
A Brief Overview of Partial Differential Equations

In this section, we introduce few key definitions and results from PDE literature. We note that the
results in this section are standard and have been included in the Appendix for completeness. We
refer the reader to classical texts on PDEs [11, 14] for more details.

We will use the following Poincaré inequality throughout our proofs.
Theorem 2 (Poincaré’s inequality). Given Ω ⊂ Rd, a bounded open subset, there exists a constant
Cp > 0 such that for all u ∈ H1

0 (Ω)

‖u‖L2(Ω) ≤ Cp‖∇u‖L2(Ω).

Corollary 1. For the bounded open subset Ω ⊂ Rd, for all u ∈ H1
0 (Ω), we define the norm in the

Hilbert space H1
0 (Ω) as

‖u‖H1
0 (Ω) = ‖∇u‖L2(Ω). (7)

Further, the norm in H1
0 (Ω) is equivalent to the norm H1(Ω).

Proof. Note that for u ∈ H1
0 (Ω) we have,

‖u‖H1(Ω) = ‖∇u‖L2(Ω) + ‖u‖L2(Ω)

≥ ‖∇u‖L2(Ω)

=⇒ ‖u‖H1(Ω) ≥ ‖u‖H1
0 (Ω).

Where we have used the definition of the norm in H1
0 (Ω) space.

Further, using the result in Theorem 2 we have

‖u‖2H1(Ω) =
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)
≤
(
C2
p + 1

)
‖∇u‖2H1(Ω) (8)

Therefore, combining the two inequalities we have

‖u‖H1
0 (Ω) ≤ ‖u‖H1(Ω) ≤ Ch‖u‖H1

0 (Ω) (9)

where Ch = (C2
p +1). Hence we have that the norm inH1

0 (Ω) andH1(Ω) spaces are equivalent.

Proposition 2 (Equivalence between L2(Ω) and H1
0 (Ω) norms). If v ∈ Φk then we have that

‖v‖L2(Ω) is equivalent to ‖v‖H1
0 (Ω).

Proof. We have from the Poincare inequality in Theorem 2 that for all v ∈ H1
0 (Ω), the norm in

L2(Ω) is upper bounded by the norm in H1
0 (Ω), i.e.,

‖v‖2L2(Ω) ≤ ‖v‖
2
H1

0 (Ω)

Further, using results from (11) and (10) (where b(u, v) := 〈Lu, v〉L2(Ω)), we know that for all
v ∈ H1

0 (Ω) we have

m‖v‖2H1
0 (Ω) ≤ 〈Lv, v〉L2(Ω) ≤ max{M,Cp‖c‖L∞(Ω)}‖v‖2H1

0 (Ω)

This implies that 〈Lu, v〉L2(Ω) is equivalent to the inner product 〈u, v〉H1
0 (Ω), i.e., for all u, v ∈

H1
0 (Ω),

m〈u, v〉H1
0 (Ω) ≤ 〈Lu, v〉L2(Ω) ≤ max

{
M,Cp‖c‖L∞(Ω)

}
〈u, v〉H1

0 (Ω)

Further, since v ∈ Φk, we have from Lemma 1 that

〈Lv, v〉L2(Ω) ≤ λk‖v‖2L2(Ω)

=⇒ ‖v‖H1
0 (Ω) ≤

λk
c1
‖v‖2L2(Ω)

Hence we have that for all v ∈ Φk ‖v‖L2(Ω) is equivalent to ‖v‖H1
0 (Ω) and by Corollary 1 is also

equivalent to ‖v‖H1(Ω).
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Now introduce a form for 〈Lu, v〉L2(Ω) that is more amenable for the existence and uniqueness
results.

Lemma 6. For all u, v ∈ H1
0 (Ω), we have the following,

1. The inner product 〈Lu, v〉L2(Ω) equals,

〈Lu, v〉L2(Ω) =

∫
Ω

(A∇u · ∇v + cuv) dx

2. The operator L is self-adjoint.

Proof. 1. We will be using the following integration by parts formula,∫
Ω

∂u

∂xi
dx = −

∫
Ω

u
∂v

∂xi
dx+

∫
∂Ω

uvni∂Γ

Where ni is a normal at the boundary and ∂Γ is an infinitesimal element of the boundary.

Hence we have for all u, v ∈ H1
0 (Ω),

〈Lu, v〉L2(Ω) =

∫
Ω

−

(
d∑
i=1

(∂i (A∇u)i)

)
v + cuv dx

=

∫
Ω

A∇u · ∇vdx−
∫
∂Ω

(
d∑
i=1

(A∇u)ini

)
vdΓ +

∫
Ω

cuvdx

=

∫
Ω

A∇u · ∇vdx+

∫
Ω

cuvdx (∵ v|∂Ω = 0)

2. To show that the operator L : H1
0 (Ω) → H1

0 (Ω) is self-adjoint, we show that for all
u, v ∈ H1

0 (Ω) we have 〈Lu, v〉 = 〈u, Lv〉.
From Proposition 6, for functions u, v ∈ H1

0 (Ω) we have

〈Lu, v〉L2(Ω) =

∫
Ω

A∇u · ∇vdx+

∫
Ω

cuvdx

=

∫
Ω

A∇v · ∇udx+

∫
Ω

cvudx

= 〈u, Lv〉

A.1 Proof of Proposition 1

We first show that if u is the unique solution then it minimizes the variational norm.

Let u denote the weak solution, further for all w ∈ H1
0 (Ω) let v = u+ w. Using the fact that L is

self-adjoint (as shown in Lemma 6) we have

J(v) = J(u+ w) =
1

2
〈L(u+ w), (u+ w)〉L2(Ω) − 〈f, u+ w〉L2(Ω)

=
1

2
〈Lu, u〉L2(Ω) +

1

2
〈Lw,w〉L2(Ω) + 〈Lu,w〉L2(Ω) − 〈f, u〉L2(Ω) − 〈f, w〉L2(Ω)

= J(u) +
1

2
〈Lw,w〉L2(Ω) + 〈Lu,w〉L2(Ω) − 〈f, w〉L2(Ω)

≥ J(u)

where we use the fact that 〈Lu, u〉L2(Ω) > 0 and that u is a weak solution hence (1) holds for all
w ∈ H1

0 (Ω).
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To show the other side, assume that u minimizes J , i.e., for all λ > 0 and v ∈ H1
0 (Ω) we have,

J(u+ λv) ≥ J(u),

J(u+ λv) ≥ J(u)

1

2
〈L(u+ λv), (u+ λv)〉L2(Ω) − 〈f, (u+ λv)〉L2(Ω) ≥

1

2
〈Lu, u〉L2(Ω) − 〈f, u〉L2(Ω)

=⇒ λ

2
〈Lv, v〉L2(Ω) + 〈Lu, v〉L2(Ω) − 〈f, v〉L2(Ω) ≥ 0

Taking λ→ 0, we get
〈Lu, v〉L2(Ω) − 〈f, v〉L2(Ω) ≥ 0

and also taking v as −v, we have

〈Lu, v〉L2(Ω) − 〈f, v〉L2(Ω) ≤ 0

Together, this implies that if u is the solution to (2), then u is also the weak solution, i.e, for all
v ∈ H1

0 (Ω) we have
〈Lu, v〉L2(Ω) = 〈f, v〉L2(Ω)

Proof for Existence and Uniqueness of the Solution

In order to prove for the uniqueness of the solution, we first state the Lax-Milgram theorem.
Theorem 3 (Lax-Milgram, [25]). LetH be a Hilbert space with inner-product (·, ·) : H×H → R,
and let b : H×H → R and l : H → R be the bilinear form and linear form, respectively. Assume
that there exists constants C1, C2, C3 > 0 such that for all u, v ∈ H we have,

C1‖u‖2H ≤ b(u, u), |b(u, v)| ≤ C2‖u‖H‖v‖H, and |l(u)| ≤ C3‖u‖H.

