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Abstract 

Few-shot NLP research is highly active, yet conducted in disjoint research threads 
with evaluation suites that lack challenging-yet-realistic testing setups and fail 
to employ careful experimental design. Consequently, the community does not 
know which techniques perform best or even if they outperform simple baselines. 
In response, we formulate the FLEX Principles, a set of requirements and best 
practices for unified, rigorous, valid, and cost-sensitive few-shot NLP evaluation. 
These principles include Sample Size Design, a novel approach to benchmark 
design that optimizes statistical accuracy and precision while keeping evaluation 
costs manageable. Following the principles, we release the FLEX benchmark,2 

which includes four few-shot transfer settings, zero-shot evaluation, and a public 
leaderboard that covers diverse NLP tasks. In addition, we present UniFew,3 a 
prompt-based model for few-shot learning that unifies pretraining and finetuning 
prompt formats, eschewing complex machinery of recent prompt-based approaches 
in adapting downstream task formats to language model pretraining objectives. We 
demonstrate that despite simplicity, UniFew achieves results competitive with both 
popular meta-learning and prompt-based approaches. 

1 Introduction 

Few-shot learning, the challenge of learning from a small number of examples, is critical for 
developing efficient, robust NLP techniques [71, 76]. In recent years, separate threads of few-shot 
NLP research have pursued goals like generalization to new classes [e.g., 5, 25], adaptation to new 
domains and tasks [e.g., 3, 4, 21], and direct application of pretrained language models (LMs) [e.g., 
10, 24, 55, 56]. Unfortunately, despite the shared goal of advancing few-shot NLP techniques, the 
community does not know which techniques work best or even if they perform better than simple 
baselines. Evaluation suites across these research threads are disjoint, lack challenging-yet-realistic 
testing setups (e.g., class imbalance, variable training set sizes, etc.), and do not employ careful 
experimental design to ensure accurate and precise evaluation estimates and minimal computational 
burden. Prior work in few-shot learning outside of NLP serves as a stark warning of the consequences 
of improper measurement: Dhillon et al. [19] showed that techniques from several years of prior 
work did not make clear progress due to large overlapping accuracy distributions and, moreover, do 
not outperform a simple, carefully-tuned baseline. 

Need for systematic benchmark design As such, a high-quality benchmark is urgently needed to 
enable rigorous comparison of techniques across disjoint, highly-active threads of few-shot NLP 
research. But what should such an evaluation suite look like? Some best practices for evaluation of 
few-shot methods have been introduced in the computer vision (CV) literature [19, 67] and should 

∗Equal contribution 
2Benchmark, leaderboard, and benchmark creation toolkit: https://github.com/allenai/flex. 
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Table 1: Comparison of the FLEX benchmark with closest prior work. Our benchmark consists of 
episodes with variable number of shots in the range [1-5] and with class imbalance. “No extra test 
data” refers to excluding validation data from testing tasks, to avoid unfairly advantaging models 
that use such data [50]. Our benchmark’s number of test episodes is selected to balance statistical 
accuracy and precision, which suffers in few-episode setups, and compute requirements, which is too 
costly in many-episode setups (§5). 

CrossFit[75] LM-BFF[24] GPT-3[10] DS[5] SMLMT[4] FewGlue[56] FLEX (ours) 
Class Transfer - - - X X 

X 
X 
X 

XDomain Transfer - - - - -
Task Transfer X X -

XX XPretraining Transfer -
{total 32}4Shots per class {16, 32} 16 

Variable shots 
variable {1,5} {4,8,16,32} [1–5]

X 
X 
X 
X 
X 

X 
Unbalanced - - - - - -

XXX XTextual labels 
XXZero-shot -

XX mixed5No extra test data - - -
# test episodes 5 5 1 1000 10 1 90 
Reporting avg avg, SD avg avg, SD avg, SD avg, SD all6 

# datasets 160 16 37 7 18 8 20 

be applied to NLP. However, unifying few-shot NLP work introduces new challenges. For example, 
the benchmark needs to test all types of transfer studied in separate research threads to measure 
progress on new techniques that make gains in each of these important generalization settings (§2). 
Also, given the importance of zero-shot learning and learning from task descriptions [29, 73], the 
benchmark needs to include zero-shot episodes and textual labels to enable measuring progress 
for models that do not use conventional supervised training, including methods that leverage the 
latent knowledge in pretrained LMs [10, 24, 78]. Further, the benchmark must accommodate new, 
computationally-expensive approaches, without overly reducing the number of evaluation episodes at 
the expense of statistical accuracy [3, 24, 75]. 

