

FLEX: Unifying Evaluation for Few-Shot NLP

Jonathan Bragg∗ Arman Cohan∗ Kyle Lo Iz Beltagy
Allen Institute for AI, Seattle, WA

{jbragg,armanc,kylel,beltagy}@allenai.org

Abstract

Few-shot NLP research is highly active, yet conducted in disjoint research threads
with evaluation suites that lack challenging-yet-realistic testing setups and fail
to employ careful experimental design. Consequently, the community does not
know which techniques perform best or even if they outperform simple baselines.
In response, we formulate the FLEX Principles, a set of requirements and best
practices for unified, rigorous, valid, and cost-sensitive few-shot NLP evaluation.
These principles include Sample Size Design, a novel approach to benchmark
design that optimizes statistical accuracy and precision while keeping evaluation
costs manageable. Following the principles, we release the FLEX benchmark,2

which includes four few-shot transfer settings, zero-shot evaluation, and a public
leaderboard that covers diverse NLP tasks. In addition, we present UniFew,3 a
prompt-based model for few-shot learning that unifies pretraining and finetuning
prompt formats, eschewing complex machinery of recent prompt-based approaches
in adapting downstream task formats to language model pretraining objectives. We
demonstrate that despite simplicity, UniFew achieves results competitive with both
popular meta-learning and prompt-based approaches.

1 Introduction

Few-shot learning, the challenge of learning from a small number of examples, is critical for
developing efficient, robust NLP techniques [71, 76]. In recent years, separate threads of few-shot
NLP research have pursued goals like generalization to new classes [e.g., 5, 25], adaptation to new
domains and tasks [e.g., 3, 4, 21], and direct application of pretrained language models (LMs) [e.g.,
10, 24, 55, 56]. Unfortunately, despite the shared goal of advancing few-shot NLP techniques, the
community does not know which techniques work best or even if they perform better than simple
baselines. Evaluation suites across these research threads are disjoint, lack challenging-yet-realistic
testing setups (e.g., class imbalance, variable training set sizes, etc.), and do not employ careful
experimental design to ensure accurate and precise evaluation estimates and minimal computational
burden. Prior work in few-shot learning outside of NLP serves as a stark warning of the consequences
of improper measurement: Dhillon et al. [19] showed that techniques from several years of prior
work did not make clear progress due to large overlapping accuracy distributions and, moreover, do
not outperform a simple, carefully-tuned baseline.

Need for systematic benchmark design As such, a high-quality benchmark is urgently needed to
enable rigorous comparison of techniques across disjoint, highly-active threads of few-shot NLP
research. But what should such an evaluation suite look like? Some best practices for evaluation of
few-shot methods have been introduced in the computer vision (CV) literature [19, 67] and should

∗Equal contribution
2Benchmark, leaderboard, and benchmark creation toolkit: https://github.com/allenai/flex.

Apache License 2.0
3Few-shot model: https://github.com/allenai/unifew. Apache License 2.0

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/allenai/flex
https://github.com/allenai/unifew
mailto:jbragg,armanc,kylel,beltagy}@allenai.org
https://github.com/allenai/unifew
https://github.com/allenai/flex
mailto:jbragg,armanc,kylel,beltagy}@allenai.org

- -

- - -
- -

- - - - -

- -
- - -

Table 1: Comparison of the FLEX benchmark with closest prior work. Our benchmark consists of
episodes with variable number of shots in the range [1-5] and with class imbalance. “No extra test
data” refers to excluding validation data from testing tasks, to avoid unfairly advantaging models
that use such data [50]. Our benchmark’s number of test episodes is selected to balance statistical
accuracy and precision, which suffers in few-episode setups, and compute requirements, which is too
costly in many-episode setups (§5).

CrossFit[75] LM-BFF[24] GPT-3[10] DS[5] SMLMT[4] FewGlue[56] FLEX (ours)
Class Transfer - - - X X

X
X
X

XDomain Transfer - - - - -
Task Transfer X X -

XX XPretraining Transfer -
{total 32}4Shots per class {16, 32} 16

Variable shots
variable {1,5} {4,8,16,32} [1–5]

X
X
X
X
X

X
Unbalanced - - - - - -

XXX XTextual labels
XXZero-shot -

XX mixed5No extra test data - - -
test episodes 5 5 1 1000 10 1 90
Reporting avg avg, SD avg avg, SD avg, SD avg, SD all6

datasets 160 16 37 7 18 8 20

be applied to NLP. However, unifying few-shot NLP work introduces new challenges. For example,
the benchmark needs to test all types of transfer studied in separate research threads to measure
progress on new techniques that make gains in each of these important generalization settings (§2).
Also, given the importance of zero-shot learning and learning from task descriptions [29, 73], the
benchmark needs to include zero-shot episodes and textual labels to enable measuring progress
for models that do not use conventional supervised training, including methods that leverage the
latent knowledge in pretrained LMs [10, 24, 78]. Further, the benchmark must accommodate new,
computationally-expensive approaches, without overly reducing the number of evaluation episodes at
the expense of statistical accuracy [3, 24, 75].

Need for a robust few-shot model Recent prompt-based models [10] have shown strong results in
few-shot learning. These models leverage the power of (often large) pretrained language models
and adapt the format of downstream tasks to the underlying pretraining objective (e.g., Masked
Language Modeling). This way, given the right natural language prompt (and sometimes verbalizers
[55] and additional demonstrative examples), the model can quickly fine-tune on the downstream task
[24, 43, 44, 55, 56]. However, adapting task formats to the underlying (masked) language modeling
objectives is not straightforward; such models have been shown to be sensitive to varying choices of
the prompt/demonstrations, training settings, hyperparameters, and learning algorithms [33, 50, 78],
often requiring large held out sets and/or complex methods to overcomes such challenges. Can
models eschew complex prompt engineering by unifying pretraining and downstream task formats?

In this paper, we tackle these key issues by introducing FLEX—Few-shot Language Evaluation
across (X) many transfer types—and contributing the following:

• FLEX Principles (§3), a set of requirements and best practices for few-shot NLP evaluation
that enables unified, rigorous, valid, and cost-sensitive measurements.

– Sample Size Design: In support of valid, cost-sensitive measurement, we introduce a
novel approach to few-shot sample size design (§5) that optimizes for a benchmark’s
statistical accuracy and precision while keeping computational costs accessible to a
broad range of researchers.