Then there exists a unique u ∈ H such that,

b(u, v) = l(v) for all v ∈ H.

Having stated the Lax-Milgram Theorem, we make the following proposition,
Proposition 3. Given the assumptions (i)-(iii), solution to the variational formulation in Equation 1
exists and is unique.

Proof. Using the variational formulation defined in (1), we introduce the bilinear form b(·, ·) :
H1

0 (Ω)×H1
0 (Ω)→ R where b(u, v) := 〈Lu, v〉. Hence, we prove the theorem by showing that the

bilinear form b(u, v) satisfies the conditions in Theorem 3.

We first show that for all u, v ∈ H1
0 (Ω) the following holds,

|b(u, v)| =
∣∣∣∣∫

Ω

(A∇u · ∇v + cuv) dx

∣∣∣∣
≤
∫

Ω

|(A∇u · ∇v + cuv)| dx

≤
∫

Ω

|A∇u · ∇v| dx+

∫
Ω

|cuv| dx

≤ ‖A‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω

≤M‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖c‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤ max
{
M,Cp‖c‖L∞(Ω)

}
‖u‖H1

0 (Ω)‖v‖H1
0 (Ω) (10)

Now we show that the bilinear form a(u, u) is lower bounded.

b(v, v) =

∫
Ω

(
A∇v · ∇v + cv2

)
dx

≥ m
∫

Ω

‖∇v‖2dx = m‖v‖H1
0 (Ω) (11)
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Finally, for v ∈ H1
0 (Ω)

|(f, v)| =
∣∣∣∣∫

Ω

fvdx

∣∣∣∣ ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ Cp‖f‖L2(Ω)‖v‖H1
0 (Ω)

Hence, we satisfy the assumptions in required in Theorem 3 and therefore the variational problem
defined in (1) has a unique solution.

B Missing Proofs for Section 5

Corollary 2. If u0 is initialized to be identically 0, then u0 ∈ H1
0 (Ω) (as it satisfies the boundary

condition), then the number of parameters required in uε is bounded by

O

d2

log

 ‖f‖L2(Ω)
λ1ε


log κ (N0 +NA) +

log
(‖f‖L2(Ω)

λ1ε

)
log κ

(Nf +Nc)


Proof. Given that u0 is identically 0, the value ofR in Theorem 1 equals ‖u?−u0‖L2(Ω) = ‖u?‖L2(Ω)

Using the inequality in (2), we have,

‖u?‖2L2(Ω) ≤
〈Lu?, u?〉

λ1

≤ 1

λ1
〈f, u?〉L2(Ω)

≤ 1

λ1
‖f‖L2(Ω)‖u?‖L2(Ω)

=⇒ ‖u?‖L2(Ω) ≤
1

λ1
‖f‖L2(Ω)

C Missing Proofs for Section 6

C.1 Proof for Lemma 1

Proof. Writing u ∈ Φk as u =
∑
i diϕi where di = 〈u, ϕi〉L2(Ω), we have Lu =

∑k
i=1 λidiϕi

Therefore Lu ∈ Φ̃k and Lu lies in H1
0 (Ω), proving (1).

Since v ∈ Φk, we use the definition of eigenvalues in (3) to get,
〈Lv, v〉L2(Ω)

‖v‖L2(Ω)
≤ sup

v

〈Lv, v〉L2(Ω)

‖v‖L2(Ω)
= λk

=⇒ 〈Lv, v〉L2(Ω) ≤ λk‖v‖2L2(Ω)

and similarly
〈Lv, v〉L2(Ω)

‖v‖L2(Ω)
≥ inf

v

〈Lv, v〉L2(Ω)

‖v‖L2(Ω)
= λ1

=⇒ 〈Lv, v〉L2(Ω) ≥ λ1‖v‖2L2(Ω)

In order to prove (2.) let us first denote L̄ :=
(
I − 2

λk+λ1
L
)

. Note if ϕ is an eigenfunction of L

with corresponding eigenvalue λ, it is also an eigenfunction of L̄ with corresponding eigenvalue
λk+λ1−2λ
λk+λ1

.

Hence, writing u ∈ Φk as u =
∑k
i=1 diϕi, where di = 〈u, ϕi〉, we have

‖L̄u‖2L2(Ω) =

∥∥∥∥∥
k∑
i=1

λk + λ1 − 2λi
λk + λ1

diϕi

∥∥∥∥∥
2

L2(Ω)

≤ max
i∈k

(
λk + λ1 − 2λi

λk + λ1

)2
∥∥∥∥∥
k∑
i=1

diϕi

∥∥∥∥∥
2

L2(Ω)

(12)
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By the orthogonality of {ϕi}ki=1, we have∥∥∥∥∥
k∑
i=1

diϕi

∥∥∥∥∥
2

L2(Ω)

=

k∑
i=1

d2
i = ‖u‖2L2(Ω)

Since λ1 ≤ λ2 · · · ≤ λk, we have λk + λ1 − 2λi ≥ λ1 − λk and λk + λ1 − 2λi ≤ λk − λ1, so

|λk + λ1 − 2λi| ≤ λk − λ1. This implies maxi∈k

(
λk+λ1−2λi
λk+λ1

)2

≤
(
λ1−λk
λ1+λk

)2

. Plugging this back
in (12), we get the claim we wanted.

C.2 Proof of Lemma 3

Proof. Given that u0 ∈ H1
0 (Ω) and u0 ∈ Φ̃k the function L̃u0 ∈ H1

0 (Ω) and L̃u0 ∈ Φ̃k as well
(from Lemma 1).

As f̃span ∈ Φ̃k, all the iterates in the sequence will also belong to H1
0 (Ω) and will lie in the Φ̃k.

