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Abstract

The worst-case training principle that minimizes the maximal adversarial loss, also
known as adversarial training (AT), has shown to be a state-of-the-art approach for
enhancing adversarial robustness. Nevertheless, min-max optimization beyond the
purpose of AT has not been rigorously explored in the adversarial context. In this
paper, we show how a general framework of min-max optimization over multiple
domains can be leveraged to advance the design of different types of adversarial
attacks. In particular, given a set of risk sources, minimizing the worst-case attack
loss can be reformulated as a min-max problem by introducing domain weights
that are maximized over the probability simplex of the domain set. We showcase
this unified framework in three attack generation problems – attacking model
ensembles, devising universal perturbation under multiple inputs, and crafting
attacks resilient to data transformations. Extensive experiments demonstrate that
our approach leads to substantial attack improvement over the existing heuristic
strategies as well as robustness improvement over state-of-the-art defense methods
trained to be robust against multiple perturbation types. Furthermore, we find
that the self-adjusted domain weights learned from our min-max framework can
provide a holistic tool to explain the difficulty level of attack across domains. Code
is available at https://github.com/wangjksjtu/minmax-adv.

1 Introduction

Training a machine learning model that is capable of assuring its worst-case performance against
possible adversaries given a specified threat model is a fundamental and challenging problem,
especially for deep neural networks (DNNs) [64, 22, 13, 69, 70]. A common practice to train an
adversarially robust model is based on a specific form of min-max training, known as adversarial

training (AT) [22, 40], where the minimization step learns model weights under the adversarial loss
constructed at the maximization step in an alternative training fashion. In practice, AT has achieved
the state-of-the-art defense performance against `p-norm-ball input perturbations [3].

Although the min-max principle is widely used in AT and its variants [40, 59, 76, 65], few work
has studied its power in attack generation. Thus, we ask: Beyond AT, can other types of min-max

formulation and optimization techniques advance the research in adversarial attack generation? In
this paper, we give an affirmative answer corroborated by the substantial performance gain and the
ability of self-learned risk interpretation using our proposed min-max framework on several tasks for
adversarial attack.

⇤Equal contributions.
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We demonstrate the utility of a general formulation for minimizing the maximal loss induced from a
set of risk sources (domains). Our considered min-max formulation is fundamentally different from
AT, as our maximization step is taken over the probability simplex of the set of domains. Moreover,
we show that many problem setups in adversarial attacks can in fact be reformulated under this general
min-max framework, including attacking model ensembles [66, 34], devising universal perturbation
to input samples [44] and data transformations [6, 10]. However, current methods for solving these
tasks often rely on simple heuristics (e.g., uniform averaging), resulting in significant performance
drops when comparing to our proposed min-max optimization framework.

Contributions ¨ With the aid of min-max optimization, we propose a unified alternating one-
step projected gradient descent-ascent (APGDA) attack method, which can readily be specified to
generate model ensemble attack, universal attack over multiple images, and robust attack over data
transformations. ≠ In theory, we show that APGDA has an O(1/T ) convergence rate, where T is
the number of iterations. In practice, we show that APGDA obtains 17.48%, 35.21% and 9.39%
improvement on average compared with conventional min-only PGD attack methods on CIFAR-10.
Æ More importantly, we demonstrate that by tracking the learnable weighting factors associated
with multiple domains, our method can provide tools for self-adjusted importance assessment on the
mixed learning tasks. Ø Finally, we adapt the idea of the domain weights into a defense setting [65],
where multiple `p-norm perturbations are generated, and achieve superior performance as well as
intepretability.

1.1 Related work

Recent studies have identified that DNNs are highly vulnerable to adversarial manipulations in various
applications [64, 12, 27, 33, 26, 14, 77, 20, 15, 31], thus leading to an arms race between adversarial at-
tacks [13, 3, 23, 48, 45, 72, 1, 18] and defenses [40, 59, 76, 65, 42, 71, 74, 68, 53, 16]. One intriguing
property of adversarial examples is the transferability across multiple domains [36, 67, 47, 62], which
indicates a more challenging yet promising research direction – devising universal adversarial pertur-
bations over model ensembles [66, 34], input samples [44, 43, 56] and data transformations [3, 6, 10].

Besides, many recent works started to produce physical realizable perturbations that expose real world
threats. The most popular approach [4, 21], as known as Expectation Over Transformation (EOT),
is to train the attack under different data transformation (e.g., different view angles and distances).
However, current approaches suffer from a significant performance loss for resting on the uniform
averaging strategy or heuristic weighting schemes [34, 56]. We will compare these works with our
min-max method in Sec. 4. As a natural extension following min-max attack, we study the generalized
AT under multiple perturbations [65, 2, 28, 17]. Finally, our min-max framework is adapted and
inspired by previous literature on robust optimization over multiple domains [50, 51, 38, 37].