• FLEX benchmark (§4), an implementation of the FLEX Principles. It tests across four
few-shot transfer settings,7 and includes a public leaderboard for few-shot NLP that covers
20 datasets across diverse NLP tasks (e.g., NLI, relation classification, entity typing). Table 1
summarizes key differences between FLEX and other few-shot NLP evaluation suites.

4The total number of training shots in each episode, not number of shots per class per episode.
5Most users use unlabeled examples, though recently, Tam et al. [65] do not.
6Average (avg), confidence interval (CI), standard deviation (SD), individual episode metrics
7Prior work evaluated at most two settings.

2

• UniFew (§6), a prompt-based model for few-shot learning in NLP. While most existing
methods leverage pre-trained LMs for few-shot learning, LM pre-training tasks do not
closely match natural downstream task formats, requiring complex methods (e.g., extensive
prompt-engineering, use of verbalizers, episodic hyperparameter tuning, custom learning
algorithms) to make these models work in few-shot setting. Instead, the key idea of our
model, UniFew, is to close the gap between pre-training and fine-tuning formats by posing
tasks as multiple-choice QA and using an underlying model that is pre-trained on a similar
natural QA task format. This eliminates the need for complexities of adapting downstream
tasks to the LM objectives, while resulting in competitive performance with both recent
few-shot and meta-learning methods.

To aid similar efforts, our release of FLEX includes a toolkit for benchmark creation and few-shot
NLP model development, which we used to create the FLEX benchmark and train UniFew.

2 Background and Related Work

We first provide background and notation for few-shot learning and evaluation, then discuss related
work in NLP and outside NLP that motivated us to create the FLEX Principles and benchmark.

Few-shot background and notation Broadly, modern approaches to few-shot learning are evalu-
ated in a three-phase procedure [68]. In the first phase, a general-purpose pretrained model is obtained.
In the subsequent “meta-training” phase,8 techniques aim to adapt the model to be well-suited for
few-shot generalization. Finally, a “meta-testing” phase evaluates the adapted model in new few-shot
prediction settings.

Let D be a dataset of (x, y) examples with full label set YD. From it, we construct three sets of
episodes, corresponding to meta-training, meta-validation, and meta-testing and denoted by Etrain,
Eval, and Etest, respectively. Each episode in each of these sets is a few-shot problem with its own test

Eset and other attributes. Formally, each episode E is a tuple (DE), where YE is a train, DE
test, YDval, DE

D
sampled subset of labels in YD and DE are disjoint sets of examples from D with labels in train|val|test

EYD . 9 For each episode, the model’s objective is to correctly predict labels for examples DE
test. To

accomplish this, models make use of labeled examples in DE
train, which is typically configured such

that each label i in YE has KE provided examples; KE is known as the shot, and the setting when aD i i
class has no examples in DE = 0) is called zero-shot.train (i.e., KE

i

Few-shot evaluation in NLP Research in few-shot NLP has proceeded in several parallel threads,
each focused on a different type of transfer ability [76]. Each thread has separate evaluation practices,
and the vast majority of few-shot NLP research has limited evaluation to a single transfer type (see
Table 1). Here, we describe these types of transfer and their evaluation practices.

Following the CV literature [67, 68], one thread of few-shot NLP focuses on class transfer, the
problem of generalizing from a supervised set of classes at meta-train time to a different set of classes
from the same dataset at meta-test time. Evaluation typically involves splitting classes YD into YD train,
YD val and YD disjoint subsets. Class transfer has been studied on many text classification tasks [5],test
including relation classification [25, 28, 64], intent classification [37, 64], inter alia. In contrast,
domain transfer keeps the same classes between meta-training and meta-testing but changes the
textual domain (e.g., generalizing from MNLI to science-focused SciTail [4, 21]). Evaluation then
requires identifying pairs of datasets with the same classes YD, where one dataset’s episodes are
assigned to Etrain and the other’s to Etest. Domain transfer has also been studied on many tasks [3, 4],
including dialogue intent detection & slot tagging [31], sentiment classification [77], NLI [21], and
machine translation [27, 58].

Researchers have also begun to study task transfer, the problem of generalizing from a set of
tasks at meta-train time to unseen tasks at meta-test time. Evaluation requires tasks (e.g., NLI)
appearing in Etest not to appear in Etrain or Eval. Prior work has used GLUE tasks [70] for meta-training
before meta-testing on tasks such as entity typing [3, 4], while other work instead used GLUE for

8Meta-training may include a “meta-validation" component, for validating generalization.
9In the few-shot literature, DE

test are also called the support and query sets, and |YD E | the way.train and DE

3

meta-testing [21]. Very recent work has studied task transfer over a large set of datasets [75, 80]. A
limited amount of work evaluates both domain and task transfer [3, 4, 21]. An important emerging
line of work (not noted by Yin [76]) is pretraining transfer, the problem of whether pretrained
language models can perform well at meta-test time without any meta-training. Evaluation in this
setting requires Etrain, Eval = ∅. Prior work has shown that pretrained language models are capable of
surprising performance on many few-shot tasks, even without fine-tuning [10]. More recent work,
mainly focusing on text classification, has reported further gains with cloze-style formats [55, 56, 65],
prompt engineering [24], or calibration [78]. FLEX is designed to exercise all four of these transfer
types from previous work.

Few-shot evaluation outside NLP The few-shot learning literature has largely focused on image
classification, with the introduction of increasingly complex meta-learning algorithms [e.g., 23, 39,
54, 61, 68]. However, more recent work has shown that simple fine-tuning baselines are in fact
competitive, and attribute this delayed discovery to problematic evaluation methodology [15, 19].
FLEX adopts recommended methodology [19, 67], and we introduce an analogous baseline (UniFew)
to provide a strong measurement foundation for few-shot NLP.

3 FLEX Principles for Few-Shot NLP Evaluation

We now enumerate key desiderata for a few-shot NLP benchmark capable of solving the urgent
problems with few-shot NLP evaluation, including separate evaluations for each transfer type and
failure to incorporate best measurement practices from other domains (§2).

Diversity of transfer types To make NLP models broadly useful, few-shot NLP techniques must be
capable of class, domain, and task transfer. Moreover, techniques should make use of the relevant
supervision provided during meta-training to increase performance compared to the pretraining
transfer setting. The benchmark should measure all four transfer settings to ensure that the community
develops techniques that improve on strong pretraining transfer baselines, and enable comparison
across these currently separate threads of research.

Variable number of shots and classes To better simulate a variety of real-world scenarios, the
benchmark should include a variety of training set sizes and numbers of classes [67]. Testing
robustness to these factors is crucial; few-shot techniques are often sensitive to changes in these
factors [12], yet all prior few-shot NLP evaluations we are aware of used a fixed number of training
shots and classes, known in advance during meta-training.