Need for a robust few-shot model Recent prompt-based models [10] have shown strong results in 
few-shot learning. These models leverage the power of (often large) pretrained language models 
and adapt the format of downstream tasks to the underlying pretraining objective (e.g., Masked 
Language Modeling). This way, given the right natural language prompt (and sometimes verbalizers 
[55] and additional demonstrative examples), the model can quickly fine-tune on the downstream task 
[24, 43, 44, 55, 56]. However, adapting task formats to the underlying (masked) language modeling 
objectives is not straightforward; such models have been shown to be sensitive to varying choices of 
the prompt/demonstrations, training settings, hyperparameters, and learning algorithms [33, 50, 78], 
often requiring large held out sets and/or complex methods to overcomes such challenges. Can 
models eschew complex prompt engineering by unifying pretraining and downstream task formats? 

In this paper, we tackle these key issues by introducing FLEX—Few-shot Language Evaluation 
across (X) many transfer types—and contributing the following: 

• FLEX Principles (§3), a set of requirements and best practices for few-shot NLP evaluation 
that enables unified, rigorous, valid, and cost-sensitive measurements. 

– Sample Size Design: In support of valid, cost-sensitive measurement, we introduce a 
novel approach to few-shot sample size design (§5) that optimizes for a benchmark’s 
statistical accuracy and precision while keeping computational costs accessible to a 
broad range of researchers. 

• FLEX benchmark (§4), an implementation of the FLEX Principles. It tests across four 
few-shot transfer settings,7 and includes a public leaderboard for few-shot NLP that covers 
20 datasets across diverse NLP tasks (e.g., NLI, relation classification, entity typing). Table 1 
summarizes key differences between FLEX and other few-shot NLP evaluation suites. 

4The total number of training shots in each episode, not number of shots per class per episode. 
5Most users use unlabeled examples, though recently, Tam et al. [65] do not. 
6Average (avg), confidence interval (CI), standard deviation (SD), individual episode metrics 
7Prior work evaluated at most two settings. 
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• UniFew (§6), a prompt-based model for few-shot learning in NLP. While most existing 
methods leverage pre-trained LMs for few-shot learning, LM pre-training tasks do not 
closely match natural downstream task formats, requiring complex methods (e.g., extensive 
prompt-engineering, use of verbalizers, episodic hyperparameter tuning, custom learning 
algorithms) to make these models work in few-shot setting. Instead, the key idea of our 
model, UniFew, is to close the gap between pre-training and fine-tuning formats by posing 
tasks as multiple-choice QA and using an underlying model that is pre-trained on a similar 
natural QA task format. This eliminates the need for complexities of adapting downstream 
tasks to the LM objectives, while resulting in competitive performance with both recent 
few-shot and meta-learning methods. 

To aid similar efforts, our release of FLEX includes a toolkit for benchmark creation and few-shot 
NLP model development, which we used to create the FLEX benchmark and train UniFew. 

2 Background and Related Work 

We first provide background and notation for few-shot learning and evaluation, then discuss related 
work in NLP and outside NLP that motivated us to create the FLEX Principles and benchmark. 

Few-shot background and notation Broadly, modern approaches to few-shot learning are evalu-
ated in a three-phase procedure [68]. In the first phase, a general-purpose pretrained model is obtained. 
In the subsequent “meta-training” phase,8 techniques aim to adapt the model to be well-suited for 
few-shot generalization. Finally, a “meta-testing” phase evaluates the adapted model in new few-shot 
prediction settings. 

Let D be a dataset of (x, y) examples with full label set YD. From it, we construct three sets of 
episodes, corresponding to meta-training, meta-validation, and meta-testing and denoted by Etrain, 
Eval, and Etest, respectively. Each episode in each of these sets is a few-shot problem with its own test 

Eset and other attributes. Formally, each episode E is a tuple (DE ), where YE is a train, DE 
test, YDval, DE 

D 
sampled subset of labels in YD and DE are disjoint sets of examples from D with labels in train|val|test 

EYD . 9 For each episode, the model’s objective is to correctly predict labels for examples DE 
test. To 

accomplish this, models make use of labeled examples in DE 
train, which is typically configured such 

that each label i in YE has KE provided examples; KE is known as the shot, and the setting when aD i i 
class has no examples in DE = 0) is called zero-shot.train (i.e., KE 

i 

Few-shot evaluation in NLP Research in few-shot NLP has proceeded in several parallel threads, 
each focused on a different type of transfer ability [76]. Each thread has separate evaluation practices, 
and the vast majority of few-shot NLP research has limited evaluation to a single transfer type (see 
Table 1). Here, we describe these types of transfer and their evaluation practices. 

Following the CV literature [67, 68], one thread of few-shot NLP focuses on class transfer, the 
problem of generalizing from a supervised set of classes at meta-train time to a different set of classes 
from the same dataset at meta-test time. Evaluation typically involves splitting classes YD into YD train, 
YD val and YD disjoint subsets. Class transfer has been studied on many text classification tasks [5],test 
including relation classification [25, 28, 64], intent classification [37, 64], inter alia. In contrast, 
domain transfer keeps the same classes between meta-training and meta-testing but changes the 
textual domain (e.g., generalizing from MNLI to science-focused SciTail [4, 21]). Evaluation then 
requires identifying pairs of datasets with the same classes YD, where one dataset’s episodes are 
assigned to Etrain and the other’s to Etest. Domain transfer has also been studied on many tasks [3, 4], 
including dialogue intent detection & slot tagging [31], sentiment classification [77], NLI [21], and 
machine translation [27, 58]. 

