c+, c�) =  (�(M)) + cT+�(M)� cT��(M), (6)

where M denotes a mel spectrogram, �(·) denotes a sigmoid function, c+ denotes a speaker em-
bedding from a positively paired input speech sample, and c� denotes a speaker embedding from
a randomly sampled speech utterance. �(·) denotes an output from the intermediate layer of dis-
criminator and  (·) denotes a function that maps input vector to a scalar value. The detailed neural
architecture of D is shown in Appendix B. The loss functions for discriminator LD and generator LG
are as follows:

LD = �E(M,c+,c�)⇠pdata,M̂⇠pgen
[log(�(h(M, c+, c�)))� log(�(h(M̂, c+, c�)))],

LG = �E(M,c+,c�)⇠pdata,M̂⇠pgen
[log(�(h(M̂, c+, c�)))] + |M � M̂ |.

(7)

3.3 Test-time Self-Adaptation

Figure 5: The illustration of TSA.

Although the synthesis network can reconstruct
an intelligible speech from the wav2vec feature
in most cases, we observed that the network
sometimes outputs speech signals with wrong
pronunciation, especially when tested on unseen
languages. To alleviate this problem, we propose
to modify only the input representation, that is,
the wav2vec feature, without having to train the
whole network again from scratch. As shown
in Fig. 5, we first compute L1 loss between the
generated mel spectrogram M̂ and ground truth
mel spectrogram M in the test-time. Then, we
update only the parameterized wav2vec feature using the backpropagation signal from the loss. Note
that the loss gradient (shown in red) is backpropagated only through the filter generator. Because this
test-time training scheme requires only a single test-time sample and updates the input parameters by
targeting the test-time sample itself, we call it test-time self-adaptation (TSA).

4 Experiments

4.1 Implementation Details

Dataset To train NANSY on English, we used two datasets, i.e., 1. VCTK4 [47], 2. train-clean-360
subset of LibriTTS3 [54]. We trained the model using 90% of samples for each speaker. The speakers
of train-clean-360 were included to the training set only when the total length of speech samples
exceeds 15 minutes. To test on English speech samples we used two datasets; 1. For the seen speaker
test we used 10% unseen utterances of VCTK. 2. For the unseen speaker test we used test-clean
subset of LibriTTS.

To train NANSY on multi-language, we used CSS103 dataset [32]. CSS10 includes 10 speakers
and each speaker use different language. Note that there is no English speaking speaker included in
CSS10. To train the model, we used 90% of samples for each speaker. To test on multilingual speech
samples, we used the rest 10% unseen utterances of CSS10.

Training We used 22,050 hz sampling rate for every analysis feature except for wav2vec input
that takes waveform with the sampling rate of 16,000 hz. We used 80 bands for mel spectrogram,
where FFT, window, and hop size were set to 1024, 1024, and 256, respectively. The samples were
randomly cropped approximately to 1.47-second, which results in 128 mel spectrogram frames. The
networks were trained using Adam optimizer with �1 = 0.5 and �2 = 0.9. The learning rate was fixed
to 10�4. We trained every model using one RTX 3090 with batch size 32. The training was done after
50 epochs.

4The licenses of the used datasets are as follows: 1. VCTK - Open Data Commons Attribution License 1.0, 2.
LibriTTS - Creative Commons Attribution 4.0, and 3. CSS10 - Apache License 2.0.
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4.2 Reconstruction

For the reconstruction (analysis and synthesis) tests, we report character error rate (CER (%)), and
5-scale mean opinon score (MOS ([1-5])), 5-scale degradation mean opinion score (DMOS ([1-5])).
For MOS, higher is better. For DMOS and CER, lower is better. To estimate the characters from
speech samples, we used google cloud ASR API. For MOS and DMOS, we used amazon mechanical
turk (MTurk). The details of MOS and DMOS are shown in Appendix D.