To our best knowledge, only few works leverage min-max principle for adversarial attack generation
while the idea of producing the worst-case example across multiple domains is quite natural. Specifi-
cally, [7] considered the non-interactive blackbox adversary setting and proposed a framework that
models the crafting of adversarial examples as a min-max game between a generator of attacks and a
classifier. [57] introduced a min-max based adaptive attacker’s objective to craft perturbation so that
it simultaneously evades detection and causes misclassification. Inspired by our work, the min-max
formulation has also been extended to zero-order blackbox attacks [35] and physically realizable
attacks [73, Adversarial T-shirt]. We hope our unified formulation can stimulate further research on
applying min-max principle and interpretable domain weights in more attack generation tasks that
involve in evading multiple systems.

2 Min-Max Across Domains

Consider K loss functions {Fi(v)} (each of which is defined on a learning domain), the problem of
robust learning over K domains can be formulated as [50, 51, 38]

minimize
v2V

maximize
w2P

P
K

i=1 wiFi(v), (1)

where v and w are optimization variables, V is a constraint set, and P denotes the probability simplex
P = {w |1Tw = 1, wi 2 [0, 1], 8i}. Since the inner maximization problem in (1) is a linear function
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of w over the probabilistic simplex, problem (1) is thus equivalent to
minimize

v2V
maximize

i2[K]
Fi(v), (2)

where [K] denotes the integer set {1, 2, . . . ,K}.

Benefit and Challenge from (1). Compared to multi-task learning in a finite-sum formulation
which minimizes K losses on average, problem (1) provides consistently robust worst-case perfor-
mance across all domains. This can be explained from the epigraph form of (2),

minimize
v2V,t

t, subject to Fi(v)  t, i 2 [K], (3)
where t is an epigraph variable [8] that provides the t-level robustness at each domain.

In computation, the inner maximization problem of (1) always returns the one-hot value of w, namely,
w = ei, where ei is the ith standard basis vector, and i = argmax

i
{Fi(v)}. However, this one-hot

coding reduces the generalizability to other domains and induces instability of the learning procedure
in practice. Such an issue is often mitigated by introducing a strongly concave regularizer in the inner
maximization step to strike a balance between the average and the worst-case performance [38, 50].

Regularized Formulation. Following [50], we penalize the distance between the worst-case loss
and the average loss over K domains. This yields

minimize
v2V

maximize
w2P

P
K

i=1 wiFi(v)�
�

2 kw � 1/Kk
2
2, (4)

where � > 0 is a regularization parameter. As � ! 0, problem (4) is equivalent to (1). By contrast,
it becomes the finite-sum problem when � ! 1 since w ! 1/K. In this sense, the trainable w
provides an essential indicator on the importance level of each domain. The larger the weight is, the
more important the domain is. We call w domain weights in this paper.

3 Min-Max Power in Attack Design

To the best of our knowledge, few work has studied the power of min-max in attack generation. In
this section, we demonstrate how the unified min-max framework (4) fits into various attack settings.
With the help of domain weights, our solution yields better empirical performance and explainability.
Finally, we present the min-max algorithm with convergence analysis to craft robust perturbations
against multiple domains.

3.1 A Unified Framework for Robust Adversarial Attacks

The general goal of adversarial attack is to craft an adversarial example x0 = x0 + � 2 Rd to mislead
the prediction of machine learning (ML) or deep learning (DL) systems, where x0 denotes the natural
example with the true label t0, and � is known as adversarial perturbation, commonly subject to
`p-norm (p 2 {0, 1, 2,1}) constraint X := {� | k�kp  ✏, x0 + � 2 [0, 1]d} for a given small
number ✏. Here the `p norm enforces the similarity between x0 and x0, and the input space of ML/DL
systems is normalized to [0, 1]d.

Ensemble Attack over Multiple Models. Consider K ML/DL models {Mi}
K

i=1, the goal is to
find robust adversarial examples that can fool all K models simultaneously. In this case, the notion
of ‘domain’ in (4) is specified as ‘model’, and the objective function Fi in (4) signifies the attack loss
f(�;x0, y0,Mi) given the natural input (x0, y0) and the model Mi. Thus, problem (4) becomes

minimize
�2X

maximize
w2P

P
K

i=1 wif(�;x0, y0,Mi)�
�

2 kw � 1/Kk
2
2, (5)

where w encodes the difficulty level of attacking each model.

Universal Perturbation over Multiple Examples. Consider K natural examples {(xi, yi)}Ki=1
and a single model M, our goal is to find the universal perturbation � so that all the corrupted K

examples can fool M. In this case, the notion of ‘domain’ in (4) is specified as ‘example’, and
problem (4) becomes

minimize
�2X

maximize
w2P

P
K

i=1 wif(�;xi, yi,M)� �

2 kw � 1/Kk
2
2, (6)

where different from (5), w encodes the difficulty level of attacking each example.

3



Adversarial Attack over Data Transformations. Consider K categories of data transformation
{pi}, e.g., rotation, lightening, and translation, our goal is to find the adversarial attack that is robust
to data transformations. Such an attack setting is commonly applied to generate physical adversarial
examples [5, 20]. Here the notion of ‘domain’ in (4) is specified as ‘data transformer’, and problem
(4) becomes

minimize
�2X

maximize
w2P

P
K

i=1 wiEt⇠pi [f(t(x0 + �); y0,M)]� �

2 kw � 1/Kk
2
2, (7)

where Et⇠pi [f(t(x0+�); y0,M)] denotes the attack loss under the distribution of data transformation
pi, and w encodes the difficulty level of attacking each type of transformed example x0. We remark
that if w = 1/K, then problem (7) reduces to the existing expectation of transformation (EOT) setup
used for physical attack generation [5].