Unbalanced training sets The benchmark should also include unbalanced training sets with different
training shots per class, another realistic setting adopted by CV benchmarks [67]. Class imbalance
has also been observed to degrade performance [11, 47], yet prior few-shot NLP evaluations do not
include this setting either.

Textual labels While numerical label values are often used in classification tasks, descriptive textual
labels are also present for many tasks. Making these textual labels available for use by few-shot
techniques enables the development of techniques that can leverage the class name, like in-context
learning [10], template generation [24], and meta-learning [45]. Textual labels are crucial in particular
for zero-shot evaluation.

Zero-shot evaluation We believe zero-shot evaluation is integral to the goals of few-shot evaluation.
Similar to the motivation for measuring pretraining transfer, zero-shot evaluation is an important use
case and also provides a strong baseline for some tasks. In the absence of training examples, textual
class labels or richer task descriptions [73] must be provided. Some recent few-shot NLP work [e.g.,
10, 24] evaluated with zero training shots, but most [e.g., 3, 5, 75] did not.

No extra meta-testing data We believe the benchmark should not provide validation data (DE = val
∅, ∀E ∈ Etest) or unlabeled data for meta-testing tasks, since few-shot learning seeks to enable
high performance in environments where collecting additional data is costly.10 Variation in these
dimensions in prior NLP work makes comparison of results extremely difficult because it is often
under-reported and gives unfair advantage to approaches that leverage such data [50]. For exam-
ple, per-episode hyperparameter tuning on extra data has been shown to greatly inflate evaluation
scores [24]. A few researchers [5, 65] follow our suggested approach, but others have used many

10Unlabeled data collection can be costly too, e.g. due to manual filtering [16].

4

https://costly.10

different settings, from validation sets of various sizes [10, 24, 79] to no validation set but a large set
of unlabeled examples [55, 56].

Principled sample size design Promising few-shot techniques can incur significant computational
cost per episode, e.g., due to fine-tuning model parameters [4], searching for prompts [24], inter
alia. To alleviate these costs, related works often evaluate with a limited number of episodes, which
precludes statistically accurate or precise performance estimates. We believe the benchmark’s test
sample size should be optimized to enable proper performance evaluation for such techniques, while
ensuring the computational burden is inclusive toward researchers without large compute resources.

Proper reporting of CIs, SDs, and individual results The benchmark should report confidence
intervals (CIs) of performance estimates and follow recent guidelines [19] to report standard deviations
(SDs) for understanding variability. Moreover, we newly advocate for controlling for the same
sampled few-shot episodes across all methods and reporting individual episode results, so that
researchers can run higher-powered paired statistical tests when comparing results [22], crucial when
the benchmark has been optimized for low evaluation budgets.

4 FLEX Benchmark

The FLEX benchmark is a unifying, rigorous evaluation suite for few-shot learning in NLP, which
implements the desiderata outlined in the previous section. In this section, we describe detailed design
decisions and our accompanying few-shot NLP toolkit (§4.4), which we are releasing to facilitate
easily adding NLP datasets and advanced sampling options to future benchmarks. We also describe
the FLEX leaderboard (§4.5).

4.1 Task and Dataset Selection

Following GLUE [70] and other prior work [3, 5, 24, 78], we focus on tasks formatted as classifica-
tion. Despite recent advances, NLP state-of-the-art models remain significantly worse than human
performance on many text classification tasks, particularly in the few-shot setting. Automatic scoring
of classification tasks is also more reliable than text generation tasks.

We selected datasets across three recent few-shot NLP evaluation suites, which separately studied
class transfer [5], domain and task transfer [3, 4], and pretraining transfer [24]. Our benchmark
includes a broad mix of tasks (NLI, question classification, entity typing, relation classification, and
sentiment analysis) and formats (document, sentence, sentence pair). More complete dataset and
license details are available in the following subsection and Appendix A.

4.2 Meta-Evaluation Protocols

As discussed earlier, FLEX evaluates four different types of transfer: Class, Domain, Task, and
Pretraining Transfer. To support all types, we report results to the FLEX benchmark both without meta-
training (pretraining-only) and with meta-training. This reporting scheme evaluates the performance
of the basic pretrained model and the benefit (or lack thereof) of meta-training. A similar reporting
scheme was proposed by Triantafillou et al. [67] for CV.

Pretraining-Only In this setting, the pretrained model is directly meta-tested on our benchmark
without any additional training. This is the Pretraining Transfer setting, and it is the most difficult,
but given the recent success of pretrained models in NLP for few-shot learning [10, 24], we believe
that comparison to models without any meta-training is important for NLP tasks.

Meta-Trained In this setting, the model is meta-trained then meta-tested on our benchmark. We
carefully selected and split datasets across meta-train/validation/test in order to enable testing of
Class, Domain, and Task transfer with a single meta-training phase (to reduce computational burden).
Datasets involved in each transfer setting (detailed split information in Table 4 in Appendix A):

• Class Transfer: FewRel [28], HuffPost [46], Amazon [30], 20News [38], and Reuters [41]
take part in meta-training and meta-testing but with different classes.

• Domain Transfer: MR [49], CR [32], SNLI [9], and SciTail [35] are only in the meta-testing
phase, but the corresponding sentiment and NLI datasets exist in the meta-training phase
(MNLI [74], QNLI [52], and SST-2 [62]).

5

• Task Transfer: Subj [48], TREC [69], and CoNLL [66] are also for meta-testing only, and
they represent tasks that the model does not encounter during meta-training.

Instead of per-episode hyperparameter tuning, we provide meta-validation episodes Eval for learning
(during meta-training) global hyperparameters that work across all episodes. Specifically, the meta-
validation dataset splits (see Table 4) consist of CoLa [72] for task transfer, WNLI [40] for domain
transfer, and the validation splits used by Bao et al. [5] for all class transfer datasets. Following [3],
we also include meta-training datasets MRPC [20], RTE [6, 8, 17, 26], and QQP [70].

4.3 Episode Sampling

We describe how our benchmark samples meta-testing episodes Etest. For meta-training, we allow
users to sample from Etrain, Eval in any way, or directly use the underlying dataset splits.

Number of classes For Class Transfer datasets, FLEX evaluates model robustness to variable number
of new classes. When constructing episode E from one of these datasets D, our benchmark samples
an episode-specific number of classes from dataset D, the sampler picks a random number from the
range YE ∼ Unif(5, min(|YD|, 10)). 11 For Domain and Task Transfer, the number of classes is fixed D
to the maximum number of classes in each dataset because Class Transfer is not being evaluated.