Yingram vs f0 We compared two models trained with Yingram and f0 to check which pitch feature
shows more robust reconstruction performance. We used RAPT algorithm for f0 estimation [42],
which is known as a reliable f0 tracker among many other algorithms [22]. Because RAPT algorithm
works sufficiently well in most cases, we first manually listened to the reconstructed samples using the
model trained with f0. We first chose 30 reconstructed samples in the testset that failed to faithfully
reconstruct the original samples using the model trained with f0. After that we reconstructed the
same 30 samples using the model trained with Yingram. Finally, we conducted ABX test to ask
participants which of the two samples (A and B) sounds closer to the original sample (X). The ABX
test was conducted on MTurk. The results showed that the participants chose Yingram with a chance
of 68.3%. This shows that Yingram can be used as a more robust pitch feature than f0, when f0

cannot be accurately estimated.

Reconstruction test We randomly sampled 50 speech samples from VCTK (seen speaker) and
sampled another 50 speech samples from test-clean subset of LibriTTS (unseen speaker) to test the
reconstruction performance of NANSY trained on English datasets. The results in Table 1 shows that
NANSY can perform high quality analysis and synthesis task. In addition, to test if the proposed
framework can cover various languages, we trained and tested it with the multilingual dataset, CSS10.
We randomly sampled 100 speech samples from CSS10 to test the reconstruction performance of
NANSY trained on multi-language. The results are shown in Table 2. Although we do not impose
any explicit labels for each language, the model was able to reconstruct various languages with high
quality. The results of CER on each language is shown in Fig. 6, MUL.

CER MOS DMOS

GT n/a 4.28 ± 0.09 n/a
Recon 5.6 4.18 ± 0.09 1.93 ± 0.09

Table 1: English reconstruction results.

CER MOS DMOS

GT n/a 4.19 ± 0.08 n/a
Recon 7.3 4.14 ± 0.09 1.74 ± 0.09

Table 2: Multilingual reconstruction results.

Test-time self-adaptation To test the proposed test-time self-adaptation (TSA), we compared the
CER performance of NANSY trained in three different configurations, 1. English (ENG), 2. English
with TSA (ENG-TSA), 3. Multi-language (MUL). For every experiment, we iteratively updated the
wav2vec feature 100 times. The results are shown in Fig. 6. Naturally, MUL generally showed better
CER performance than other configurations. Interestingly, however, ENG-TSA sometimes showed
similar or even better performance than MUL, which shows the effectiveness of the proposed TSA
technique.

Figure 6: The CER results on 10 languages (NL: Dutch, HU: Hungarian, FR: French, JP: Japanese,
CH: Chinese, RU: Russian, FI: Finnish, GR: Greek, ES: Spanish, DE: German).

4.3 Voice conversion

NANSY can perform zero-shot voice conversion by simply passing the desired target speech utterance
to the speaker embedding network. We first compared the English voice conversion performance of
NANSY with recently proposed zero-shot voice conversion models. Next, we tested the multilingual
voice conversion performance. Finally, we tested unseen language voice conversion for both seen
speaker and unseen speaker targets. Note that in every voice conversion experiment, we shifted the
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median pitch of a source utterance to the median pitch of a target utterance by shifting the scope of
Yingram. We measured naturalness with 5-scale mean opinion score (MOS [1-5]). Speaker similarity
(SSIM (%)) were measured with a binary decision and uncertainty options, following [50]. For MOS
and SSIM, we again used MTurk. The details of MOS and SSIM are shown in Appendix D. One of
the crucial criteria for evaluating the quality of the converted samples is to check the intelligibility of
them. Previous zero-shot voice conversion models, however, have only reported MOS or SSIM and
have been negligent on assessing the intelligibility of the converted samples [36, 10, 51]. To this end,
we report character error rate (CER (%)) between estimated characters of source and converted pairs.
To estimate the characters from speech samples, we used google cloud ASR API.