Benefits of Min-Max Attack Generation with Learnable Domain Weights w: We can interpret
(5)-(7) as finding the robust adversarial attack against the worst-case environment that an adversary
encounters, e.g., multiple victim models, data samples, and input transformations. The proposed
min-max design of adversarial attacks leads to two main benefits. First, compared to the heuristic
weighting strategy (e.g., clipping thresholds on the importance of individual attack losses [56]), our
proposal is free of supervised manual adjustment on domain weights. Even by carefully tuning the
heuristic weighting strategy, we find that our approach with self-adjusted w consistently outperforms
the clipping strategy in [56] (see Table 2). Second, the learned domain weights can be used to assess
the model robustness when facing different types of adversary. We refer readers to Figure 1c and
Figure 6 for more details.

3.2 Min-Max Algorithm for Adversarial Attack Generation

Algorithm 1 APGDA to solve problem (4)
1: Input: given w(0) and �(0).
2: for t = 1, 2, . . . , T do
3: outer min.: fixing w = w(t�1), call

PGD (8) to update �(t)

4: inner max.: fixing � = �(t), update w(t)

with projected gradient ascent (9)
5: end for

We propose the alternating projected gradient
descent-ascent (APGDA) method (Algorithm 1) to
solve problem (4). For ease of presentation, we
write problems (5), (6), (7) into the general form
minimize

�2X
maximize

w2P

PK
i=1 wiFi(�)� �

2 kw � 1/Kk22,

where Fi denotes the ith individual attack loss. We
show that at each iteration, APGDA takes only
one-step PGD for outer minimization and one-step
projected gradient ascent for inner maximization.

Outer Minimization Considering w = w(t�1) and F (�) :=
P

K

i=1 w
(t�1)
i

Fi(�) in (4), we per-
form one-step PGD to update � at iteration t,

�(t) = projX
�
�(t�1)

� ↵r�F (�(t�1))
�
, (8)

where proj(·) denotes the Euclidean projection operator, i.e., projX (a) = argminx2X kx� ak22 at
the point a, ↵ > 0 is a given learning rate, and r� denotes the first-order gradient w.r.t. �. If p = 1,
then the projection function becomes the clip function. In Proposition 1, we derive the solution of
projX (a) under different `p norms for p 2 {0, 1, 2}.
Proposition 1. Given a point a 2 Rd

and a constraint set X = {�|k�kp  ✏, č  �  ĉ}, the

Euclidean projection �⇤ = projX (a) has a closed-form solution when p 2 {0, 1, 2}, where the

specific form is given by Appendix A.

Inner Maximization By fixing � = �(t) and letting  (w) :=
P

K

i=1 wiFi(�(t))�
�

2 kw� 1/Kk
2
2

in problem (4), we then perform one-step PGD (w.r.t. � ) to update w,

w(t) = projP

⇣
w(t�1) + �rw (w

(t�1))| {z }
b

⌘
= (b� µ1)+ , (9)

where � > 0 is a given learning rate, rw (w) = �(t)
� �(w � 1/K), and �(t) :=

[F1(�(t)), . . . , FK(�(t))]T . In (9), the second equality holds due to the closed-form of projec-
tion operation onto the probabilistic simplex P [49], where (x)+ = max{0, x}, and µ is the
root of the equation 1T (b � µ1)+ = 1. Since 1T (b � mini{bi}1 + 1/K)+ � 1T1/K = 1,
and 1T (b � maxi{bi}1 + 1/K)+  1T1/K = 1, the root µ exists within the interval
[mini{bi}� 1/K,maxi{bi}� 1/K] and can be found via the bisection method [8].
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(a) average case (b) minmax (c) weight {wi}

Figure 1: Ensemble attack against four DNN models on MNIST. (a) & (b): Attack success rate of
adversarial examples generated by average PGD or min-max (APGDA) attack method. (c): Boxplot
of weight w in min-max adversarial loss. Here we adopt the same `1-attack as Table 1.

Convergence Analysis We remark that APGDA follows the gradient primal-dual optimization
framework [37], and thus enjoys the same optimization guarantees.
Theorem 1. Suppose that in problem (4) Fi(�) has L-Lipschitz continuous gradients, and X is a

convex compact set. Given learning rates ↵ 
1
L

and � <
1
�

, then the sequence {�(t),w(t)
}
T

t=1

generated by Algorithm 1 converges to a first-order stationary point
2

in rate O
�
1
T

�
.