Researchers have also begun to study task transfer, the problem of generalizing from a set of 
tasks at meta-train time to unseen tasks at meta-test time. Evaluation requires tasks (e.g., NLI) 
appearing in Etest not to appear in Etrain or Eval. Prior work has used GLUE tasks [70] for meta-training 
before meta-testing on tasks such as entity typing [3, 4], while other work instead used GLUE for 

8Meta-training may include a “meta-validation" component, for validating generalization. 
9In the few-shot literature, DE 

test are also called the support and query sets, and |YD E | the way.train and DE 
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meta-testing [21]. Very recent work has studied task transfer over a large set of datasets [75, 80]. A 
limited amount of work evaluates both domain and task transfer [3, 4, 21]. An important emerging 
line of work (not noted by Yin [76]) is pretraining transfer, the problem of whether pretrained 
language models can perform well at meta-test time without any meta-training. Evaluation in this 
setting requires Etrain, Eval = ∅. Prior work has shown that pretrained language models are capable of 
surprising performance on many few-shot tasks, even without fine-tuning [10]. More recent work, 
mainly focusing on text classification, has reported further gains with cloze-style formats [55, 56, 65], 
prompt engineering [24], or calibration [78]. FLEX is designed to exercise all four of these transfer 
types from previous work. 

Few-shot evaluation outside NLP The few-shot learning literature has largely focused on image 
classification, with the introduction of increasingly complex meta-learning algorithms [e.g., 23, 39, 
54, 61, 68]. However, more recent work has shown that simple fine-tuning baselines are in fact 
competitive, and attribute this delayed discovery to problematic evaluation methodology [15, 19]. 
FLEX adopts recommended methodology [19, 67], and we introduce an analogous baseline (UniFew) 
to provide a strong measurement foundation for few-shot NLP. 

3 FLEX Principles for Few-Shot NLP Evaluation 

We now enumerate key desiderata for a few-shot NLP benchmark capable of solving the urgent 
problems with few-shot NLP evaluation, including separate evaluations for each transfer type and 
failure to incorporate best measurement practices from other domains (§2). 

Diversity of transfer types To make NLP models broadly useful, few-shot NLP techniques must be 
capable of class, domain, and task transfer. Moreover, techniques should make use of the relevant 
supervision provided during meta-training to increase performance compared to the pretraining 
transfer setting. The benchmark should measure all four transfer settings to ensure that the community 
develops techniques that improve on strong pretraining transfer baselines, and enable comparison 
across these currently separate threads of research. 

Variable number of shots and classes To better simulate a variety of real-world scenarios, the 
benchmark should include a variety of training set sizes and numbers of classes [67]. Testing 
robustness to these factors is crucial; few-shot techniques are often sensitive to changes in these 
factors [12], yet all prior few-shot NLP evaluations we are aware of used a fixed number of training 
shots and classes, known in advance during meta-training. 

Unbalanced training sets The benchmark should also include unbalanced training sets with different 
training shots per class, another realistic setting adopted by CV benchmarks [67]. Class imbalance 
has also been observed to degrade performance [11, 47], yet prior few-shot NLP evaluations do not 
include this setting either. 

Textual labels While numerical label values are often used in classification tasks, descriptive textual 
labels are also present for many tasks. Making these textual labels available for use by few-shot 
techniques enables the development of techniques that can leverage the class name, like in-context 
learning [10], template generation [24], and meta-learning [45]. Textual labels are crucial in particular 
for zero-shot evaluation. 

Zero-shot evaluation We believe zero-shot evaluation is integral to the goals of few-shot evaluation. 
Similar to the motivation for measuring pretraining transfer, zero-shot evaluation is an important use 
case and also provides a strong baseline for some tasks. In the absence of training examples, textual 
class labels or richer task descriptions [73] must be provided. Some recent few-shot NLP work [e.g., 
10, 24] evaluated with zero training shots, but most [e.g., 3, 5, 75] did not. 

No extra meta-testing data We believe the benchmark should not provide validation data (DE = val 
∅, ∀E ∈ Etest) or unlabeled data for meta-testing tasks, since few-shot learning seeks to enable 
high performance in environments where collecting additional data is costly.10 Variation in these 
dimensions in prior NLP work makes comparison of results extremely difficult because it is often 
under-reported and gives unfair advantage to approaches that leverage such data [50]. For exam-
ple, per-episode hyperparameter tuning on extra data has been shown to greatly inflate evaluation 
scores [24]. A few researchers [5, 65] follow our suggested approach, but others have used many 

10Unlabeled data collection can be costly too, e.g. due to manual filtering [16]. 
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different settings, from validation sets of various sizes [10, 24, 79] to no validation set but a large set 
of unlabeled examples [55, 56]. 