Number of shots Following prior work outside NLP [47, 67], our benchmark samples the training
shot independently for each episode E and class i, as KE

i ∼ Unif(Kmin,Kmax), where Kmin = 1.
Given strong performance of NLP models with few or even zero examples [10, 73] and following
prior work [5], we set the limit Kmax = 5. Separately, we allocate an equal number of episodes as
zero-shot, where we instead set DE = ∅ (equivalently, Ktrain

E
i = 0, ∀i). In each episode, examples are

sampled uniformly at random without replacement (but can be reused across episodes).12 Following
Triantafillou et al. [67], we select a testing shot that is balanced across classes and leaves roughly
half of examples for sampling the training examples. The total number of episodes for each reported
configuration (pair of dataset and either zero- or few-shot) is set to 90 using Sample Size Design (§5).

4.4 Extensible Toolkit for Benchmark Creation and Model Training & Evaluation

Alongside the FLEX benchmark, we release an extensible, highly-configurable Python toolkit, which
we used to generate the benchmark, and train and evaluate our models. Unlike existing meta-learning
frameworks (e.g., Torchmeta [18], learn2learn [2]), our framework makes available a wide range
of community-contributed NLP datasets and utilities via HuggingFace Datasets [42].13 Our code
also provides advanced sampling utilities (e.g., for class imbalance), ensures reproducibility by
checksumming generated episodes, and reports all recommended statistics.

4.5 Public Leaderboard

We provide public leaderboards for each of the meta-evaluation protocols: Pretraining-Only14 and
Meta-Trained.15 Submissions take the form of a text label predictions file, which is produced by our
toolkit. Results are reported with confidence intervals, standard deviations, and individual predictions
on request. See Appendix G for a screenshot of the results interface.

5 Sample Size Design: Balancing Statistical Measurement & Compute Cost

We demonstrate a principled approach to determining the optimal sample size configuration in our
few-shot benchmark. A proper benchmark should produce performance estimates that are accurate,
close to the true value, and precise, low variance. A large (test) sample size can achieve this, yet must
be considered alongside computational cost so that a broad community of researchers with differing
amounts of compute resources can participate. This decision is further complicated in the few-shot

11We limit to 10 classes to avoid undue burden on in-context approaches that fit examples in memory [10],
and use a lower bound of 5 classes to match prior work [5].

12These samples represent an unbiased performance estimate, but do not eliminate underlying dataset biases.
13Apache License 2.0. Full license details for all software dependencies available in Appendix F.
14https://leaderboard.allenai.org/flex/
15https://leaderboard.allenai.org/flex_meta/

6

https://leaderboard.allenai.org/flex/
https://leaderboard.allenai.org/flex_meta/

(a) Coverage probability of 95% CIs. (b) Mean width of 95% CIs.

Figure 1: Results of simulation study described in §5. Each curve corresponds to a compute budget
constraint C (GPU-hours). Each point on a curve is an allocation of test data between the number
of test episodes |Etest| or mean number of examples per episode |Dtest| such that evaluation can be
completed within given budget. Per curve, lower values of |Etest| correspond linearly to larger values
of |Dtest|, which are shown as numerical text annotations in (b). Error bars represent the 10th and
90th percentile values from repeated simulations across µacc ∈ {0.3, 0.35, . . . , 0.95}.

setting, where sample size refers to both the number of test episodes |Etest| and the number of test
examples |DE

test| across alltest| per episode E ∈ Etest. For practicality, we consider |Dtest|, the mean |DE

episodes, rather than every |DE
test|. It remains unknown how one should best distribute test examples

between |Etest| and |Dtest|: More episodes each with fewer examples, or fewer episodes each with
many examples? Prior work has been inconsistent in this regard. For example, Gao et al. [24] used
|Etest| = 5 and large |Dtest|, while Bao et al. [5] used |Etest| = 1000 and much smaller |Dtest|.
Inspired by simulation techniques for informing statistically-powered experimental design [13], we
study how different configurations of |Etest| and |Dtest| across different compute budgets C impact the
accuracy and precision of our estimated CIs, specifically with respect to coverage probability [53]
and width. First, we estimate per-episode and per-test-example costs of our few-shot model (§6)
to obtain valid (C, |Etest|, |Dtest|) configurations s.t. the full benchmark completes within given C
(GPU-hours).16 Then, for each (C, |Etest|, |Dtest|), we perform 1000 simulation runs, in which each
run samples predictions under a true model accuracy µacc and computes a single 95% CI, its width,
and whether it correctly covers µacc. Averaging over simulation runs gives us estimates for the
coverage probability and width of our benchmark’s CI for a single (C, |Etest|, |Dtest|). We repeat this
whole procedure for different µacc ∈ {0.3, 0.35, . . . , 0.95} to cover a wide range of possible model
performances observed across many datasets (see Table 3).

Figure 1 shows CI coverage probability and width for many (C, |Etest|, |Dtest|) configurations. First,
we find in Figure 1a that sufficiently-many test episodes (i.e., |Etest| > 60) is needed to guarantee
coverage probability of our CIs is within one percentage point of the target 95%, a trend that holds
regardless of compute budget. Small |Etest| also corresponds to large CI widths across all considered
budgets in Figure 1b. This suggests that the choices of |Etest| = 1, 5, 10 in prior work [4, 24, 56, 75]
can mean inaccurate and wide CIs, while choices of |Etest| = 1000 [5] can be prohibitively costly for
methods with high training cost.

Next, Figure 1b reveals (i) diminishing returns in CI width (decrease in y-axis) as compute increases,
and (ii) existence of an optimal balance between |Etest| and |Dtest| for each budget. Restricting our
consideration to budgets with optima satisfying sufficient coverage probability (|Etest| > 60), the
minimum viable budget is 36 GPU-hours. Then, assessing the marginal benefit of each 12 GPU-hour
budget increase in terms of marginal reduction in CI width between optima, we arrive at our FLEX

16Costs estimated using a Quadro RTX-8000 GPU with 48Gb memory. For few-shot settings, model was
trained with 300 steps. Per-episode and per-test-example costs were approx. 95–98 and 0.7–0.11 GPU-sec,
respectively. Using a model with high per-episode cost for this analysis allows us to define a lower-bound sample
size requirement; we can always test inexpensive or zero-shot models on more |Etest| or Dtest within budget.