Proof : Note that the objective function of problem (4) is strongly concave w.r.t. w with parameter �,
and has �-Lipschitz continuous gradients. Moreover, we have kwk2  1 due to w 2 P . Using these
facts and Theorem 1 in [37] or [39] completes the proof. ⇤

4 Experiments on Adversarial Exploration

In this section, we first evaluate the proposed min-max optimization strategy on three attack tasks. We
show that our approach leads to substantial improvement compared with state-of-the-art attack meth-
ods such as average ensemble PGD [34] and EOT [3, 10, 5]. We also demonstrate the effectiveness
of learnable domain weights in guiding the adversary’s exploration over multiple domains.

4.1 Experimental setup

We thoroughly evaluate our algorithm on MNIST and CIFAR-10. A set of diverse image classi-
fiers (denoted from Model A to Model H) are trained, including multi-layer perceptron (MLP),
All-CNNs [61], LeNet [30], LeNetV2, VGG16 [58], ResNet50 [24], Wide-ResNet [40, 75] and
GoogLeNet [63]. The details about model architectures and training process are provided in Ap-
pendix D.1. Note that problem formulations (5)-(7) are applicable to both untargeted and targeted

attack. Here we focus on the former setting and use C&W loss function [13, 40] with a confidence
parameter  = 50. The adversarial examples are generated by 20-step PGD/APGDA unless otherwise
stated (e.g., 50 steps for ensemble attacks). APGDA algorithm is relatively robust and will not be
affected largely by the choices of hyperparameters (↵,�, �). Apart from absolute attack success rate
(ASR), we also report the relative improvement or degradationon the worse-case performance in
experiments: Lift("). The details of crafting adversarial examples are available in Appendix D.2.

4.2 Ensemble Attack over Multiple Models

We craft adversarial examples against an ensemble of known classifiers. Recent work [34] proposed
an average ensemble PGD attack, which assumed equal importance among different models, namely,
wi = 1/K in problem (5). Throughout this task, we measure the attack performance via ASRall - the
attack success rate (ASR) of fooling model ensembles simultaneously. Compared to the average PGD
attack, our approach results in 40.79% and 17.48% ASRall improvement averaged over different
`p-norm constraints on MNIST and CIFAR-10, respectively. In what follows, we provide more
detailed results and analysis.

In Table 1 and Table 3, we show that AMGDA significantly outperforms average PGD in ASRall.
Taking `1-attack on MNIST as an example, our min-max attack leads to a 90.16% ASRall, which

2The stationarity is measured by the `2 norm of gradient of the objective in (4) w.r.t. (�,w).
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Table 1: Comparison of average and min-max
(APGDA) ensemble attack on MNIST.

Box constraint Opt. AccA AccB AccC AccD ASRall Lift (")

`0 (✏ = 30) avg. 7.03 1.51 11.27 2.48 84.03 -
minmax 3.65 2.36 4.99 3.11 91.97 9.45%

`1 (✏ = 20) avg. 20.79 0.15 21.48 6.70 69.31 -
minmax 6.12 2.53 8.43 5.11 89.16 28.64%

`2 (✏ = 3.0)
avg. 6.88 0.03 26.28 14.50 69.12 -

minmax 1.51 0.89 3.50 2.06 95.31 37.89%

`1 (✏ = 0.2)
avg. 1.05 0.07 41.10 35.03 48.17 -

minmax 2.47 0.37 7.39 5.81 90.16 87.17%

Table 2: Comparison to heuristic weighting
schemes on MNIST (`1-attack, ✏ = 0.2).

Opt. AccA AccB AccC AccD ASRavg ASRall Lift (")

avg. 1.05 0.07 41.10 35.03 80.69 48.17 -
wc+d 60.37 19.55 15.10 1.87 75.78 29.32 -39.13%

wa+c+d 0.46 21.57 25.36 13.84 84.69 53.39 10.84%

wclip [56] 0.66 0.03 23.43 13.23 90.66 71.54 48.52%
wprior 1.57 0.24 17.67 13.74 91.70 74.34 54.33%

wstatic 10.58 0.39 9.28 10.05 92.43 77.84 61.59%
minmax 2.47 0.37 7.39 5.81 95.99 90.16 87.17%

Table 3: Comparison of average and min-max
(APGDA) ensemble attack on CIFAR-10.
Box constraint Opt. AccA AccB AccC AccD ASRall Lift (")

`0 (✏ = 50) avg. 27.86 3.15 5.16 6.17 65.16 -
minmax 18.74 8.66 9.64 9.70 71.44 9.64%

`1 (✏ = 30) avg. 32.92 2.07 5.55 6.36 59.74 -
minmax 12.46 3.74 5.62 5.86 78.65 31.65%

`2 (✏ = 2.0) avg. 24.3 1.51 4.59 4.20 69.55 -
minmax 7.17 3.03 4.65 5.14 83.95 20.70%

`1 (✏ = 0.05) avg. 19.69 1.55 5.61 4.26 73.29 -
minmax 7.21 2.68 4.74 4.59 84.36 15.10%

Table 4: Comparison to heuristic weighting
schemes on CIFAR-10 (`1-attack, ✏ = 0.05).