Now at a step t the iteration looks like,

ut+1 = un −
2

λ̃k + λ̃1

(
L̃ut − f̃span

)
ut+1 − ũ?span =

(
I − 2

λ̃k + λ̃1

L̃

)
(ut − ũ?span)

Using the result from Lemma 1, part 3. we have,

‖ut+1 − ũ?span‖L2(Ω) ≤

(
λ̃k − λ̃1

λ̃k + λ̃1

)
‖ut − ũ?span‖L2(Ω)

=⇒ ‖ut+1 − ũ?span‖L2(Ω) ≤

(
λ̃k − λ̃1

λ̃k + λ̃1

)t
‖u0 − ũ?span‖L2(Ω)

Hence this implies that, ‖uT − ũ?span‖L2(Ω) ≤ ε when

T ≥
log
(‖u0−ũ?span‖L2(Ω)

ε

)
log
(
λ̃k+λ̃1

λ̃k−λ̃1

)
Using κ := λ̃k+λ̃1

λ̃k−λ̃1
we can rewrite the above as

T ≥
log
(‖u0−ũ?span‖L2(Ω)

ε

)
log(κ)

C.3 Important Lemmas for Section 6.2

Operations on Neural Network functionals

Lemma 7 (Backpropagation [36]). Consider neural network g : Rm → R with depth l,N parameters
and differentiable activation functions in the set {σi}Ai=1. There exists a neural network of size
O(l + N) and activation functions in the set {σi, σ′i}Ai=1 that calculates the gradient dg

di for all
i ∈ [m].
Lemma 8 (Addition and Multiplication). Given neural networks g : Ω→ R, h : Ω→ R, with Ng
and Nh parameters respectively, the operations g(x) + h(x) and g(x) · h(x) can be represented by
neural networks of size O(Ng +Nh), and square activation functions.

Proof. For Addition, there exists a network h containing both networks f and g as subnetworks and
an extra layer to compute the addition between their outputs. Hence, the total number of parameters
in such a network will be O(Nf +Ng).
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For Multiplication, consider the operation f(x) · g(x) = 1
2

(
(f(x) + g(x))

2 − f(x)2 − g(x)2
)

.
Then following the same argument as for addition of two networks, we can construct a network h
containing both networks and square activation function.

While the representation result in Lemma 8 is shown using square activation, we refer to [41] for
approximation results with ReLU activation. The scaling with respect to the number of parameters in
the network remains the same.

C.4 Remarks About Activation Functions

In this section, we make some remarks about the activations used in our theorem statements. Namely,
we show that using standard techniques from approximation theory [18, 41], one can approximate a
neural network with one choice of nonlinearity via a (comparably sized) neural network with another
choice of nonlinearity, under very mild conditions on the nonlinearities. Crucially, this simulation only
increases the size by a dimension-independent factor. This result frees us (for purposes of deriving
an expressibility result) to work with activation functions chosen for mathematical convenience and
produce results that hold without loss of generality.

We present the following lemma for ReLU activation function however we note that the proofs for
other activations like sigmoid or tanh can be written completely analogously). We note that this proof
is almost verbatim the same as the proof of Lemma 1.3 in Telgarsky [38].

Lemma 9. Let Ω ⊆ [−M,M ]d and let G1 : [−M,M ]d → R be a neural network with at most l
layers and n parameters, such that the weights W (i) for each layer i and node j in G1 are bounded,
i.e, for all i, j we have that

∑
k |W

(i)
jk | ≤ B. Furthermore, assume that the activation functions used

in G1 belong to the set Ξ, such for all σ : R → R, σ ∈ Ξ we have that supx∈[−B·M,B·M ] σ ≤ M
and the Lipschitz constant L. Then there exists a neural network G2 with ReLU activation and
O
(

(LB)lM
ε′ log( (LB)lM

ε′ )
)

parameters we have supx∈[−M,M ]d |G1(x)−G2(x)| ≤ ε.

Proof. For any σ ∈ Ξ from Theorem 1 in Yarotsky [41] it follows that there exists a neural networkR
with ReLU activations, and O

(
LBM
ε′ log

(
LBM
ε′

))
parameters such that supx∈[−B·M,B·M ] |σ(x)−

R(x)| ≤ ε′.
Now we will construct the network G2 by replacing each activation in G1 with the corresponding
network R as given by the result above with ε′ = ε/l.

Note, this network is at most a factor of O
(

(LB)lM
ε′ log( (LB)lM

ε′ )
)

bigger than G1, as the lemma
requires.

We will prove the claim of the lemma by induction on l. More precisely, we will show (by induction)
that for each node at layer i, the network G2 calculates a function that is (LB)iiε′ away in l∞ norm
from the corresponding node in G1, and the inputs to the node are in [−BM,BM ].

For the base case i = 1, since the input x ∈ [−M,M ]d, the result follows by Theorem 1 in Yarotsky
[41].

We proceed to the inductive claim. Let H(x) denote the vector valued mapping computed by the
nodes at layer i, and let HR(x) be the corresponding vector in G2. As inductive hypothesis, we
assume that ‖H(x)−HR(x)‖∞ ≤ (LB)iiε′ for all x ∈ [−M,M ]d and ‖H(x)‖∞ ≤M as well as
‖HR(x)‖∞ ≤M .

Therefore, for the jth node in layer (i+1) in networkG1 we have |WT
j H(x)| ≤ ‖Wj‖1‖H(x)‖∞ ≤

BM and σ is bounded by M on this interval, so we have ‖σ1(WT
j H(x))‖∞ ≤M . Along with the

bound on the activations, the part of the inductive hypothesis about the size of the input in proven.

To prove the error bound, we have:
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|σ(WT
j H(x))−R(WT

j HR(x))| ≤ |σ(WT
j H(x))− σ(WT

j HR(x))|+ |σ(WT
j HR(x))−R(WT

j HR(x))|
≤ L|WT

j (H(x)−HR(x))|+ ε′

≤ L‖Wj‖1‖H(x)−HR(x)‖∞ + ε′

≤ (LB)i+1(i+ 1)ε′

This finishes the proof of the inductive step, and thus the lemma.

Therefore, Lemma 9 can be used to approximate the network uε defined in Theorem 1 with a network
vε that uses ReLU activation without a worse dependence on the dimension, though there will be
dependence on other quantities like the weights in the PDE coefficient networks (precisely, the
maximum sum of weights coming in and going out of a node in the network), the maximum depth of
these networks and their Lipschitz constants.

Moreover, these quantities can be bounded for the network produced in the proof of Theorem 1. The
main reason for this is that all the operations in our proof (addition, multiplication and backpropagation
through Lemma 7) do not create nodes with weights into and out of a node bigger than the original
network. Precisely:

Corollary 3. Assume that the maximum depth of the neural networks Ã, c̃ and u0 is l with activation
functions in the set Ξ (as defined in Lemma 9). Furthermore, that assume that for each network each
layer i and node j satisfies:

∑
k |W

(i)
j,k | ≤ B and

∑
k |W

(i)
k,j ≤ B for B ≥ 2 (i.e, the “in-weights”

and “out-weights” of each node are bounded by B). With ε̃, ε and T defined as in Theorem 1, there
exists a neural network vε, such that,

• vε uses ReLU activations only

• ‖vε − uε‖∞ ≤ ε and,

• vε has O
(
NT

(LB)DDBM
ε log

(
(LB)DDBM

ε

))
parameters where D = O(cT l) and NT =

d2T (N0 +NA + T (Nf +Nc)) where c ≤ 5 is a constant. (Note, here NT is the size bound
obtained in Theorem 1)

Proof. First, we show the following: (i) the network uε satisfies ∀i, j :
∑
k |W

(i)
j,k | ≤ B and (ii) has

depth bounded by D = O(cT l).