7

https://0.7�0.11

configuration of |Etest| = 90 and |Dtest| ≈ 470 under a budget of C = 48 GPU-hours.17 Further
details are in Appendix B.

6 UniFew: A Few-Shot Learning Model by Unifying Pre-training and
Downstream Task Formats

Despite their encouraging results, existing works on few-shot learning in NLP are based on either
customized and often complex meta-learning algorithms [3, 4, 5, 60], heavy manual/automated
engineering of textual descriptions or prompts [24, 55, 59, 78], ordering of training examples [44, 56],
extensive hyperparameter tuning on held-out sets [24, 44, 55], or custom learning algorithms [55, 65].
We present UniFew, a strong few-shot learning model across all transfer settings and datasets tested,
that eschews the need for incorporating the above-mentioned complexities and challenges.

UniFew is a prompt-based model [56], a class of models that tailor the input/output format of their
data to match the format used during pretraining. While this technique allows them to perform a task
without the need for additional classification layers, prompt-based models are typically sensitive to the
choice of the prompts, which can require extensive search, trial-and-error, and even additional models
to get right [24, 78]. To avoid this issue while still leveraging the strong capabilities of pretrained
models, UniFew (1) converts examples into multiple-choice question-answer (QA) format, and (2)
uses UnifiedQA [34], a T5 [51] model further pretrained on a large collection of QA pairs.18,19

Compared to other prompt-based models, UniFew has two main strengths. First, the prompt design
problem is much simpler because UnifiedQA questions had well-defined formats. For example, we
only need four general prompt templates which cover all 20 datasets in the FLEX benchmark, while
prior works have needed specialized prompts for each dataset. Second, UnifiedQA’s multiple-choice
format ensures the model outputs a valid class label, without the need for learned or manually-defined
mappings or verbalizers required for other prompt-based methods [24, 55].20 In concurrent work,
Zhong et al. [80] also show the benefit of performing meta-tuning on a variety of datasets; while their
task setup as Q/A is similar to UniFew, they focus exclusively on binary zero-shot classification tasks
and, unlike UniFew, do not handle multi-class or few-shot problems.

We experiment with UniFew both without and with meta-training on the FLEX benchmark’s meta-
training data, following the FLEX protocol (§4.2). We call the meta-trained variant UniFewmeta. We
use simple prompts in the format of question followed by choices followed by the answer (according
to the UnifiedQA original format). The exact prompts used are provided in Appendix C.

Training details For meta-training and meta-validation of UniFew, we sampled Etrain and Eval with
5-class, 5-training-shot sampling with the same number of shots per class.21 We trained the model for
total number of 30K steps, using a linear learning rate scheduler with peak rate of 3e−5, 200 warmup
steps, and batch size of 4; we selected the best checkpoint based on Eval performance. At meta-test
time, for each episode, we trained the model on the episode’s training examples (if they exist) and
predicted the outputs on test examples. For training at meta-test time, we used constant learning
rate of 3e−5 and batch size of 4, and trained the model for 400 steps.22 We used NVidia RTX8000
GPUs, which take about 7 GPU-hours for meta-training and 48 GPU-hours for meta-testing. For
meta-testing we split the episodes among 8 GPUs to speed up evaluations.

7 Experiments

Comparing UniFew with prior work To demonstrate the efficacy of UniFew, we evaluate it
against state-of-the-art approaches for few-shot and meta-learning in NLP: LM-BFF [24], a language

17Consider budget increases 36 → 48, 48 → 60, 60 → 72 and 72 → 80. The first reduces CI width by 13%.
Further increases reduce CI width by an additional 9%, 7%, and 5%, respectively. We choose C = 48 based on
these diminishing returns.

18UnifiedQA and T5 both use Apache License 2.0. We use publicly-released large-size model weights.
19None of the supervised datasets in the pretraining of UnifiedQA or T5 are in FLEX.
20In rare cases, especially for zero-shot, UnifiedQA may generate an invalid answer (e.g., “Yes, Yes, No”

instead of “Yes”). We use simple heuristics to normalize the answer in such cases.
21Users of FLEX can specify the sampling configuration of Etrain and Eval as desired.
22For comparison with [24] we trained the model for 600 steps.

8

Table 2: Comparing UniFew with prior methods on their respective test suites, reporting mean
accuracy (and standard deviation). For each test suite, for each result set on same number of shots, we
indicate with B when results are directly comparable: (i) either both use meta-training (H-SMLMT
& DS with UniFewmeta) or neither do (LM-BFF with UniFew). We bold the better of the two.

(a) H-SMLMT (Bansal et al. [4]) (b) LM-BFF (Gao et al. [24])

Model Shots CNLL SciT Model Shots CR MR SNLI Subj TREC
B H-SMLMT

UniFew

4

4

57.6
±7.1

76.6
±2.6

76.8
±3.4

65.1
±9.9

B
B

23LM-BFFman

UniFew
UniFewmeta

024

0
0

79.5
78.8
92.1

80.8
74.8
90.5

49.5
54.4
83.8

51.4
50.3
56.8

32.0
15.0
39.1

B UniFewmeta 4 79.7
±2.8

85.4
±2.5

B LM-BFF 16/1625 91.0
±0.9

87.7
±1.4

77.5
±3.5

91.4
±1.8

89.4
±1.7

B H-SMLMT 8 70.2 79.1
B UniFew 16/16 92.2

±0.8
87.2
±0.1

75.6
±1.5

84.6
±5.4

86.7
±0.3

UniFew 8
±3.0

80.6

±1.1

70.9
UniFewmeta 16/16 92.7

±0.4
90.2
±0.8

84.9
±0.5

87.6
±2.0

86.1
±0.4

±3.7 ±5.2

B UniFewmeta 8 81.2
±3.8

86.8
±1.4 (c) Distributional Signature (Bao et al. [5])

B H-SMLMT 16 80.6 80.4 Model Shots Amzn† FRel† HuffP† 20N† Reut†
±2.8 ±1.4

UniFew 16 85.8 76.7 B DS 1 62.7
±0.7

67.1
±0.9

43.1
±0.2

52.2
±0.7

81.8
±1.6

±1.9 ±4.6

B UniFewmeta 16 87.9 85.4 UniFew 1 82.1
±8.5

75.7
±13.2

65.9
±13.4

58.4
±11.6

92.0
±8.3

±1.9 ±2.5
B UniFewmeta 1 84.3 90.6 78.6 70.3 96.9

±8.9 ±6.2 ±6.9 ±9.1 ±2.5

B DS 5 81.2 83.5 63.5 68.3 96.0
±0.3 ±0.3 ±0.1 ±0.2 ±0.3

UniFew 5 88.5 88.8 77.1 72.2 97.0
±7.4 ±6.5 ±6.0 ±8.4 ±2.8

B UniFewmeta 5 90.5 93.1 81.7 76.2 98.0
±5.9 ±4.4 ±5.2 ±7.1 ±2.0

model prompt-based fine-tuning method, as well as Distributional Signatures (DS) [5] and H-SMLMT
[4], two state-of-the-art meta-learning techniques. Refer to Appendix D for details on these methods.