Principled sample size design Promising few-shot techniques can incur significant computational 
cost per episode, e.g., due to fine-tuning model parameters [4], searching for prompts [24], inter 
alia. To alleviate these costs, related works often evaluate with a limited number of episodes, which 
precludes statistically accurate or precise performance estimates. We believe the benchmark’s test 
sample size should be optimized to enable proper performance evaluation for such techniques, while 
ensuring the computational burden is inclusive toward researchers without large compute resources. 

Proper reporting of CIs, SDs, and individual results The benchmark should report confidence 
intervals (CIs) of performance estimates and follow recent guidelines [19] to report standard deviations 
(SDs) for understanding variability. Moreover, we newly advocate for controlling for the same 
sampled few-shot episodes across all methods and reporting individual episode results, so that 
researchers can run higher-powered paired statistical tests when comparing results [22], crucial when 
the benchmark has been optimized for low evaluation budgets. 

4 FLEX Benchmark 

The FLEX benchmark is a unifying, rigorous evaluation suite for few-shot learning in NLP, which 
implements the desiderata outlined in the previous section. In this section, we describe detailed design 
decisions and our accompanying few-shot NLP toolkit (§4.4), which we are releasing to facilitate 
easily adding NLP datasets and advanced sampling options to future benchmarks. We also describe 
the FLEX leaderboard (§4.5). 

4.1 Task and Dataset Selection 

Following GLUE [70] and other prior work [3, 5, 24, 78], we focus on tasks formatted as classifica-
tion. Despite recent advances, NLP state-of-the-art models remain significantly worse than human 
performance on many text classification tasks, particularly in the few-shot setting. Automatic scoring 
of classification tasks is also more reliable than text generation tasks. 

We selected datasets across three recent few-shot NLP evaluation suites, which separately studied 
class transfer [5], domain and task transfer [3, 4], and pretraining transfer [24]. Our benchmark 
includes a broad mix of tasks (NLI, question classification, entity typing, relation classification, and 
sentiment analysis) and formats (document, sentence, sentence pair). More complete dataset and 
license details are available in the following subsection and Appendix A. 

4.2 Meta-Evaluation Protocols 

As discussed earlier, FLEX evaluates four different types of transfer: Class, Domain, Task, and 
Pretraining Transfer. To support all types, we report results to the FLEX benchmark both without meta-
training (pretraining-only) and with meta-training. This reporting scheme evaluates the performance 
of the basic pretrained model and the benefit (or lack thereof) of meta-training. A similar reporting 
scheme was proposed by Triantafillou et al. [67] for CV. 

Pretraining-Only In this setting, the pretrained model is directly meta-tested on our benchmark 
without any additional training. This is the Pretraining Transfer setting, and it is the most difficult, 
but given the recent success of pretrained models in NLP for few-shot learning [10, 24], we believe 
that comparison to models without any meta-training is important for NLP tasks. 

Meta-Trained In this setting, the model is meta-trained then meta-tested on our benchmark. We 
carefully selected and split datasets across meta-train/validation/test in order to enable testing of 
Class, Domain, and Task transfer with a single meta-training phase (to reduce computational burden). 
Datasets involved in each transfer setting (detailed split information in Table 4 in Appendix A): 

• Class Transfer: FewRel [28], HuffPost [46], Amazon [30], 20News [38], and Reuters [41] 
take part in meta-training and meta-testing but with different classes. 

• Domain Transfer: MR [49], CR [32], SNLI [9], and SciTail [35] are only in the meta-testing 
phase, but the corresponding sentiment and NLI datasets exist in the meta-training phase 
(MNLI [74], QNLI [52], and SST-2 [62]). 
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• Task Transfer: Subj [48], TREC [69], and CoNLL [66] are also for meta-testing only, and 
they represent tasks that the model does not encounter during meta-training. 

Instead of per-episode hyperparameter tuning, we provide meta-validation episodes Eval for learning 
(during meta-training) global hyperparameters that work across all episodes. Specifically, the meta-
validation dataset splits (see Table 4) consist of CoLa [72] for task transfer, WNLI [40] for domain 
transfer, and the validation splits used by Bao et al. [5] for all class transfer datasets. Following [3], 
we also include meta-training datasets MRPC [20], RTE [6, 8, 17, 26], and QQP [70]. 

4.3 Episode Sampling 

We describe how our benchmark samples meta-testing episodes Etest. For meta-training, we allow 
users to sample from Etrain, Eval in any way, or directly use the underlying dataset splits. 

Number of classes For Class Transfer datasets, FLEX evaluates model robustness to variable number 
of new classes. When constructing episode E from one of these datasets D, our benchmark samples 
an episode-specific number of classes from dataset D, the sampler picks a random number from the 
range YE ∼ Unif(5, min(|YD|, 10)). 11 For Domain and Task Transfer, the number of classes is fixed D 
to the maximum number of classes in each dataset because Class Transfer is not being evaluated. 