Algorithm comparison Here, we report three source-to-target speaker conversion settings, 1.
seen-to-seen (many-to-many, M2M), 2. unseen-to-seen (any-to-many, A2M), 3. unseen-to-unseen
(any-to-any, A2A). For every setting, we considered 4 gender-to-gender combination, i.e., male-to-
male (m2m), male-to-female (m2f), female-to-male (f2m), and female-to-female (f2f). For M2M
setting, we randomly sampled 25 seen speakers from VCTK and randomly assigned 2 random
speakers from VCTK, resulting in 200 (=25⇥2⇥4) conversion pairs in total. For A2M setting, we
randomly sampled 10 seen speakers from test-clean subset of LibriTTS and randomly assigned 2
random speakers from VCTK resulting in 80 (=10⇥2⇥4) conversion pairs in total. For A2A setting,
we randomly sampled 10 seen speakers from test-clean subset of LibriTTS and randomly assigned 2
random speakers from test-clean subset of LibriTTS resulting in 80 (=10⇥2⇥4) conversion pairs in
total. We trained three baseline models with official implementations - VQVC+ [51], AdaIN [10],
AUTOVC [36] - using the same dataset and mel spectrogram configuration as NANSY. For a fair
comparison, we used a pre-trained HiFi-GAN vocoder for every model. Table 3 shows that NANSY
significantly outperforms previous models in terms of every evaluation measure. This implies that
the proposed information perturbation approach does not suffer from the trade-off between CER and
SSIM unlike information bottleneck approaches. The SSIM results for all possible gender-to-gender
combinations are shown in Fig. 9 in Appendix C.

M2M A2M A2A

CER[%] MOS[1-5] SSIM[%] CER[%] MOS[1-5] SSIM[%] CER[%] MOS[1-5] SSIM[%]

SRC as TGT n/a 4.23 ± 0.05 0 n/a 4.28 ± 0.09 0.60 n/a 4.26 ± 0.07 0.25
TGT as TGT n/a 4.32 ± 0.05 94.9 n/a 4.29 ± 0.05 92.4 n/a 4.27 ± 0.07 96.2

VQVC+ 54.0 1.76 ± 0.05 54.5 74.7 1.73 ± 0.11 15.6 69.3 1.83 ± 0.09 13.8
AdaIN 62.9 2.22 ± 0.07 24.0 79.6 1.92 ± 0.12 18.1 59.3 2.12 ± 0.10 21.2
AUTOVC 31.7 3.41 ± 0.06 47.3 36.1 2.74 ± 0.11 33.2 28.2 2.59 ± 0.08 23.3
NANSY 7.5 3.79 ± 0.07 91.4 7.6 3.73 ± 0.05 88.1 8.6 3.44 ± 0.07 64.6

Table 3: Evaluation results on English voice conversion. SRC and TGT denote, source and target,
respectively.

Multilingual voice conversion We tested multilingual voice conversion performance with the
model trained on the multilingual dataset, CSS10. We randomly sampled 50 samples for each
language speaker from CSS10 and assigned random single target speaker from CSS10 for each source
language, resulting in 500 (=50⇥10) conversion pairs in total. The results in Table 4 show that the
proposed framework can successfully perform multilingual voice conversion by training it with the
multilingual dataset. However, there is still a room for improvement for multilingual voice conversion
when comparing to the results in Table 3, where NANSY is just trained on English.

Unseen language voice conversion We tested the voice conversion performance on unseen source
languages using NANSY trained on English. We tested the performance on two settings, 1. unseen
source language (CSS10) to seen target voice (VCTK) and 2. unseen source language (CSS10) to
unseen target voice (CSS10). For the first experiment, we randomly sampled 50 samples for each
unseen language speaker from CSS10 and assigned random English target speakers from VCTK,
resulting in 500 (=50⇥10) conversion pairs in total. The second experiment was conducted identically
to the multilingual voice conversion experiment setting. The results in Table 5 shows that NANSY
can be successfully extended even to unseen language sources, although there was a decrease on
SSIM compared to the results in Table 4 (69.5% ! 61.0%).
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CER MOS SSIM

TGT as TGT n/a 4.23 ± 0.06 98.0
NANSY 18.8 3.68 ± 0.09 69.5

Table 4: The multilingual voice conver-
sion results. The model was trained us-
ing only CSS10.