We compare to these methods using the datasets in the FLEX benchmark to establish the quality of
our model. Since we constructed our benchmark from disjoint subsets of datasets evaluated in each
of these prior works (§4.1), we compare each method with its corresponding subset of datasets. Each
of these prior works evaluates their methods using different experimental setups (classes, number of
episodes, shots) than our benchmark and was not designed to handle FLEX’s challenging episode
characteristics like class imbalance. To enable fair comparison, we test UniFew on the exact data splits
released by the authors when available (H-SMLMT and LM-BFF). For DS, we sample (balanced)
episodes using our framework after matching their test settings (number of shots and classes, class
splits, etc.) and reproduce their reported results to within 1% absolute difference using their model
code; we use these episodes for our experiments. The results in Table 2 show that UniFewmeta
outperforms both H-SMLMT and DS meta-learning approaches by relatively large margins, while
achieving competitive results compared with LM-BFF. Note that UniFew’s strong results are without
meta-learning approaches, extensive prompt-engineering, or per-episode hyperparameter search.

Evaluating UniFew on the FLEX benchmark Having established UniFew as a strong model
comparable to recent, state-of-the art techniques, we present its results on the final version of our
benchmark (with class imbalance, etc.). From Table 3, we observe three findings. First, pretraining is
an effective technique for infusing an NLP model with the ability to perform few-shot generalization
even without any meta-training, as UniFew is able to score Δfew = +12.8 higher when provided

23Gao et al. [24]’s automatic prompt search and in-context learning are not available in the zero-shot setting,
so they instead use manually-designed prompts.

24Zero-shot results from Gao et al. [24] are on the entire test set, so there is no reported standard deviation.
2516/16 denotes 16 shots for training plus 16 more for validation which we only use for early stopping while

Gao et al. [24] use for grid-search hyperparameter tuning.

9

Table 3: Mean accuracy of UniFew and UniFewmeta on FLEX benchmark in zero and few-shot setups.

Zero-shot Few-shot

Class Domain Task Overall Class Domain Task Overall Δfew (Overall)

UniFew
UniFewmeta
Δmeta

59.5
75.6
+16.2

67.9
87.6
+19.7

36.6
41.1
+4.5

56.5
71.0
+14.5

75.8
80.2
+4.3

72.4
86.8
+14.4

54.3
62.4
+8.1

69.3
77.9
+8.6

+12.8
+6.9

few rather than zero examples. Second, by comparing UniFewmeta and UniFew, we see that meta-
training has a substantial impact on zero-shot performance (Δmeta = +14.5), but its benefit, while
still substantial, is less in the few-shot setting (Δmeta = +8.6). Third, while meta-training adds
roughly the same benefit to zero and few-shot performance for both domain and task transfer settings,
meta-training disproportionately benefits zero-shot class transfer (Δmeta = +16.2) over few-shot
class transfer (Δmeta = +4.3). Such observations are made possible through unified evaluation
and comparison across different transfer types. The full FLEX benchmark results broken down by
individual datasets are in Appendix E.

8 Limitations and Future Work

While the initial FLEX benchmark is focused on classification tasks, we aim to use our benchmark
creation toolkit (§4.4) to incorporate additional task formats like span selection or text generation.
Furthermore, the benchmark currently only supports English language tasks; to study language
transfer, we aim to incorporate new datasets using our toolkit. Adding diverse datasets has its own
challenges; while we’ve selected datasets for our benchmark based on prior work adoption and have
attempted to verify their licensing for research use, we were unable to find license details for some
datasets (Appendix A). We believe it is crucial to continually evolve the suite of datasets to remain
challenging for the best models [36] and to tackle real-world challenges [1].

In addition, Sample Size Design (§5) simulations currently rely on our own available training
estimates. We plan to gather a more representative sample from community leaderboard submissions.

Our public leaderboard could benefit from extended support for detailed comparisons between
submissions based on properties of techniques. For example, approaches may vary in terms of model
characteristics (e.g., number of parameters), data and supervision used during pretraining, amount of
compute, etc. We encourage reporting all these factors to enable the community to analyze and make
progress on important sub-spaces in the overall few-shot technique design space.

Finally, we believe the benefits of improving few-shot NLP techniques outweigh potential risks, but
we acknowledge potential harms associated with language models [7, 14, 57, 63]. Few-shot models
learn a task from a few examples but rely heavily on knowledge encoded in the pretrained model.
Thus, few-shot models are more likely to inherit the biases of the pretrained models, compared to more
fully supervised models; as the community focuses more on few-shot learning, it is more important
than ever for future pretrained models to be careful about biases in the underlying pretraining corpora.

9 Conclusion

In this work, we unify and bring rigor to few-shot NLP evaluation. We formulate the FLEX Principles,
a set of requirements and best practices that enables unified, rigorous, valid, and cost-sensitive
measurement. We advance the principles with new Sample Size Design methodology for optimizing
statistical accuracy and precision while keeping costs low. The FLEX benchmark is our instantiation
of the FLEX Principles; it employs Sample Size Design and includes four few-shot transfer settings,
zero-shot evaluation, and a public leaderboard with diverse NLP tasks. We present UniFew, a prompt-
based model that aligns pretraining and downstream task formats, achieving results competitive with
recent few-shot methods despite using trivial prompt engineering. Finally, we release an extensible,
open-source toolkit (used to train UniFew and generate the FLEX benchmark) to support future
benchmark creation and few-shot NLP model training.

10

Acknowledgments and Disclosure of Funding

We would like to thank Chandra Bhagavatula, Matt Gardner, Matt Peters, Doug Downey, Dan Weld,
and the four anonymous reviewers for helpful comments, suggestions and feedback. We would
also like to acknowledge the large community effort involved in the creation of the datasets and
open-source tools we utilize.