Number of shots Following prior work outside NLP [47, 67], our benchmark samples the training 
shot independently for each episode E and class i, as KE

i ∼ Unif(Kmin,Kmax), where Kmin = 1. 
Given strong performance of NLP models with few or even zero examples [10, 73] and following 
prior work [5], we set the limit Kmax = 5. Separately, we allocate an equal number of episodes as 
zero-shot, where we instead set DE = ∅ (equivalently, Ktrain 

E
i = 0, ∀i). In each episode, examples are 

sampled uniformly at random without replacement (but can be reused across episodes).12 Following 
Triantafillou et al. [67], we select a testing shot that is balanced across classes and leaves roughly 
half of examples for sampling the training examples. The total number of episodes for each reported 
configuration (pair of dataset and either zero- or few-shot) is set to 90 using Sample Size Design (§5). 

4.4 Extensible Toolkit for Benchmark Creation and Model Training & Evaluation 

Alongside the FLEX benchmark, we release an extensible, highly-configurable Python toolkit, which 
we used to generate the benchmark, and train and evaluate our models. Unlike existing meta-learning 
frameworks (e.g., Torchmeta [18], learn2learn [2]), our framework makes available a wide range 
of community-contributed NLP datasets and utilities via HuggingFace Datasets [42].13 Our code 
also provides advanced sampling utilities (e.g., for class imbalance), ensures reproducibility by 
checksumming generated episodes, and reports all recommended statistics. 

4.5 Public Leaderboard 

We provide public leaderboards for each of the meta-evaluation protocols: Pretraining-Only14 and 
Meta-Trained.15 Submissions take the form of a text label predictions file, which is produced by our 
toolkit. Results are reported with confidence intervals, standard deviations, and individual predictions 
on request. See Appendix G for a screenshot of the results interface. 

5 Sample Size Design: Balancing Statistical Measurement & Compute Cost 

We demonstrate a principled approach to determining the optimal sample size configuration in our 
few-shot benchmark. A proper benchmark should produce performance estimates that are accurate, 
close to the true value, and precise, low variance. A large (test) sample size can achieve this, yet must 
be considered alongside computational cost so that a broad community of researchers with differing 
amounts of compute resources can participate. This decision is further complicated in the few-shot 

11We limit to 10 classes to avoid undue burden on in-context approaches that fit examples in memory [10], 
and use a lower bound of 5 classes to match prior work [5]. 

12These samples represent an unbiased performance estimate, but do not eliminate underlying dataset biases. 
13Apache License 2.0. Full license details for all software dependencies available in Appendix F. 
14https://leaderboard.allenai.org/flex/ 
15https://leaderboard.allenai.org/flex_meta/ 
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(a) Coverage probability of 95% CIs. (b) Mean width of 95% CIs. 

Figure 1: Results of simulation study described in §5. Each curve corresponds to a compute budget 
constraint C (GPU-hours). Each point on a curve is an allocation of test data between the number 
of test episodes |Etest| or mean number of examples per episode |Dtest| such that evaluation can be 
completed within given budget. Per curve, lower values of |Etest| correspond linearly to larger values 
of |Dtest|, which are shown as numerical text annotations in (b). Error bars represent the 10th and 
90th percentile values from repeated simulations across µacc ∈ {0.3, 0.35, . . . , 0.95}. 

setting, where sample size refers to both the number of test episodes |Etest| and the number of test 
examples |DE 

test| across alltest| per episode E ∈ Etest. For practicality, we consider |Dtest|, the mean |DE 

episodes, rather than every |DE 
test|. It remains unknown how one should best distribute test examples 

between |Etest| and |Dtest|: More episodes each with fewer examples, or fewer episodes each with 
many examples? Prior work has been inconsistent in this regard. For example, Gao et al. [24] used 
|Etest| = 5 and large |Dtest|, while Bao et al. [5] used |Etest| = 1000 and much smaller |Dtest|. 
Inspired by simulation techniques for informing statistically-powered experimental design [13], we 
study how different configurations of |Etest| and |Dtest| across different compute budgets C impact the 
accuracy and precision of our estimated CIs, specifically with respect to coverage probability [53] 
and width. First, we estimate per-episode and per-test-example costs of our few-shot model (§6) 
to obtain valid (C, |Etest|, |Dtest|) configurations s.t. the full benchmark completes within given C 
(GPU-hours).16 Then, for each (C, |Etest|, |Dtest|), we perform 1000 simulation runs, in which each 
run samples predictions under a true model accuracy µacc and computes a single 95% CI, its width, 
and whether it correctly covers µacc. Averaging over simulation runs gives us estimates for the 
coverage probability and width of our benchmark’s CI for a single (C, |Etest|, |Dtest|). We repeat this 
whole procedure for different µacc ∈ {0.3, 0.35, . . . , 0.95} to cover a wide range of possible model 
performances observed across many datasets (see Table 3). 