To show (i), we will show that each of the operations we employ (addition, multiplication, taking
derivatives) maintains this condition. Notice that multiplication and addition each add one node, with
2 incoming weights bounded by 1. Since B ≥ 2, the claim obtains for these operations. Continuing
to differentiation, the construction in Lemma 7 constructs a network that has two copies of each of
nodes in the original network: one for the “forward” network, and one for the “backward” network (in
our notation, the latter nodes are ∂hs

∂gs
). The first types of nodes have exactly the same children as the

original network, so for those nodes v we have
∑
k∈child of v |Wv,k| ≤ B. On the other hand, for

the latter kinds of nodes, the children of the node are the parents of the node in the original network.
Since in our assumptions, we also assumed ∀i, j :

∑
k |W

(i)
k,j | ≤ B, for these nodes too we have∑

k∈child of v |Wv,k| ≤ B. Thus, differentiation also maintains the bound B, proving (i).

Now, we can apply the lemma from the previous reply to produce a network vε that has size
O(NT

(LB)DDBM
ε log( (LB)DDBM

ε )) where D = O(cT l) and NT = d2T (N0 + NA + T (Nf +
Nc)).
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D Perturbation Analysis

D.1 Proof of Lemma 2

Proof. Using the triangle inequality the error between u? and ũ?span, we have,

‖u? − ũ?span‖L2(Ω) ≤ ‖u? − u?span‖L2(Ω)︸ ︷︷ ︸
(I)

+ ‖u?span − ũ?span‖L2(Ω)︸ ︷︷ ︸
(II)

(13)

where u?span is the solution to the PDE Lu = fspan.

In order to bound Term (I), we use the inequality in (2) to get,

‖u? − u?span‖2L2(Ω) ≤
1

λ1
〈L(u? − u?span), u? − u?span〉L2(Ω)

=
1

λ1
〈f − fspan, u

? − u?span〉L2(Ω)

≤ 1

λ1
‖f − fspan‖L2(Ω)‖u? − u?span‖L2(Ω)

=⇒ ‖u? − u?span‖L2(Ω) ≤
1

λ1
‖f − fspan‖L2(Ω) ≤

εspan

λ1
(14)

We now bound Term (II).

First we introduce an intermediate PDE Lu = f̃span, and denote the solution ũ. Therefore, by
utilizing triangle inequality again Term (II) can be expanded as the following,

‖u?span − ũ?span‖L2(Ω) ≤ ‖u?span − ũ‖L2(Ω) + ‖ũ− ũ?span‖L2(Ω) (15)

We will tackle the second term in (15) first.

Using ũ = L−1f̃span and ũ?span = L̃−1f̃span,

‖ũ− ũ?span‖L2(Ω) = ‖(L−1 − L̃−1)f̃span‖L2(Ω)

= ‖(L−1L̃− I)L̃−1f̃span‖L2(Ω)

=⇒ ‖ũ− ũ?span‖L2(Ω) = ‖(L−1L̃− I)ũ?span‖L2(Ω) (16)

Further, using (35) from Lemma 13, we have for all u ∈ H1
0 (Ω),

〈(L̃− L)u, u〉L2(Ω) ≤ δ〈Lu, u〉L2(Ω)

=⇒ 〈(L̃L−1 − I)Lu, u〉L2(Ω) ≤ δ〈Lu, u〉L2(Ω)

=⇒ 〈(L̃L−1 − I)v, u〉L2(Ω) ≤ δ〈v, u〉L2(Ω)

=⇒ 〈(L̃L−1)v, u〉L2(Ω) ≤ (1 + δ)〈v, u〉L2(Ω) (17)

where v = Lu. Therefore using (17) the following holds for all u ∈ H1
0 (Ω),

〈(L̃L−1)u, u〉L2(Ω) ≤ (1 + δ)‖u‖2L2(Ω) (18)
(1)

=⇒ 〈u, (L−1L̃)u〉L2(Ω) ≤ (1 + δ)‖u‖2L2(Ω)

(2)
=⇒ 〈(L−1L̃− I)u, u〉L2(Ω) ≤ δ‖u‖2L2(Ω) (19)

where we use the fact that the operators tL̃ and L−1 are self-adjoint to get (1) and then bring the
appropriate terms to the LHS in (2). Therefore, using the inequality in (19) and inequality in (3) (with
L−1L as the operator), we can upper bounded (16) to get,

‖ũ− ũ?span‖L2(Ω) ≤ δ‖ũ?span‖L2(Ω) (20)

where δ = 1
min{m/εA,ζ/εc} .
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Proceeding to the first term in (15), using Lemma 11, and the inequality in (2), the term ‖u?span −
ũ‖L2(Ω) can be upper bounded by,

‖u?span − ũ‖2L2(Ω) ≤
1

λ1
〈L(u?span − ũ), u?span − ũ〉L2(Ω)

≤ 1

λ1
〈fspan − f̃span, u

?
span − ũ〉L2(Ω)

≤ 1

λ1
‖fspan − f̃span‖L2(Ω)‖u?span − ũ‖L2(Ω)

=⇒ ‖u?span − ũ‖L2(Ω) ≤
1

λ1
‖fspan − f̃span‖L2(Ω) ≤

δ

λ1
·

23/2‖f‖L2(Ω)

γ − δ
(21)

Therefore Term (II), i.e., ‖u?span − ũ?span‖L2(Ω) can be upper bounded by

‖u?span − ũ?span‖L2(Ω) ≤ ‖u?span − ũ‖L2(Ω) + ‖ũ− ũ?span‖L2(Ω) ≤
ε̂f
λ1

+ δ‖ũ?span‖L2(Ω) (22)

Putting everything together, we can upper bound (13) as

‖u? − ũ?span‖L2(Ω) ≤ ‖u? − u?span‖L2(Ω) + ‖u?span − ũ?span‖L2(Ω)

≤ εspan

λ1
+

δ

λ1

23/2‖f‖L2(Ω)

γ − δ
+ δ‖ũ?span‖L2(Ω)

where γ = 1
λk
− 1

λk+1
and δ = 1

min{m/εA,ζ/εc} .

D.2 Proof of Lemma 5

Proof. We define r = f̃span − fnn, therefore from Lemma 12 we have that for any multi-index α,

‖L̃(t)r‖L2(Ω) ≤ (t!)2 · Ct (εnn + εspan) + λtk
‖fspan‖L2(Ω)2

3/2δ

γ − δ
.

For every t ∈ N, we will write ut = ût + rt, s.t. ût is a neural network and we (iteratively) bound
‖rt‖L2(Ω). Precisely, we define a sequence of neural networks {ût}∞t=0, s.t.