Opt. AccA AccB AccC AccD ASRavg ASRall Lift (")

avg. 19.69 1.55 5.61 4.26 92.22 73.29 -
wb+c+d 42.12 1.63 5.93 4.42 75.78 51.63 -29.55%
wa+c+d 13.33 32.41 4.83 5.44 84.69 56.89 -22.38%

wclip [56] 11.13 3.75 6.66 6.02 90.66 77.82 6.18%
wprior 19.72 2.30 4.38 4.29 91.70 73.45 0.22%

wstatic 7.36 4.48 5.03 6.70 92.43 81.04 10.57%
minmax 7.21 2.68 4.74 4.59 95.20 84.36 15.10%

largely outperforms 48.17%. The reason is that Model C, D are more difficult to attack, which can be
observed from their higher test accuracy on adversarial examples. As a result, although the adversarial
examples crafted by assigning equal weights over multiple models are able to attack {A, B} well,
they achieve a much lower ASR in {C, D}. By contrast, APGDA automatically handles the worst
case {C, D} by slightly sacrificing the performance on {A, B}: 31.47% averaged ASR improvement
on {C, D} versus 0.86% degradation on {A, B}. The choices of ↵,�, � for all experiments and more
results on CIFAR-10 are provided in Appendix D.2 and Appendix E.

Figure 2: ASR of average and min-max `1 en-
semble attack versus maximum perturbation mag-
nitude ✏. Left (MNIST), Right (CIFAR-10).

Effectiveness of learnable domain weights:
Figure 1 depicts the ASR of four models under
average/min-max attacks as well as the distribu-
tion of domain weights during attack generation.
For average PGD (Figure 1a), Model C and D
are attacked insufficiently, leading to relatively
low ASR and thus weak ensemble performance.
By contrast, APGDA (Figure 1b) will encode
the difficulty level to attack different models
based on the current attack loss. It dynamically
adjusts the weight wi as shown in Figure 1c. For
instance, the weight for Model D is first raised to 0.45 because D is difficult to attack initially. Then
it decreases to 0.3 once Model D encounters the sufficient attack power and the corresponding attack
performance is no longer improved. It is worth noticing that APGDA is highly efficient because wi

converges after a small number of iterations. Figure 1c also shows wc > wd > wa > wb – indicating
a decrease in model robustness for C, D, A and B, which is exactly verified by AccC > AccD >

AccA > AccB in the last row of Table 1 (`1-norm). As the perturbation radius ✏ varies, we also
observe that the ASR of min-max strategy is consistently better or on part with the average strategy
(see Figure 2).

Comparison with stronger heuristic baselines Apart from average strategy, we compare min-
max framework with stronger heuristic weighting scheme in Table 2 (MNIST) and Table 4 (CIFAR-
10). Specifically, with the prior knowledge of robustness of given models (C > D > A > B), we
devised several heuristic baselines including: (a) wc+d: average PGD on models C and D only; (b)
wa+c+d: average PGD on models A, C and D only; (c) wclip: clipped version of C&W loss (threshold
� = 40) to balance model weights in optimization as suggested in [56]; (d) wprior: larger weights
on the more robust models, wprior = [wA, wB , wC , wD] = [0.2, 0.1, 0.4, 0.3]; (e) wstatic: the con-
verged mean weights of min-max (APGDA) ensemble attack. For `2 (✏ = 3.0) and `1 (✏ = 0.2) at-
tacks, wstatic = [wA, wB , wC , wD] are [0.209, 0.046, 0.495, 0.250] and [0.080, 0.076, 0.541, 0.303],
respectively. Table 2 shows that our approach achieve substantial improvement over baselines consis-
tently. Moreover, we highlight that the use of learnable w avoids supervised manual adjustment on
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Table 5: Comparison of average and minmax optimization on universal perturbation over multiple
input examples. K represents the number of images in each group. ASRavg and ASRall mean attack
success rate (%) of all images and success rate of attacking all the images in each group, respectively.
The adversarial examples are generated by 20-step `1-APGDA with ↵ = 1

6 ,� = 1
50 and � = 4.

Setting K = 2 K = 4 K = 5 K = 10

Dataset Model Opt. ASRavg ASRall Lift (") ASRavg ASRall Lift (") ASRavg ASRall Lift (") ASRavg ASRall Lift (")

CIFAR-10

All-CNNs avg. 91.09 83.08 - 85.66 54.72 - 82.76 40.20 - 71.22 4.50 -
minmax 92.22 85.98 3.49% 87.63 65.80 20.25% 85.02 55.74 38.66% 65.64 11.80 162.2%

LeNetV2 avg. 93.26 86.90 - 90.04 66.12 - 88.28 55.00 - 72.02 8.90 -
minmax 93.34 87.08 0.21% 91.91 71.64 8.35% 91.21 63.55 15.55% 82.85 25.10 182.0%

VGG16 avg. 90.76 82.56 - 89.36 63.92 - 88.74 55.20 - 85.86 22.40 -
minmax 92.40 85.92 4.07% 90.04 70.40 10.14% 88.97 63.30 14.67% 79.07 30.80 37.50%

GoogLeNet avg. 85.02 72.48 - 75.20 32.68 - 71.82 19.60 - 59.01 0.40 -
minmax 87.08 77.82 7.37% 77.05 46.20 41.37% 71.20 33.70 71.94% 45.46 2.40 600.0%

Table 6: Interpretability of domain weight w for universal perturbation to multiple inputs on MNIST
(Digit 0, 2, 4). Domain weight w for different images under `p-norm (p = 0, 1, 2,1).