Seen Speaker Unseen Speaker

CER MOS SSIM CER MOS SSIM

TGT as TGT n/a 4.24 ± 0.07 100 n/a 4.23 ± 0.06 92.0
NANSY 14.8 3.75 ± 0.10 90.0 15.6 3.76 ± 0.09 61.0

Table 5: The voice conversion results on unseen
language dataset, CSS10. The model was trained
using only the English datasets.

4.4 Pitch shift and time-scale modification

To check the robustness of pitch shift (PS) and time-scale modification (TSM) performance of
NANSY, we compared it with other robust algorithms, i.e., PSOLA 5 and WORLD vocoder [29, 28].

Pitch shift We tested PS performance with 5 semitone ranges, -6, -3, 0, 3, 6. The pitch was changed
by shifting the scope of the proposed Yingram feature. Note that ‘0’ was used to check analysis-
synthesis performance. We randomly selected 20 samples for each semitone range from 10% unseen
utterances of VCTK. We evaluated the naturalness of speech samples with MOS on MTurk. The
results in Table 6 show that NANSY generally outperforms algorithms such as PSOLA and WORLD
vocoder on PS task.

Time-scale modification We tested TSM performance with 5 time-scale ratios, 1/2, 1/1.5, 1, 1.5,
2. The time-scale was modified by simply manipulating the hop length of the analysis features.
Note that ‘1’ was used to check analysis-synthesis performance. We randomly selected 20 samples
for each time-scale ratio from 10% unseen utterances of VCTK. We evaluated the naturalness of
speech samples with MOS on MTurk. The results in Table 7 show that NANSY achieved competitive
performance on TSM compared to the well-established PSOLA and WORLD vocoder.

-6 -3 0 3 6

WORLD [28] 3.43 3.53 3.85 3.63 3.53
PSOLA [29] 3.63 3.55 3.93 3.75 3.48
NANSY 3.60 3.68 4.05 3.90 3.78

Table 6: Pitch shift results.

1/2 1/1.5 1 1.5 2

WORLD [28] 2.40 3.60 3.83 3.38 3.03
PSOLA [29] 2.55 3.66 3.95 3.68 2.85
NANSY 2.45 3.63 3.98 3.70 2.93

Table 7: Time-scale modification results.

5 Related Works

Self-supervised representation learning and synthesis of speech There has been an increasing
interest in the self-supervised learning methods within the machine learning and speech processing
community. Oord et al. [31] first proposed to use noise contrastive estimation loss to train speech
representations. Baevski et al. [4] extended this idea by integrating masked language modeling [15].
Another popular self-supervised learning method for speech representation is to train a neural network
by targeting multiple self-supervision tasks [34, 37]. Most recently, [35] used the discrete disentangled
self-supervised representations to re-synthesize them into a waveform. Although using the discrete
units has its own advantage in that it is disentangled with speaker information, we found that an
inaccurate quantization process often leads to mispronounced samples, which is why we turned to
use continuous representation as it can provide more accurate results on linguistic information.

Zero-shot voice conversion Research on zero-shot voice conversion has been most actively con-
ducted through the information bottleneck approach. Qian et al. [36] proposed to perform zero-shot
voice conversion by utilizing the pre-trained speaker recognition network and information bottleneck
by carefully designing the bottleneck of an auto-encoder. Inspired by the success of style conversion
in computer vision, Chou and Lee [10] also focused on restricting the information flow using instance
normalization [44] and adaptive instance normalization [19]. Lastly, Wu et al. [51] used multiple
vector quantization layers [30] to restrict the information flow.