{
û0 = u0,

ût+1 = ût − η
(
L̃ût − fnn

)
Since rt = ut − ût, we can define a corresponding recurrence for rt:{

r0 = 0,

rt+1 = (I − ηL̃)rt − r

Unfolding the recurrence, we get

rt+1 =

t∑
i=0

(I − ηL̃)(i)r (23)
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Using the binomial expansion we can write:

(I − ηL̃)(t)r =

(t)∑
i=0

(
t

i

)
(−1)i(ηL̃)(i)r

=⇒ ‖(I − ηL̃)(t)r‖L2(Ω) =

∥∥∥∥∥
t∑
i=0

(
t

i

)
(−1)i(ηL̃)(i)r

∥∥∥∥∥
L2(Ω)

≤
t∑
i=0

(
t

i

)
ηi‖L̃(i)r‖L2(Ω)

≤
t∑
i=0

(
te

i

)i
ηi‖L̃(i)r‖L2(Ω) ∵

(
t

i

)
≤
(
te

i

)i
≤

t∑
i=0

(
te

i
η

)i(
(i!)2Ci (εnn + εspan) + λik

‖fspan‖L2(Ω)2
3/2δ

γ − δ

)
from Lemma 12

≤
t∑
i=0

(
te

i
η

)i
(i!)2Ci

(
(εnn + εspan) +

λik
(i!Ci)

‖fspan‖L2(Ω)2
3/2δ

γ − δ

)

≤
t∑
i=0

(
te

i
ηi2C

)i(
(εnn + εspan) +

λik
(i!)2Ci

‖fspan‖L2(Ω)2
3/2δ

γ − δ

)
∵ i! ≤ ii

≤
t∑
i=0

(
te

i
ηi2C

)i(
(εnn + εspan) + λik

‖fspan‖L2(Ω)2
3/2δ

γ − δ

)
∵

1

(i!)2Ci
≤ 1

≤
t∑
i=0

(tieηC)i
(

(εnn + εspan) + λik
‖fspan‖L2(Ω)2

3/2δ

γ − δ

)

≤ t(t2eηC)t
(

(εnn + εspan) + λtk
‖fspan‖L2(Ω)2

3/2δ

γ − δ

)

≤ t(t2eηC)t
(
εnn + εspan + λtk

‖fspan‖L2(Ω)2
3/2δ

γ − δ

)
Hence,

‖rt‖L2(Ω) ≤ t2 max{1, (t2eηC)t}

(
εnn + εspan + λtk

‖fspan‖L2(Ω)2
3/2δ

γ − δ

)

E Technical Lemmas: Perturbation Bounds

In this section we introduce some useful lemmas about perturbation bounds used in the preceding
parts of the appendix.

First we show a lemma that’s ostensibly an application of Davis-Kahan to the (bounded) operators
L−1 and L̃−1:

Lemma 10 (Subspace alignment). Consider linear elliptic operators L and L̃ with eigenvalues
λ1 ≤ λ2 ≤ · · · and λ1 ≤ λ2 ≤ · · · respectively. Assume that γ := 1

λk
− 1

λk+1
> 0. Then, there

exists an orthogonal transformation O : H1
0 (Ω)→ H1

0 (Ω) such that the first k eigenfunctions of L
and L̃ satisfy,

sup
a∈Rk∑k
i=1 a

2
i=1

∥∥∥∥∥
k∑
i=1

(Oϕ̃i − ϕi)ai

∥∥∥∥∥
L2(Ω)

≤ 23/2δ

γ − δ

where δ = 1
min{m/εA,ζ/εc} .
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Proof. From (19), with δ = 1
min{m/εA,ζ/εc} we know the following,

〈(L−1L̃− I)u, u〉L2(Ω) ≤ δ‖u‖2L2(Ω)

=⇒ 〈(L−1 − L̃−1)L̃u, u〉L2(Ω) ≤ δ‖u‖2L2(Ω)

=⇒ 〈(L−1 − L̃−1)v, u〉L2(Ω) ≤ δ‖u‖2L2(Ω)

Now, the operator norm ‖L−1 − L̃−1‖ can be written as,

‖L−1 − L̃−1‖ = sup
v∈H1

0 (Ω)

〈(L−1 − L̃−1)v, v〉L2(Ω)

‖v‖2L2(Ω)

≤ δ (24)

Further note that, { 1
λi
}∞i=1 and { 1

λ̃i
}∞i=1 are the eigenvalues of the operators L−1 and L̃−1, respec-

tively. Therefore from Weyl’s Inequality and (24) we have

sup
i

∣∣∣∣ 1

λi
− 1

λ̃i

∣∣∣∣ ≤ ‖L−1 − L̃−1‖ ≤ δ (25)

Therefore, for all i ∈ N, we have that 1
λ̃i
∈ [ 1

λi
− δ, 1

λi
+ δ], i.e., all the eigenvalues of L̃−1 are within

δ of the eigenvalue of L−1. which therefore implies that the difference between kth eigenvalues is,
1

λ̃k
− 1

λk+1
≥ 1

λk
− 1

λk+1
− δ

Since the operators L−1, L̃−1 are bounded, Davis Kahan [8] can be applied to conclude that for all
x ∈ Ω,

‖ sin Θ(V, Ṽ )‖ ≤ ‖L
−1 − L̃−1‖
γ − δ

≤ δ

γ − δ
(26)

where ‖ · ‖ is understood to be the operator norm, V = Φk and Ṽ = Φ̃k. Via the definition of sin Θ
distance, (26) also implies that there exists an orthogonal transformation O : H1

0 (Ω)→ H1
0 (Ω) such

that

sup
a∈Rk∑k
i=1 a

2
i=1

∥∥∥∥∥
k∑
i=1

(Oϕ̃i − ϕi)ai

∥∥∥∥∥
L2(Ω)

≤ 23/2‖L−1 − L̃−1‖
γ − δ

≤ 23/2δ

γ − δ
(27)

In the next lemma, we use the result in Lemma 10 to show that the difference between fspan and
f̃span is small.

Lemma 11 (Bounding distance between fspan and f̃span). Given Assumptions (i)-(iii)and fspan ∈ Φk,
there exists a function f̃span ∈ Φ̃k s.t.

‖fspan − f̃span‖L2(Ω) ≤
‖fspan‖L2(Ω)2

3/2δ

γ − δ
(28)

where δ = 1
min{m/εA,ζ/εc} .

Proof. Let us write fspan =
∑k
i=1 fiϕi where fi = 〈fspan, ϕi〉L2(Ω). Further, we can define a

function f̃span ∈ Φ̃k such that f̃span =
∑k
i=1 fiOϕ̃i. Using the result in (27), and we have

‖fspan − f̃span‖L2(Ω) =

∥∥∥∥∥
k∑
i=1

fi (ϕi −Oϕ̃i)

∥∥∥∥∥
L2(Ω)

≤ ‖fspan‖L2(Ω) sup
a∈Rk∑k
i=1 a

2
i=1

∥∥∥∥∥
k∑
i=1

(Oϕ̃i − ϕi)ai

∥∥∥∥∥
L2(Ω)

≤ ‖fspan‖L2(Ω)
23/2δ

γ − δ
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where γ = 1
λk
− 1

λk+1
, and δ = 1

min{m/εA,ζ/εc} .

Finally, we show that repeated applications of L̃ to fnn − f have also bounded norms:

Lemma 12 (Bounding norms of applications of L̃). The functions fnn and f satisfy:

1. ‖L̃(n)(fnn − fspan)‖L2(Ω) ≤ (n!)2 · Cn(εspan + εnn)

2. ‖L̃(n)(fnn − f̃span)‖L2(Ω) ≤ (n!)2 · Cn(εspan + εnn) + λnk
‖fspan‖L2(Ω)2

3/2δ

γ−δ

where δ = 1
min{m/εA,ζ/εc} .