Image

Weight

`0 0. 0. 0. 0. 1.000 0. 0. 0.909 0. 0.091 0. 0. 0.753 0. 0.247
`1 0. 0. 0. 0. 1.000 0. 0. 0.843 0. 0.157 0.018 0. 0.567 0. 0.416
`2 0. 0. 0. 0. 1.000 0. 0. 0.788 0. 0.112 0. 0. 0.595 0. 0.405
`1 0. 0. 0. 0. 1.000 0. 0. 0.850 0. 0.150 0. 0. 0.651 0. 0.349

Metric dist.(C&W `2) 1.839 1.954 1.347 1.698 3.041 1.928 1.439 2.312 1.521 2.356 1.558 1.229 1.939 0.297 1.303
✏min (`1) 0.113 0.167 0.073 0.121 0.199 0.082 0.106 0.176 0.072 0.171 0.084 0.088 0.122 0.060 0.094

the heuristic weights or the choice of clipping threshold. Also, we show that even adopting converged
min-max weights statically leads to a huge performance drop on attacking model ensembles, which
again verifies the power of dynamically optimizing domain weights during attack generation process.

4.3 Multi-Image Universal Perturbation

We evaluate APGDA in universal perturbation on MNIST and CIFAR-10, where 10,000 test images
are randomly divided into equal-size groups (K images per group) for universal perturbation. We
measure two types of ASR (%), ASRavg and ASRall. Here the former represents the ASR averaged
over all images in all groups, and the latter signifies the ASR averaged over all groups but a successful
attack is counted under a more restricted condition: images within each group must be successfully
attacked simultaneously by universal perturbation. In Table 5, we compare the proposed min-max
strategy with the averaging strategy on the attack performance of generated universal perturbations.
APGDA always achieves higher ASRall for different values of K. When K = 5, our approach
achieves 42.63% and 35.21% improvement over the averaging strategy under MNIST and CIFAR-10.
The universal perturbation generated from APGDA can successfully attack ‘hard’ images (on which
the average-based PGD attack fails) by self-adjusting domain weights, and thus leads to a higher
ASRall.

Interpreting “image robustness” with domain weights w: The min-max universal perturbation
also offers interpretability of “image robustness” by associating domain weights with image visual-
ization. Figure 6 shows an example in which the large domain weight corresponds to the MNIST
letter with clear appearance (e.g., bold letter). To empirically verify the robustness of image, we
report two metrics to measure the difficulty of attacking single image: dist. (C&W `2) denotes the
the minimum distortion of successfully attacking images using C&W (`2) attack; ✏min (`1) denotes
the minimum perturbation magnitude for `1-PGD attack.

4.4 Robust Attack over Data Transformations

EOT [5] achieves state-of-the-art performance in producing adversarial examples robust to data
transformations. From (7), we could derive EOT as a special case when the weights satisfy wi = 1/K
(average case). For each input sample (ori), we transform the image under a series of functions, e.g.,
flipping horizontally (flh) or vertically (flv), adjusting brightness (bri), performing gamma correction
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Table 7: Comparison of average and min-max optimization on robust attack over multiple data
transformations on CIFAR-10. Acc (%) represents the test accuracy of classifiers on adversarial
examples (20-step `1-APGD (✏ = 0.03) with ↵ = 1

2 ,� = 1
100 and � = 10) under different

transformations.

Model Opt. Accori Accflh Accflv Accbri Accgam Acccrop ASRall Lift (")

A avg. 10.80 21.93 14.75 11.52 10.66 20.03 55.88 -
minmax 12.14 18.05 13.61 13.52 11.99 16.78 60.03 7.43%

B avg. 5.49 11.56 9.51 5.43 5.75 15.89 72.21 -
minmax 6.22 8.61 9.74 6.35 6.42 11.99 77.43 7.23%

C avg. 7.66 21.88 15.50 8.15 7.87 15.36 56.51 -
minmax 8.51 14.75 13.88 9.16 8.58 13.35 63.58 12.51%

D avg. 8.00 20.47 13.46 7.73 8.52 15.90 61.13 -
minmax 9.19 13.18 12.72 8.79 9.18 13.11 67.49 10.40%

(gam) and cropping (crop), and group each image with its transformed variants. Similar to universal
perturbation, ASRall is reported to measure the ASR over groups of transformed images (each
group is successfully attacked signifies successfully attacking an example under all transformers). In
Table 7, compared to EOT, our approach leads to 9.39% averaged lift in ASRall over given models
on CIFAR-10 by optimizing the weights for various transformations. We leave the the results under
randomness (e.g., flipping images randomly w.p. 0.8; randomly clipping the images at specific range)
in Appendix E

5 Extension: Understanding Defense over Multiple Perturbation Domains

In this section, we show that the min-max principle can also be used to gain more insights in general-
ized adversarial training (AT) from a defender’s perspective. Different from promoting robustness
of adversarial examples against the worst-case attacking environment (Sec. 3), the generalized AT
promotes model’s robustness against the worst-case defending environment, given by the existence
of multiple `p attacks [65]. Our approach obtains better performance than prior works [65, 41] and
interpretability by introducing the trainable domain weights.