Figure 1 shows CI coverage probability and width for many (C, |Etest|, |Dtest|) configurations. First, 
we find in Figure 1a that sufficiently-many test episodes (i.e., |Etest| > 60) is needed to guarantee 
coverage probability of our CIs is within one percentage point of the target 95%, a trend that holds 
regardless of compute budget. Small |Etest| also corresponds to large CI widths across all considered 
budgets in Figure 1b. This suggests that the choices of |Etest| = 1, 5, 10 in prior work [4, 24, 56, 75] 
can mean inaccurate and wide CIs, while choices of |Etest| = 1000 [5] can be prohibitively costly for 
methods with high training cost. 

Next, Figure 1b reveals (i) diminishing returns in CI width (decrease in y-axis) as compute increases, 
and (ii) existence of an optimal balance between |Etest| and |Dtest| for each budget. Restricting our 
consideration to budgets with optima satisfying sufficient coverage probability (|Etest| > 60), the 
minimum viable budget is 36 GPU-hours. Then, assessing the marginal benefit of each 12 GPU-hour 
budget increase in terms of marginal reduction in CI width between optima, we arrive at our FLEX 

16Costs estimated using a Quadro RTX-8000 GPU with 48Gb memory. For few-shot settings, model was 
trained with 300 steps. Per-episode and per-test-example costs were approx. 95–98 and 0.7–0.11 GPU-sec, 
respectively. Using a model with high per-episode cost for this analysis allows us to define a lower-bound sample 
size requirement; we can always test inexpensive or zero-shot models on more |Etest| or Dtest within budget. 
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configuration of |Etest| = 90 and |Dtest| ≈ 470 under a budget of C = 48 GPU-hours.17 Further 
details are in Appendix B. 

6 UniFew: A Few-Shot Learning Model by Unifying Pre-training and 
Downstream Task Formats 

Despite their encouraging results, existing works on few-shot learning in NLP are based on either 
customized and often complex meta-learning algorithms [3, 4, 5, 60], heavy manual/automated 
engineering of textual descriptions or prompts [24, 55, 59, 78], ordering of training examples [44, 56], 
extensive hyperparameter tuning on held-out sets [24, 44, 55], or custom learning algorithms [55, 65]. 
We present UniFew, a strong few-shot learning model across all transfer settings and datasets tested, 
that eschews the need for incorporating the above-mentioned complexities and challenges. 

UniFew is a prompt-based model [56], a class of models that tailor the input/output format of their 
data to match the format used during pretraining. While this technique allows them to perform a task 
without the need for additional classification layers, prompt-based models are typically sensitive to the 
choice of the prompts, which can require extensive search, trial-and-error, and even additional models 
to get right [24, 78]. To avoid this issue while still leveraging the strong capabilities of pretrained 
models, UniFew (1) converts examples into multiple-choice question-answer (QA) format, and (2) 
uses UnifiedQA [34], a T5 [51] model further pretrained on a large collection of QA pairs.18,19 

Compared to other prompt-based models, UniFew has two main strengths. First, the prompt design 
problem is much simpler because UnifiedQA questions had well-defined formats. For example, we 
only need four general prompt templates which cover all 20 datasets in the FLEX benchmark, while 
prior works have needed specialized prompts for each dataset. Second, UnifiedQA’s multiple-choice 
format ensures the model outputs a valid class label, without the need for learned or manually-defined 
mappings or verbalizers required for other prompt-based methods [24, 55].20 In concurrent work, 
Zhong et al. [80] also show the benefit of performing meta-tuning on a variety of datasets; while their 
task setup as Q/A is similar to UniFew, they focus exclusively on binary zero-shot classification tasks 
and, unlike UniFew, do not handle multi-class or few-shot problems. 

We experiment with UniFew both without and with meta-training on the FLEX benchmark’s meta-
training data, following the FLEX protocol (§4.2). We call the meta-trained variant UniFewmeta. We 
use simple prompts in the format of question followed by choices followed by the answer (according 
to the UnifiedQA original format). The exact prompts used are provided in Appendix C. 

Training details For meta-training and meta-validation of UniFew, we sampled Etrain and Eval with 
5-class, 5-training-shot sampling with the same number of shots per class.21 We trained the model for 
total number of 30K steps, using a linear learning rate scheduler with peak rate of 3e−5, 200 warmup 
steps, and batch size of 4; we selected the best checkpoint based on Eval performance. At meta-test 
time, for each episode, we trained the model on the episode’s training examples (if they exist) and 
predicted the outputs on test examples. For training at meta-test time, we used constant learning 
rate of 3e−5 and batch size of 4, and trained the model for 400 steps.22 We used NVidia RTX8000 
GPUs, which take about 7 GPU-hours for meta-training and 48 GPU-hours for meta-testing. For 
meta-testing we split the episodes among 8 GPUs to speed up evaluations. 