Proof. For Part 1, by Lemma 16 we have that

‖L̃(n)(fnn − fspan)‖L2(Ω) ≤ (n!)2 · Cn max
α:|α|≤n+2

‖∂α(fnn − fspan)‖L2(Ω) (29)

From Assumptions (i)-(iii), for any multi-index α we have:

‖∂αfnn − ∂αfspan‖L2(Ω) ≤ ‖∂αfnn − ∂αf‖L2(Ω) + ‖∂αf − ∂αfspan‖L2(Ω)

≤ εnn + εspan (30)

Combining (29) and (30) we get the result for Part 1.

For Part 2 we have,

‖L̃(n)(f̃span − fnn)‖L2(Ω) = ‖L̃(n)(f̃span − fspan + fspan − fnn)‖L2(Ω) (31)

≤ ‖L̃(n)(f̃span − fspan)‖L2(Ω) + ‖L̃(n) (fspan − fnn) ‖L2(Ω) (32)

Note that from equation (18) in Lemma 10 we have that ‖L−1L̃− I‖ ≤ δ (where ‖ · ‖ denotes the
operator norm). This implies that there exists a Σ, such that ‖Σ‖ ≤ δ and we can express L̃ as:

L̃ = L(I + Σ)

We will show that there exists a Σ̃, s.t. ‖Σ̃‖ ≤ n2δ and L̃(n) = (I + Σ̃)L(n). Towards that, we will
denote L−(n) := L−1 ◦ L−1 ◦ · · ·L−1︸ ︷︷ ︸

n times

and show that

∥∥∥L−(n)L̃(n)
∥∥∥ ≤ 1 + n2δ

We have:

∥∥∥L−(n)L̃(n)
∥∥∥ =

∥∥∥L−(n) (L(I + Σ))(n)
∥∥∥

=

∥∥∥∥∥L−(n)

(
L(n) +

n∑
j=1

L(j−1) ◦ (L ◦ Σ) ◦ L(n−j) + · · ·+ (L ◦ Σ)(n)

)∥∥∥∥∥
=

∥∥∥∥∥I +

n∑
j=1

L−(n) ◦ L(j−1) ◦ Σ ◦ L(n−j) + · · ·+ L−(n) ◦ (L ◦ Σ)(n)

∥∥∥∥∥
≤(1) 1 +

∥∥∥∥∥
n∑
j=1

L−(n) ◦ L(j−1) ◦ Σ ◦ L(n−j)

∥∥∥∥∥+ · · ·+ ‖L−(n) ◦ (L ◦ Σ)(n)‖

≤(2) 1 +
n∑
i=1

(
n

i

)
δi

= (1 + δ)n

≤(3) enδ

≤ 1 + 2nδ
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where (1) follows from triangle inequality, (2) follows from Lemma 17, (3) follows from 1 +x ≤ ex,
and the last part follows from nδ ≤ 1/10 and Taylor expanding ex.

Next, since L and L̃ are elliptic operators, we have ‖L−(n)L̃(n)‖ = ‖L̃(n)L−(n)‖. From this, it
immediately follows that there exists a Σ̃, s.t. L̃(n) = (I + Σ̃)L(n) with ‖Σ̃‖ ≤ n2δ.

Plugging this into the first term of (32), we have

‖L̃(n)(f̃span − fspan)‖L2(Ω) = ‖L̃(n)f̃span − L̃(n)fspan‖L2(Ω)

= ‖L̃(n)f̃span − (I + Σ̃)L(n)fspan‖L2(Ω)

≤ ‖L̃(n)f̃span − L(n)fspan‖L2(Ω) + ‖Σ̃L(n)fspan‖L2(Ω)

≤ ‖L̃(n)f̃span − L(n)fspan‖L2(Ω) + ‖Σ̃‖‖L(n)fspan‖L2(Ω)

≤ ‖L̃(n)f̃span − L(n)fspan‖L2(Ω) + n2δλnk‖fspan‖L2(Ω) (33)

Following Lemma 11, we know that fspan =
∑k
i=1 fiϕ̃i where fi = 〈fspan, ϕi〉 and we define

f̃span =
∑k
i=1 fiϕ̃i. Further from (25) in Lemma 10 we have for all i ∈ N∣∣∣∣ 1

λ̃i
− 1

λi

∣∣∣∣ ≤ δ
From this, we can conclude: ∣∣∣λ̃i − λi∣∣∣ ≤ δλiλ̃i
Writing λ̃i = (1 + ẽi)λi (where ẽi = δλ̃i), we have∣∣∣λ̃ni − λni ∣∣∣ = |((1 + ẽi)λi)

n − λni |

= |λni ((1 + ẽi)
n − 1)|

≤(1) λni |ẽ|i

∣∣∣∣∣∣
n∑
j=1

(1 + ẽi)
j

∣∣∣∣∣∣
≤(2) λni n|ẽi|en|ẽi|

≤(3) λni n|ẽi|(1 + |2nẽi|)
≤ 2λni n|ẽi|

where (1) follows from the factorization an − bn = (a − b)(
∑n−1
i=0 a

ibn−i−i), (2) follows from
1 + x ≤ ex, and (3) follows from n|ẽi| ≤ 1/10 and Taylor expanding ex. Hence, there exists a êi,
s.t. λ̃ni = (1 + êi)λ

n
i and |êi| ≤ 2n|ei|

‖L̃(n)f̃span − L(n)fspan‖L2(Ω) =

∥∥∥∥∥
k∑
i=1

(
λ̃ni fiϕ̃i − λni fiϕi

)∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
k∑
i=1

((1 + êi)λ
n
i fiϕ̃i − λni fiϕi)

∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥
k∑
i=1

(λni fiϕ̃i − λni fiϕi)

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥
k∑
i=1

êiλ
n
i fiϕ̃i

∥∥∥∥∥
L2(Ω)

(2)

≤ λnk
‖fspan‖L2(Ω)2

3/2δ

γ − δ
+ λnk max

i
|êi|‖f̃span‖L2(Ω) (34)

where we get (1) by Lemma 11 and (2) first using the fact that eigenvalues of L are monotonically
increasing, i.e., λ1 ≤ λ2 ≤ · · ·λk.
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From (33) and (34) we have the following:

‖L̃(n)(f̃span − fspan)‖L2(Ω) ≤ λnk
‖fspan‖L2(Ω)2

3/2δ

γ − δ
+ λnk max

i
|êi|‖f̃span‖L2(Ω) + n2δλnk‖fspan‖L2(Ω)

Since δ � 1 and also e� 1, we therefore have that

‖L̃(n)f̃span − L(n)fspan‖L2(Ω) ≤ λnk
‖fspan‖L2(Ω)2

3/2δ

γ − δ
Combining with the result for Part 1, Therefore we have the following:

‖L̃(n)(f̃span − fnn)‖L2(Ω) ≤ (n!)2 · Cn(εspan + εnn) + λnk
‖fspan‖L2(Ω)2

3/2δ

γ − δ

F Technical Lemmas: Manipulating Operators

Before we state the lemmas we introduce some common notation used throughout this section. We
denote L(n) = L ◦ L ◦ · · · ◦ L︸ ︷︷ ︸

n times

. Further we use Lk to denote the operator with ∂kaij for all i, j ∈ [d]

and ∂kc as coefficients, that is:

Lku =

d∑
i,j=1

− (∂kaij) ∂iju−
d∑

i,j=1

∂k (∂iai) ∂ju+ (∂kc)u

Similarly the operator Lkl is defined as:

Lklu =

d∑
i,j=1

− (∂klaij) ∂iju−
d∑

i,j=1

∂kl (∂iai) ∂ju+ (∂klc)u

Lemma 13 (Relative operator perturbation bound). Consider the operator L̃, defined in (4), then for
all u ∈ H1

0 (Ω) the following holds,

〈(L̃− L)u, u〉 ≤ δ〈Lu, u〉 (35)

where δ = 1
min{m/εA,ζ/εc} .