5.1 Adversarial Training under Mixed Types of Adversarial Attacks

Conventional AT is restricted to a single type of norm-ball constrained adversarial attack [40]. For
example, AT under `1 attack yields:

minimize
✓

E(x,y)2D maximize
k�k1✏

ftr(✓, �;x, y), (10)

where ✓ 2 Rn denotes model parameters, � denotes ✏-tolerant `1 attack, and ftr(✓, �;x, y) is the
training loss under perturbed examples {(x+ �, y)}. However, there possibly exist blind attacking
spots across multiple types of adversarial attacks so that AT under one attack would not be strong
enough against another attack [2]. Thus, an interesting question is how to generalize AT under
multiple types of adversarial attacks [65]. One possible way is to use the finite-sum formulation in
the inner maximization problem of (10), namely, maximize{�i2Xi}

1
K

P
K

i=1 ftr(✓, �i;x, y), where
�i 2 Xi is the ith type of adversarial perturbation defined on Xi, e.g., different `p attacks.

Since we can map ‘attack type’ to ‘domain’ considered in (1), AT can be generalized against the
strongest adversarial attack across K attack types in order to avoid blind attacking spots:

minimize
✓

E(x,y)2D maximize
i2[K]

maximize
�i2Xi

ftr(✓, �i;x, y). (11)

In Lemma 1, we show that problem (11) can be equivalently transformed into the min-max form.
Lemma 1. Problem (11) is equivalent to:

minimize
✓

E(x,y)2D maximize
w2P,{�i2Xi}

KX

i=1

wiftr(✓, �i;x, y), (12)

where w 2 RK
represent domain weights, and P has been defined in (1).
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MAX [3] AVG [3] MSD [2] AMPGD

Clean Accuracy 98.6% 99.1% 98.3% 98.3%

`1 Attacks [65] (✏ = 0.3) 51.0% 65.2% 62.7% 76.1%
`2 Attacks [65] (✏ = 2.0) 61.9% 60.1% 67.9% 70.2%
`1 Attacks [65] (✏ = 10) 52.6% 39.2% 65.0% 67.2%
All Attacks [65] 42.1% 34.9% 58.4% 64.1%
AA (all attacks) [18] 36.9% 30.5% 55.9% 59.3%
AA+ (all attacks) [18] 34.3% 28.8% 54.8% 58.3%

Table 8: Adversarial robustness on MNIST. Figure 3: Robust accuracy of MSD and AMPGD.

L1-AT L2-AT L1-AT MAX [65] AVG [66] MSD [41] AMPGD

Clean Accuracy 83.3% 90.2% 73.3% 81.0% 84.6% 81.1% 81.5%

`1 Attacks (✏ = 0.03) [41] 50.7% 28.3% 0.2% 44.9% 42.5% 48.0% 49.2%
`2 Attacks (✏ = 0.5) [41] 57.3% 61.6% 0.0% 61.7% 65.0% 64.3% 68.0%
`1 Attacks (✏ = 12) [41] 16.0% 46.6% 7.9% 39.4% 54.0% 53.0% 50.0%
All Attacks [41] 15.6% 27.5% 0.0% 34.9% 40.6% 47.0% 48.7%
AA (`1, ✏ = 0.03) [18] 47.8% 22.7% 0.0% 39.2% 40.7% 44.4% 46.9%
AA (`2, ✏ = 0.5) [18] 57.5% 63.1% 0.1% 62.0% 65.5% 64.9% 64.4%
AA (`1, ✏ = 12) [18] 13.7% 23.6% 1.4% 36.0% 58.8% 52.4% 52.3%
AA (all attacks) [18] 12.8% 18.4% 0.0% 30.8% 40.4% 44.1% 46.2%

Table 9: Summary of adversarial accuracy results for CIFAR-10. Figure 4: Domain weights.

The proof of Lemma 1 is provided in Appendix B. Similar to (4), a strongly concave regularizer
��/2kw � 1/Kk

2
2 can be added into the inner maximization problem of (12) for boosting the

stability of the learning procedure and striking a balance between the max and the average attack
performance:

minimize
✓

E(x,y)2D maximize
w2P,{�i2Xi}

 (✓,w, {�i})

 (✓,w, {�i}) :=
P

K

i=1 wiftr(✓, �i;x, y)�
�

2 kw � 1/Kk
2
2

(13)

Algorithm 2 AMPGD to solve problem (13)
1: Input: given ✓(0), w(0), �(0) and K > 0.
2: for t = 1, 2, . . . , T do
3: given w(t�1) and �(t�1), perform SGD to

update ✓(t)

4: given ✓(t), perform R-step PGD to update
w(t) and �(t)

5: end for

We propose the alternating multi-step projected
gradient descent (AMPGD) method (Algorithm 2)
to solve problem (13). Since AMPGD also follows
the min-max principles, we defer more details of
this algorithm in Appendix C. We finally remark
that our formulation of generalized AT under multi-
ple perturbations covers prior work [65] as special
cases (� = 0 for max case and � = 1 for average
case).