7 Experiments 

Comparing UniFew with prior work To demonstrate the efficacy of UniFew, we evaluate it 
against state-of-the-art approaches for few-shot and meta-learning in NLP: LM-BFF [24], a language 

17Consider budget increases 36 → 48, 48 → 60, 60 → 72 and 72 → 80. The first reduces CI width by 13%. 
Further increases reduce CI width by an additional 9%, 7%, and 5%, respectively. We choose C = 48 based on 
these diminishing returns. 

18UnifiedQA and T5 both use Apache License 2.0. We use publicly-released large-size model weights. 
19None of the supervised datasets in the pretraining of UnifiedQA or T5 are in FLEX. 
20In rare cases, especially for zero-shot, UnifiedQA may generate an invalid answer (e.g., “Yes, Yes, No” 

instead of “Yes”). We use simple heuristics to normalize the answer in such cases. 
21Users of FLEX can specify the sampling configuration of Etrain and Eval as desired. 
22For comparison with [24] we trained the model for 600 steps. 
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Table 2: Comparing UniFew with prior methods on their respective test suites, reporting mean 
accuracy (and standard deviation). For each test suite, for each result set on same number of shots, we 
indicate with B when results are directly comparable: (i) either both use meta-training (H-SMLMT 
& DS with UniFewmeta) or neither do (LM-BFF with UniFew). We bold the better of the two. 

(a) H-SMLMT (Bansal et al. [4]) (b) LM-BFF (Gao et al. [24]) 

Model Shots CNLL SciT Model Shots CR MR SNLI Subj TREC 
B H-SMLMT 

UniFew 

4 

4 

57.6 
±7.1 

76.6 
±2.6 

76.8 
±3.4 

65.1 
±9.9 

B 
B 

23LM-BFFman 

UniFew 
UniFewmeta 

024 

0 
0 

79.5 
78.8 
92.1 

80.8 
74.8 
90.5 

49.5 
54.4 
83.8 

51.4 
50.3 
56.8 

32.0 
15.0 
39.1 

B UniFewmeta 4 79.7 
±2.8 

85.4 
±2.5 

B LM-BFF 16/1625 91.0 
±0.9 

87.7 
±1.4 

77.5 
±3.5 

91.4 
±1.8 

89.4 
±1.7 

B H-SMLMT 8 70.2 79.1 
B UniFew 16/16 92.2 

±0.8 
87.2 
±0.1 

75.6 
±1.5 

84.6 
±5.4 

86.7 
±0.3 

UniFew 8 
±3.0 

80.6 

±1.1 

70.9 
UniFewmeta 16/16 92.7 

±0.4 
90.2 
±0.8 

84.9 
±0.5 

87.6 
±2.0 

86.1 
±0.4 

±3.7 ±5.2 

B UniFewmeta 8 81.2 
±3.8 

86.8 
±1.4 (c) Distributional Signature (Bao et al. [5]) 

B H-SMLMT 16 80.6 80.4 Model Shots Amzn† FRel† HuffP† 20N† Reut† 
±2.8 ±1.4 

UniFew 16 85.8 76.7 B DS 1 62.7 
±0.7 

67.1 
±0.9 

43.1 
±0.2 

52.2 
±0.7 

81.8 
±1.6 

±1.9 ±4.6 

B UniFewmeta 16 87.9 85.4 UniFew 1 82.1 
±8.5 

75.7 
±13.2 

65.9 
±13.4 

58.4 
±11.6 

92.0 
±8.3 

±1.9 ±2.5 
B UniFewmeta 1 84.3 90.6 78.6 70.3 96.9 

±8.9 ±6.2 ±6.9 ±9.1 ±2.5 

B DS 5 81.2 83.5 63.5 68.3 96.0 
±0.3 ±0.3 ±0.1 ±0.2 ±0.3 

UniFew 5 88.5 88.8 77.1 72.2 97.0 
±7.4 ±6.5 ±6.0 ±8.4 ±2.8 

B UniFewmeta 5 90.5 93.1 81.7 76.2 98.0 
±5.9 ±4.4 ±5.2 ±7.1 ±2.0 

model prompt-based fine-tuning method, as well as Distributional Signatures (DS) [5] and H-SMLMT 
[4], two state-of-the-art meta-learning techniques. Refer to Appendix D for details on these methods. 

We compare to these methods using the datasets in the FLEX benchmark to establish the quality of 
our model. Since we constructed our benchmark from disjoint subsets of datasets evaluated in each 
of these prior works (§4.1), we compare each method with its corresponding subset of datasets. Each 
of these prior works evaluates their methods using different experimental setups (classes, number of 
episodes, shots) than our benchmark and was not designed to handle FLEX’s challenging episode 
characteristics like class imbalance. To enable fair comparison, we test UniFew on the exact data splits 
released by the authors when available (H-SMLMT and LM-BFF). For DS, we sample (balanced) 
episodes using our framework after matching their test settings (number of shots and classes, class 
splits, etc.) and reproduce their reported results to within 1% absolute difference using their model 
code; we use these episodes for our experiments. The results in Table 2 show that UniFewmeta 
outperforms both H-SMLMT and DS meta-learning approaches by relatively large margins, while 
achieving competitive results compared with LM-BFF. Note that UniFew’s strong results are without 
meta-learning approaches, extensive prompt-engineering, or per-episode hyperparameter search. 