5We used Parselmouth for PSOLA [20].
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Inductive bias for audio generation It has been shown that neural networks can be combined
with traditional speech/sound production models for efficient and strong performance. One of the
speech production models that has been integrated with neural networks is the source-filter model.
By modeling source and filter components with deep networks, it has been used for applications such
as vocoder [49, 23, 45] and acoustic feature generation [25]. Furthermore, Engel et al. [17] proposed
to integrate a harmonic plus noise model [38] and neural networks to produce natural audio signal.

Consistency learning Learning representations by augmenting the data has been one of the key
ideas to leverage the performance of classification tasks [43, 52]. This shares the similar idea with
the proposed information perturbation strategy in that the data is perturbed so that the neural network
must learn to ignore the perturbations and learn the consistency from the data. However, the key
difference between the consistency learning and the information perturbation is that the information
perturbation method is designed for “generative” task and that it is the “decoder” (e.g., Generator) that
is trained to selectively take the essential attributes to reconstruct the signal from the given perturbed
representations.

6 Conclusions and Discussion

In this work, we proposed a neural analysis and synthesis framework (NANSY) that can perform
zero-shot voice conversion, formant preserving pitch shift, and time-scale modification with a single
model. The proposed model can be trained in a fully self-supervised manner, that is, it can be trained
without any labeled data such as text or speaker information. We showed the effectiveness of the
proposed information perturbation approach by showing the voice conversion results on various
settings. Furthermore, we showed the effectiveness of the proposed TSA method by testing it on
unseen languages, which shows the possibility of NANSY to be extended on low-resource languages.
Although the proposed method empowers controllability over several attributes of a speech signal, it is
still limited in terms of lacking controllability over linguistic information. As a future work, therefore,
we would like to investigate on a hybrid approach that integrates text information as a side input so
that the user can manipulate even the linguistic information in the speech signal. Finally, to prevent the
proposed framework being used maliciously (e.g., voice phishing), it would be important to develop
a detection algorithm that can discriminate a synthesized speech sample from a real speech sample.
To examine the potential of such a detection system, we have tried using the trained Discriminator
from the NANSY framework, which is expected to discriminate fake samples from real samples. We
measured the accuracy of classifying 185 reconstructed samples and 185 ground truth samples. In
addition, we measured the accuracy of classifying 560 voice conversion samples and 560 ground
truth samples. The accuracy was 91.4% on the reconstruction set and 95.5% on the voice conversion
set. This shows the possibility of Discriminator being used as a byproduct network to discriminate
real speech samples from fake speech samples. However, we also found that Discriminator is prone
to being deceived by the generated samples from other speech generative models as Discriminator
was not jointly trained with those generative models. Therefore, we expect more robust synthesized
speech detection algorithms to be developed in the future such as [48, 40, 9, 6].

Broader Impacts

The proposed NANSY framework shows that a generative model can benefit from self-supervised
representations. By choosing proper domain specific “information perturbation” functions, we believe
that one can achieve controllable generative modeling in a fully self-supervised way. The information
perturbation training strategy may also be used for other modalities and facilitate self-supervised
representation learning methods too. With the proposed training framework, one can manipulate
various aspects of speech samples. Among the various controllabilities, it is rather obvious that the
voice conversion technique can be misused and potentially harm other people. More concretely,
there are possible scenarios where it is being used by random unidentified users and contributing to
spreading fake news. In addition, it can raise concerns about biometric security systems based on
speech. To mitigate such issues, the proposed system should not be released without a consent so that
it cannot be easily used by random users with malicious intentions. That being said, there is still a
potential for this technology to be used by unidentified users. As a more solid solution, therefore, we
believe a detection system that can discriminate between fake and real speech should be developed.
The preliminary results of the detection system is reported in section 6.
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