Proof.

〈(L̃− L)u, u〉 =

∫
Ω

(
(Ã−A)∇u · ∇u+ (c̃− c)u2

)
dx

≤
(

max
ij
‖Ãij −Aij‖L∞(Ω)

)
‖∇u‖2L2(Ω) + ‖c̃− c‖L∞(Ω)‖u‖2L2(Ω)

≤ εA‖∇u‖2L2(Ω) + εc‖u‖2L2(Ω) (36)

Further, note that

〈Lu, u〉 =

∫
Ω

A∇u · ∇u+ cu2dx

≥ m‖∇u‖2L2(Ω) + ζ‖u‖2L2(Ω) (37)

Using the inequality a+b
c+d ≥ min{ac ,

b
d} from (36) and (37), we have

m‖∇u‖2L2(Ω) + ζ‖u‖2L2(Ω)

εA‖∇u‖2L2(Ω) + εc‖u‖2L2(Ω)

≥ min

{
m

εA
,
ζ

εc

}
(38)

Hence this implies that
〈(L̃− L)u, u〉 ≤ δ〈Lu, u〉

where δ = 1
min{m/εA,ζ/εc} .
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Lemma 14 (Operator Chain Rule). Given an elliptic operator L, for all v ∈ C∞(Ω) we have the
following

∇kL(n)u =

n∑
i=1

(
L(n−i) ◦ Lk ◦ L(i−1)

)
(u) + L(n)(∇ku) (39)

∇kl(L(n)u) =
∑
i,j
i<j

(
Ln−i ◦ Lk ◦ L(j−i−1) ◦ Ll ◦ Lj−1

)
u

+
∑
i,j
i>j

(
Ln−j ◦ Lk ◦ L(i−j−1) ◦ Ll ◦ Li−1

)
u

+
∑
i

(
Ln−i ◦ Lkl ◦ Li−1

)
u+ L(n)(∇klu)

(40)

where we assume that L(0) = I .

Proof. We show the proof using induction on n. To handle the base case, for n = 1, we have

∇k(Lu) = ∇k (−div(A∇u) + cu)

= ∇k

−∑
ij

aij∂iju−
∑
ij

∂iaij∂ju+ cu


=

−∑
ij

aij∂ij(∂ku)−
∑
ij

∂iaij∂j∂ku+ c∂ku


+

−∑
ij

∂kaij∂iju−
∑
ij

∂i∂kaij∂ju+ ∂kcu


= L(∇ku) + Lku (41)

Similarly n = 1 and k, l ∈ [d],

∇kl(Lu) = ∇kl (−div(A∇u) + cu)

= ∇kl

−∑
ij

aij∂iju−
∑
ij

∂iaij∂ju+ cu


=

−∑
ij

aij∂ij(∂klu)−
∑
ij

∂iaij∂j∂klu+ c∂klu


+

−∑
ij

∂kaij∂ij∂lu−
∑
ij

∂i∂kaij∂j∂lu+ ∂kc∂lu


+

−∑
ij

∂laij∂ij∂ku−
∑
ij

∂i∂laij∂j∂ku+ ∂lc∂ku


+

−∑
ij

∂klaij∂iju−
∑
ij

∂i∂klaij∂ju+ ∂klcu


= L(∇klu) + Lk(∇lu) + Ll(∇ku) + Lklu (42)
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For the inductive case, assume that for all m < n, (39) and (40) hold. Then, for any k ∈ [d] we have:

∇k(L(n)u) = ∇k
(
L ◦ L(n−1)(u)

)
= L

(
∇k(L(n−1)u)

)
+ Lk

(
L(n−1)u

)
= L

(
n−1∑
i=1

(
L(n−1−i) ◦ Lk ◦ L(i−1)

)
u+ L(n−1)(∇ku)

)
+ Lk

(
L(n−1)

)
u

=

n∑
i=1

(
L(n−i) ◦ Lk ◦ L(i−1)

)
(u) + L(n)(∇ku) (43)

Similarly, for all k, l ∈ [d] we have:

∇kl(L(n)u) = ∇kl
(
L ◦ L(n−1)(u)

)
= L

(
∇kl(L(n−1)u)

)
+ Lk

(
∇l
(
L(n−1)u

))
+ Ll

(
∇k
(
L(n−1)u

))
+ Lkl

(
L(n−1)u

)
= L

(
n−1∑
i,j
i<j

(
L(n−1−i) ◦ Lk ◦ L(j−i−1) ◦ Ll ◦ L(j−1)

)
u

+

n−1∑
i,j
i>j

(
L(n−1−j) ◦ Lk ◦ L(i−j−1) ◦ Ll ◦ L(i−1)

)
u

+

n−1∑
i=1

(
L(n−1−i) ◦ Lkl ◦ L(i−1)

)
u+ L(n−1)(∇klu)

)

+ Lk

(
n−1∑
i=1

(
L(n−1−i) ◦ Ll ◦ L(i−1)

)
(u) + L(n−1)(∇lu)

)
(from (43))

+ Ll

(
n−1∑
i=1

(
L(n−1−i) ◦ Lk ◦ L(i−1)

)
(u) + L(n−1)(∇ku)

)
(from (43))

+ Lkl

(
L(n−1)u

)
=

n∑
i,j
i<j

(
L(n−i) ◦ Lk ◦ L(j−i−1) ◦ Ll ◦ Lj−1

)
u

+

n∑
i,j
i>j

(
L(n−j) ◦ Lk ◦ L(i−j−1) ◦ Ll ◦ L(i−1)

)
u

+

n∑
i

(
L(n−i) ◦ Lkl ◦ L(i−1)

)
u+ L(n)(∇klu) (44)

By induction, the claim follows.