5.2 Generalized AT vs. Multiple `p Attacks

Compared to vanilla AT, we show the generalized AT scheme produces model robust to multiple
types of perturbation, thus leads to stronger “overall robustness”. We present experimental results of
generalized AT following [41] to achieve simultaneous robustness to `1, `2, and `1 perturbations
on the MNIST and CIFAR-10 datasets. To the best of our knowledge, MSD proposed in [41] is
the state-of-the-art defense against multiple types of `p attacks. Specifically, we adopted the same
architectures as [41] four layer convolutional networks on MNIST and the pre-activation version
of the ResNet18 [24]. The perturbation radius ✏ for (`1, `2, `1) balls is set as (0.3, 2.0, 10) and
(0.03, 0.5, 12) on MNIST and CIFAR-10 following [41]. Apart from the evaluation `p PGD attacks,
we also incorporate the state-of-the-art AutoAttack [18] for a more comprehensive evaluation under
mixed `p perturbations.

The adversarial accuracy results are reported (higher the better). As shown in Table 8 and 9, our
approach outperforms the state-of-the-art defense MSD consistently (4⇠6% and 2% improvements
on MNIST and CIFAR-10). Compared to MSD that deploys an approximate arg max operation to
select the steepest-descent (worst-case) universal perturbation, we leverage the domain weights to
self-adjust the strengthens of diverse `p attacks. Thus, we believe that this helps gain supplementary
robustness from individual attacks.
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Effectiveness of Domain Weights: Figure 3 shows the robust accuracy curves of MSD and
AMPGD on MNIST. As we can see, the proposed AMPGD can quickly adjust the defense strengths to
focus on more difficult adversaries - the gap of robust accuracy between three attacks is much smaller.
Therefore, it achieves better results by avoiding the trade-off that biases one particular perturbation
model at the cost of the others. In Figure 4, we offer deeper insights on how the domain weights work
as the strengths of adversary vary. Specifically, we consider two perturbation models on MNIST: `2
and `1. During the training, we fix the ✏ for `1 attack during training as 0.2, and change the ✏ for `2
from 1.0 to 4.0. As shown in Figure 4, the domain weight w increases when the `2-attack becomes
stronger i.e., ✏(`2) increases, which is consistent with min-max spirit – defending the strongest attack.

5.3 Additional Discussions

More parameters to tune for min-max? Our min-max approaches (APGDA and AMPGD) in-
troduce two more hyperparameters - � and �. However, our proposal performs reasonably well
by choosing the learning rate ↵ same as standard PGD and using a large range of regularization
coefficient � 2 [0, 10]; see Fig. A5 in Appendix. For the learning rate � to update domain weights,
we found 1/T is usually a very good practice, where T is the total number of attack iterations.

Time complexity of inner maximization? Our proposal achieves significant improvements at a
low cost of extra computation. Specifically, (1) our APGDA attack is 1.31⇥ slower than the average
PGD; (2) our AMPGD defense is 1.15⇥ slower than average or max AT [65].

How efficient is the APGDA (Algorithm 1) for solving problem (4)? We remark that the min-
max attack generation setup obeys the nonconvex + strongly concave optimization form. Our proposed
APGDA is a single-loop algorithm, which is known to achieve a nearly optimal convergence rate
for nonconvex-strongly concave min-max optimization [32, Table 1]. Furthermore, as our solution
gives a natural extension from the commonly-used PGD attack algorithm by incorporating the inner
maximization step (9), it is easy to implement based on existing frameworks.

Clarification on contributions: Our contribution is not to propose a new or more efficient opti-
mization approach for solving min-max optimization problems. Instead, we focus on introducing
this formulation to the attack design domain, which has not been studied systematically before. We
believe this work is the first solid step to explore the power of min-max principle in the attack design
and achieve superior performance on multiple attack tasks.

6 Conclusion

In this paper, we revisit the strength of min-max optimization in the context of adversarial attack
generation. Beyond adversarial training (AT), we show that many attack generation problems can
be re-formulated in our unified min-max framework, where the maximization is taken over the
probability simplex of the set of domains. Experiments show our min-max attack leads to significant
improvements on three tasks. Importantly, we demonstrate the self-adjusted domain weights not
only stabilize the training procedure but also provides a holistic tool to interpret the risk of different
domain sources. Our min-max principle also helps understand the generalized AT against multiple
adversarial attacks. Our approach results in superior performance as well as intepretability.

Broader Impacts

Our work provides a unified framework in design of adversarial examples and robust defenses. The
generated adversarial examples can be used to evaluate the robustness of state-of-the-art deep learning
vision systems. In spite of different kinds of adversaries, the proposed defense solves one for all by
taking into account adversaries’ diversity. Our work is a beneficial supplement to building trustworthy
AI systems, in particular for safety-critical AI applications, such as autonomous vehicles and camera
surveillance. We do not see negative impacts of our work on its ethical aspects and future societal
consequences.
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