Evaluating UniFew on the FLEX benchmark Having established UniFew as a strong model 
comparable to recent, state-of-the art techniques, we present its results on the final version of our 
benchmark (with class imbalance, etc.). From Table 3, we observe three findings. First, pretraining is 
an effective technique for infusing an NLP model with the ability to perform few-shot generalization 
even without any meta-training, as UniFew is able to score Δfew = +12.8 higher when provided 

23Gao et al. [24]’s automatic prompt search and in-context learning are not available in the zero-shot setting, 
so they instead use manually-designed prompts. 

24Zero-shot results from Gao et al. [24] are on the entire test set, so there is no reported standard deviation. 
2516/16 denotes 16 shots for training plus 16 more for validation which we only use for early stopping while 

Gao et al. [24] use for grid-search hyperparameter tuning. 
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Table 3: Mean accuracy of UniFew and UniFewmeta on FLEX benchmark in zero and few-shot setups. 

Zero-shot Few-shot 

Class Domain Task Overall Class Domain Task Overall Δfew (Overall) 

UniFew 
UniFewmeta 
Δmeta 

59.5 
75.6 
+16.2 

67.9 
87.6 
+19.7 

36.6 
41.1 
+4.5 

56.5 
71.0 
+14.5 

75.8 
80.2 
+4.3 

72.4 
86.8 
+14.4 

54.3 
62.4 
+8.1 

69.3 
77.9 
+8.6 

+12.8 
+6.9 

few rather than zero examples. Second, by comparing UniFewmeta and UniFew, we see that meta-
training has a substantial impact on zero-shot performance (Δmeta = +14.5), but its benefit, while 
still substantial, is less in the few-shot setting (Δmeta = +8.6). Third, while meta-training adds 
roughly the same benefit to zero and few-shot performance for both domain and task transfer settings, 
meta-training disproportionately benefits zero-shot class transfer (Δmeta = +16.2) over few-shot 
class transfer (Δmeta = +4.3). Such observations are made possible through unified evaluation 
and comparison across different transfer types. The full FLEX benchmark results broken down by 
individual datasets are in Appendix E. 

8 Limitations and Future Work 

While the initial FLEX benchmark is focused on classification tasks, we aim to use our benchmark 
creation toolkit (§4.4) to incorporate additional task formats like span selection or text generation. 
Furthermore, the benchmark currently only supports English language tasks; to study language 
transfer, we aim to incorporate new datasets using our toolkit. Adding diverse datasets has its own 
challenges; while we’ve selected datasets for our benchmark based on prior work adoption and have 
attempted to verify their licensing for research use, we were unable to find license details for some 
datasets (Appendix A). We believe it is crucial to continually evolve the suite of datasets to remain 
challenging for the best models [36] and to tackle real-world challenges [1]. 

In addition, Sample Size Design (§5) simulations currently rely on our own available training 
estimates. We plan to gather a more representative sample from community leaderboard submissions. 

Our public leaderboard could benefit from extended support for detailed comparisons between 
submissions based on properties of techniques. For example, approaches may vary in terms of model 
characteristics (e.g., number of parameters), data and supervision used during pretraining, amount of 
compute, etc. We encourage reporting all these factors to enable the community to analyze and make 
progress on important sub-spaces in the overall few-shot technique design space. 

Finally, we believe the benefits of improving few-shot NLP techniques outweigh potential risks, but 
we acknowledge potential harms associated with language models [7, 14, 57, 63]. Few-shot models 
learn a task from a few examples but rely heavily on knowledge encoded in the pretrained model. 
Thus, few-shot models are more likely to inherit the biases of the pretrained models, compared to more 
fully supervised models; as the community focuses more on few-shot learning, it is more important 
than ever for future pretrained models to be careful about biases in the underlying pretraining corpora. 

9 Conclusion 

In this work, we unify and bring rigor to few-shot NLP evaluation. We formulate the FLEX Principles, 
a set of requirements and best practices that enables unified, rigorous, valid, and cost-sensitive 
measurement. We advance the principles with new Sample Size Design methodology for optimizing 
statistical accuracy and precision while keeping costs low. The FLEX benchmark is our instantiation 
of the FLEX Principles; it employs Sample Size Design and includes four few-shot transfer settings, 
zero-shot evaluation, and a public leaderboard with diverse NLP tasks. We present UniFew, a prompt-
based model that aligns pretraining and downstream task formats, achieving results competitive with 
recent few-shot methods despite using trivial prompt engineering. Finally, we release an extensible, 
open-source toolkit (used to train UniFew and generate the FLEX benchmark) to support future 
benchmark creation and few-shot NLP model training. 
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