References
[1] Neel Alex, Eli Lifland, Lewis Tunstall, Abhishek Thakur, Pegah Maham, C. Jess Riedel, Emmie

Hine, Carolyn Ashurst, Paul Sedille, Alexis Carlier, Michael Noetel, and Andreas Stuhlmüller.
2021. RAFT: A real-world few-shot text classification benchmark. CoRR, abs/2109.14076.

[2] Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. 2020. learn2learn: A library for Meta-Learning research.

[3] Trapit Bansal, Rishikesh Jha, and Andrew McCallum. 2020. Learning to Few-Shot Learn
Across Diverse Natural Language Classification Tasks. In COLING.

[4] Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai, and Andrew McCallum. 2020. Self-
Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks. In EMNLP.

[5] Yujia Bao, Menghua Wu, Shiyu Chang, and Regina Barzilay. 2020. Few-shot Text Classification
with Distributional Signatures. In ICLR.

[6] Roy Bar-Haim, Ido Dagan, Bill Dolan, L. Ferro, Danilo Giampiccolo, and B. Magnini. 2006.
The second PASCAL recognising textual entailment challenge.

[7] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021.
On the dangers of stochastic parrots: Can language models be too big? FAccT.

[8] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2009. The fifth PASCAL
recognizing textual entailment challenge. In TAC.

[9] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A
large annotated corpus for learning natural language inference. In EMNLP.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
NeurIPS.

[11] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. 2018. A systematic study of the class
imbalance problem in convolutional neural networks. Neural Networks, 106:249–259.

[12] Tianshi Cao, Marc T. Law, and Sanja Fidler. 2020. A Theoretical Analysis of the Number of
Shots in Few-Shot Learning. In ICLR.

[13] Dallas Card, Peter Henderson, Urvashi Khandelwal, Robin Jia, Kyle Mahowald, and Dan
Jurafsky. 2020. With little power comes great responsibility. In EMNLP.

[14] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin
Raffel. 2020. Extracting training data from large language models. CoRR, abs/2012.07805.

[15] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. 2019. A
closer look at few-shot classification. In ICLR.

[16] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. 2019. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No
Questions. In NAACL.

[17] Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The PASCAL recognising textual
entailment challenge. In International Conference on Machine Learning Challenges.

[18] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua
Bengio. 2019. Torchmeta: A Meta-Learning library for PyTorch. Available at:
https://github.com/tristandeleu/pytorch-meta.

11

http://arxiv.org/abs/2109.14076
http://arxiv.org/abs/2008.12284
https://doi.org/10.18653/v1/2020.emnlp-main.38
https://doi.org/10.18653/v1/2020.emnlp-main.38
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.18653/v1/2020.emnlp-main.745
http://arxiv.org/abs/2012.07805
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://arxiv.org/abs/1909.06576
https://github.com/tristandeleu/pytorch-meta

[19] Guneet S. Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. 2020. A
Baseline for Few-Shot Image Classification. In ICLR.

[20] William B. Dolan and Chris Brockett. 2005. Automatically Constructing a Corpus of Sentential
Paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

[21] Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos. 2019. Investigating Meta-Learning Algo-
rithms for Low-Resource Natural Language Understanding Tasks. In EMNLP.

[22] Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. 2018. The Hitchhiker’s Guide to
Testing Statistical Significance in Natural Language Processing. In ACL.

[23] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In ICML.

[24] Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making pre-trained language models better
few-shot learners. In ACL.

[25] Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. 2019. Hybrid Attention-Based Pro-
totypical Networks for Noisy Few-Shot Relation Classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 6407–6414.

[26] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. 2007. The Third PASCAL
Recognizing Textual Entailment Challenge. In Proceedings of the ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing, pages 1–9, Prague. Association for Computational
Linguistics.

[27] Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018. Meta-Learning
for Low-Resource Neural Machine Translation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 3622–3631, Brussels, Belgium.
Association for Computational Linguistics.

[28] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun.
2018. FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with
State-of-the-Art Evaluation. In EMNLP.

[29] Peter Hase and Mohit Bansal. 2021. When can models learn from explanations? A formal
framework for understanding the roles of explanation data. CoRR, abs/2102.02201.

[30] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual Evolution of
Fashion Trends with One-Class Collaborative Filtering. In WWW, pages 507–517.

[31] Yutai Hou, Jiafeng Mao, Yongkui Lai, Cheng Chen, Wanxiang Che, Zhigang Chen, and Ting
Liu. 2020. FewJoint: A few-shot learning benchmark for joint language understanding. CoRR,
abs/2009.08138.

[32] Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In KDD.

[33] Robert L. Logan IV, Ivana Balazevic, Eric Wallace, Fabio Petroni, Sameer Singh, and Sebastian
Riedel. 2021. Cutting down on prompts and parameters: Simple few-shot learning with language
models. CoRR, abs/2106.13353.

[34] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, P. Clark, and
Hannaneh Hajishirzi. 2020. UnifiedQA: Crossing Format Boundaries With a Single QA System.
In EMNLP.

[35] Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018. SciTaiL: A Textual Entailment Dataset
from Science Question Answering. In AAAI.

[36] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Wei hua Hu, Michihiro Yasunaga, Richard L. Phillips, Sara Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. 2021. Wilds:
A benchmark of in-the-wild distribution shifts. In ICML.

[37] Jason Krone, Yi Zhang, and Mona Diab. 2020. Learning to classify intents and slot labels given
a handful of examples. In Workshop on Natural Language Processing for Conversational AI.

[38] Ken Lang. 1995. NewsWeeder: Learning to Filter Netnews. In ICML.

[39] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019. Meta-
learning with differentiable convex optimization. In CVPR.

12

http://arxiv.org/abs/1909.02729
http://arxiv.org/abs/1909.02729
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1609/aaai.v33i01.33016407
https://doi.org/10.1609/aaai.v33i01.33016407
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
http://arxiv.org/abs/2102.02201
http://arxiv.org/abs/2102.02201
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
http://arxiv.org/abs/2009.08138
http://arxiv.org/abs/2106.13353
http://arxiv.org/abs/2106.13353

[40] Hector Levesque, Ernest Davis, and Leora Morgenstern. 2011. The Winograd schema challenge.
AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning, 46:47.

[41] David D. Lewis. 1997. Reuters-21578 text categorization test collection, distribution 1.0.
[42] Quentin Lhoest, Patrick von Platen, Thomas Wolf, Albert Villanova del Moral, Yacine Jernite,

Abhishek Thakur, Suraj Patil, Lewis Tunstall, Mariama Drame, Julien Chaumond, Julien
Plu, Joe Davison, Simon Brandeis, Victor Sanh, Teven Le Scao, Kevin Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo
Matussière, Lysandre Debut, Stas Bekman, and François Lagunas. 2021. huggingface/datasets:
1.9.0.

[43] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task Deep Neural
Networks for Natural Language Understanding. In ACL.

[44] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2021. Fantasti-
cally ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity.
CoRR, abs/2104.08786.

[45] Qiaoyang Luo, Lingqiao Liu, Yuhao Lin, and Wei Zhang. 2021. Don’t miss the labels: Label-
semantic augmented meta-learner for few-shot text classification. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021.

[46] Rishabh Misra. 2018. News category dataset.
[47] Mateusz Ochal, Massimiliano Patacchiola, Amos Storkey, Jose Vazquez, and Sen Wang. 2021.

Few-Shot Learning with Class Imbalance.
[48] Bo Pang and Lillian Lee. 2004. A Sentimental Education: Sentiment Analysis Using Subjectivity

Summarization Based on Minimum Cuts. In ACL.
[49] Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploiting Class Relationships for Sentiment

Categorization with Respect to Rating Scales. In ACL.
[50] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. True few-shot learning with language

models. CoRR, abs/2105.11447.
[51] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67.

[52] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+
Questions for Machine Comprehension of Text. In EMNLP.

[53] D. B. Rubin and N. Schenker. 1986. Efficiently simulating the coverage properties of interval
estimates. Journal of the Royal Statistical Society: Series C (Applied Statistics), 35(2):159–167.

[54] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. 2019. Meta-learning with latent embedding optimization. In ICLR.

[55] Timo Schick and Hinrich Schütze. 2021. Exploiting cloze-questions for few-shot text classifica-
tion and natural language inference. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, EACL.

[56] Timo Schick and Hinrich Schütze. 2021. It’s not just size that matters: Small language models
are also few-shot learners. In NAACL.

[57] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. Green AI. Communica-
tions of the ACM, 63:54 – 63.

[58] Amr Sharaf, Hany Hassan, and Hal Daumé III. 2020. Meta-Learning for Few-Shot NMT
Adaptation. In Proceedings of the Fourth Workshop on Neural Generation and Translation,
pages 43–53, Online. Association for Computational Linguistics.

[59] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. 2020.
AutoPrompt: Eliciting knowledge from language models with automatically generated prompts.
In EMNLP.

[60] Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. 2019. Learning a meta-solver for
syntax-guided program synthesis. In ICLR.

[61] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot
learning. In NeurIPS.

13

https://doi.org/10.5281/zenodo.5071218
https://doi.org/10.5281/zenodo.5071218
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
https://doi.org/10.18653/v1/2021.findings-acl.245
https://doi.org/10.18653/v1/2021.findings-acl.245
https://doi.org/10.13140/RG.2.2.20331.18729
http://arxiv.org/abs/2101.02523
http://arxiv.org/abs/2105.11447
http://arxiv.org/abs/2105.11447
https://doi.org/https://doi.org/10.2307/2347266
https://doi.org/https://doi.org/10.2307/2347266
https://aclanthology.org/2021.eacl-main.20/
https://aclanthology.org/2021.eacl-main.20/
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.ngt-1.5
https://doi.org/10.18653/v1/2020.ngt-1.5
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://openreview.net/forum?id=Syl8Sn0cK7
https://openreview.net/forum?id=Syl8Sn0cK7

[62] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. 2013. Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank. In EMNLP.

[63] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu,
Alec Radford, and Jasmine Wang. 2019. Release strategies and the social impacts of language
models. CoRR, abs/1908.09203.

[64] Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao Lv. 2019. Hierarchical Attention
Prototypical Networks for Few-Shot Text Classification. In EMNLP.

[65] Derek Tam, Rakesh R. Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. 2021.
Improving and simplifying pattern exploiting training. CoRR, abs/2103.11955.

[66] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. In Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147.

[67] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. 2020.
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples. In ICLR.

[68] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. 2016.
Matching networks for one shot learning. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016.

[69] Ellen M. Voorhees and Dawn M. Tice. 2000. Building a question answering test collection. In
SIGIR.

[70] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bow-
man. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
Understanding. In ICLR.

[71] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2020. Generalizing from a
Few Examples: A Survey on Few-shot Learning. ACM Computing Surveys, 53(3):63:1–63:34.

[72] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. 2019. Neural Network Acceptability
Judgments. TACL, 7:625–641.

[73] Orion Weller, Nicholas Lourie, Matt Gardner, and Matthew Peters. 2020. Learning from Task
Descriptions. In EMNLP.

[74] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage Challenge
Corpus for Sentence Understanding through Inference. In NAACL.

[75] Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021. CrossFit: A few-shot learning challenge
for cross-task generalization in NLP. CoRR, abs/2104.08835.

[76] Wenpeng Yin. 2020. Meta-learning for few-shot natural language processing: A survey. CoRR,
abs/2007.09604.

[77] Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald Tesauro,
Haoyu Wang, and Bowen Zhou. 2018. Diverse Few-Shot Text Classification with Multiple
Metrics. In NAACL.

[78] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before
use: Improving few-shot performance of language models. CoRR, abs/2102.09690.

[79] Yanan Zheng, Jing Zhou, Yujie Qian, Ming Ding, Jian Li, Ruslan Salakhutdinov, Jie Tang,
Sebastian Ruder, and Zhilin Yang. 2021. FewNLU: Benchmarking state-of-the-art methods for
few-shot natural language understanding. CoRR, abs/2109.12742.

[80] Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. 2021. Adapting language models for
zero-shot learning by meta-tuning on dataset and prompt collections. CoRR, abs/2104.04670.

14

http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/2103.11955
http://arxiv.org/abs/1903.03096
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
http://arxiv.org/abs/2104.08835
http://arxiv.org/abs/2104.08835
http://arxiv.org/abs/2007.09604
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2102.09690
http://arxiv.org/abs/2109.12742
http://arxiv.org/abs/2109.12742
http://arxiv.org/abs/2104.04670
http://arxiv.org/abs/2104.04670

	Introduction
	Background and Related Work
	FLEX Principles for Few-Shot NLP Evaluation
	FLEX Benchmark
	Task and Dataset Selection
	Meta-Evaluation Protocols
	Episode Sampling
	Extensible Toolkit for Benchmark Creation and Model Training & Evaluation
	Public Leaderboard

	Sample Size Design: Balancing Statistical Measurement & Compute Cost
	UniFew: A Few-Shot Learning Model by Unifying Pre-training and Downstream Task Formats
	Experiments
	Limitations and Future Work
	Conclusion