Lemma 15. For all u ∈ C∞(Ω) then for all k, l ∈ [d] the following upper bounds hold,
‖Lu‖L2(Ω) ≤ C max

α:|α|≤2
‖∂αu‖L2(Ω) (45)

‖∇k(Lu)‖L2(Ω) ≤ 2 · C max
α:|α|≤3

‖∂αu‖L2(Ω) (46)

and
‖∇kl(Lu)‖L2(Ω) ≤ 4 · C max

α:|α|≤4
‖∂αu‖L2(Ω) (47)

where

C := (2d2 + 1) max

{
max
α:|α|≤3

max
i,j
‖∂αaij‖L∞(Ω), max

α:|α|≤2
‖∂αc‖L∞(Ω)

}
.
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Proof. We first show the upper bound on ‖Lu‖L2(Ω):

‖Lu‖L2(Ω) ≤

∥∥∥∥∥∥−
d∑

i,j=1

aij∂iju−
d∑

i,j=1

∂iaij∂ju+ cu

∥∥∥∥∥∥
L2(Ω)

≤(1) (2d2 + 1) max

{
max
i,j
‖∂iaij‖L∞(Ω),max

i,j
‖aij‖L∞(Ω), ‖c‖L∞(Ω)

}
︸ ︷︷ ︸

C1

max
α:|α|≤2

‖∂αu‖L2(Ω)

≤ C1 max
α:|α|≤2

‖∂αu‖L2(Ω) (48)

where (1) follows by Hölder.

Proceeding to ‖∇k(Lu)‖L2(Ω), from Lemma16 we have

‖∇k(Lu)‖L2(Ω) ≤ ‖Lku‖L2(Ω) + ‖L(∇ku)‖L2(Ω)

≤

∥∥∥∥∥−
d∑

i,j=1

∂kaij∂iju−
d∑

i,j=1

∂ikaij∂ju+ ∂kcu

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥−
d∑

i,j=1

aij∂ijku−
d∑

i,j=1

∂iaij∂jku+ c∂ku

∥∥∥∥∥
L2(Ω)

≤ (2d2 + 1) max

{
max
α:|α|≤2

max
i,j
‖∂αaij‖L∞(Ω), ‖∂kc‖L∞(Ω)

}
max
α:|α|≤2

‖∂αu‖L2(Ω)

+ (2d2 + 1) max

{
max
α:|α|≤1

max
i,j
‖∂αaij‖L∞(Ω), ‖c‖L∞(Ω)

}
max
α:|α|≤3

‖∂αu‖L2(Ω)

=⇒ ‖∇k(Lu)‖L2(Ω) ≤ 2 · (2d2 + 1) max

{
max
α:|α|≤2

max
i,j
‖∂αaij‖L∞(Ω), max

α:|α|≤1
‖∂αc‖L∞(Ω)

}
︸ ︷︷ ︸

C2

max
α:|α|≤3

‖∂αu‖L2(Ω)

≤ 2 · C2 max
α:|α|≤3

‖∂αu‖L2(Ω) (49)

We use the result from Lemma 14 (equation (42)), to upper bound the quantity ‖∇kl(Lu)‖L2(Ω)

‖∇kl(Lu)‖L2(Ω) ≤ ‖Lklu‖L2(Ω) + ‖Lk(∇lu)‖L2(Ω) + ‖Ll(∇ku)‖L2(Ω) + ‖L(∇klu)‖L2(Ω)

≤

∥∥∥∥∥−
d∑

i,j=1

∂klaij∂iju−
d∑

i,j=1

∂iklaij∂ju+ ∂klcu

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥−
d∑

i,j=1

∂kaij∂ij∂lu−
d∑

i,j=1

∂i∂kaij∂j∂lu+ ∂kc∂lu

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥−
d∑

i,j=1

∂laij∂ij∂ku−
d∑

i,j=1

∂i∂laij∂j∂ku+ ∂lc∂ku

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥−
d∑

i,j=1

aij∂ijklu−
d∑

i,j=1

∂iaij∂jklu+ c∂klu

∥∥∥∥∥
L2(Ω)

≤ (2d2 + 1) max

{
max
α:|α|≤3

max
i,j
‖∂αaij‖L∞(Ω), ‖∂klc‖L∞(Ω)

}
max
α:|α|≤2

‖∂αu‖L2(Ω)

+ 2(2d2 + 1) max

{
max
α:|α|≤2

max
i,j
‖∂αaij‖L∞(Ω), ‖c‖L∞(Ω)

}
max
α:|α|≤3

‖∂αu‖L2(Ω)

+ (2d2 + 1) max

{
max
α:|α|≤2

max
i,j
‖∂αaij‖L∞(Ω), ‖c‖L∞(Ω)

}
max
α:|α|≤4

‖∂αu‖L2(Ω)

=⇒ ‖∇kl(Lu)‖L2(Ω) ≤ 4 · (2d2 + 1) max

{
max
α:|α|≤3

max
i,j
‖∂αaij‖L∞(Ω), max

α:|α|≤2
‖∂αc‖L∞(Ω)

}
︸ ︷︷ ︸

C3

max
α:|α|≤4

‖∂αu‖L2(Ω)

≤ 4 · C3 max
α:|α|≤4

‖∂αu‖L2(Ω) (50)
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Since C1 ≤ C2 ≤ C3, we define C := C3 and therefore from equations (48), (49) and (50) the
claim follows.

Further, we note that from (49), we also have that

‖Lk(u)‖L2(Ω), ‖L(∇ku)‖L2(Ω) ≤ C max
α:|α|≤3

‖∂αu‖L2(Ω) (51)

and similarly from (50) we have that,

‖Lkl(u)‖L2(Ω), ‖Lk(∇lu)‖L2(Ω), ‖Ll(∇ku)‖L2(Ω), ‖L(∇klu)‖L2(Ω) ≤ C max
α:|α|≤4

‖∂αu‖L2(Ω)

(52)

Lemma 16. For all u ∈ C∞(Ω) and k, l ∈ [d] then for all n ∈ N we have the following upper
bounds,

‖L(n)u‖L2(Ω) ≤ (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω) (53)

‖∇k(L(n)u)‖L2(Ω) ≤ (n+ 1) · (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω) (54)

‖∇kl(L(n)u)‖L2(Ω) ≤ ((n+ 1)!)2 · Cn max
α:|α|≤n+3

‖∂αu‖L2(Ω) (55)

where C = (2d2 + 1) max
{

maxα:|α|≤3 maxi,j ‖∂αaij‖L∞(Ω),maxα:|α|≤2 ‖∂αc‖L∞(Ω)

}
.

Proof. We prove the Lemma by induction on n. The base case n = 1 follows from Lemma 15, along
with the fact that maxα:|α|≤2 ‖∂αu‖L2(Ω) ≤ maxα:|α|≤3 ‖∂αu‖L2(Ω).

To show the inductive case, assume that the claim holds for all m ≤ (n− 1). By Lemma 15, we have

‖L(n)u‖L2(Ω) = ‖L(L(n−1)u)‖L2(Ω)

≤

∥∥∥∥∥∥−
d∑

i,j=1

aij∂ij(L
(n−1)u)−

d∑
i,j=1

∂iaij∂j(L
(n−1)u) + c(L(n−1)u)

∥∥∥∥∥∥
L2(Ω)

≤ C ·max

{
‖L(n−1)u‖L2(Ω),max

i
‖∇i(L(n−1)u)‖L2(Ω),max

i,j
‖∇ij(L(n−1)u)‖L2(Ω)

}
≤ C · (n!)2 · Cn−1 max

α:|α|≤(n−1)+3
‖∂αu‖L2(Ω)

Thus, we have

‖L(n)u‖L2(Ω) ≤ (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω)

as we need.

Similarly, for k ∈ [d], we have:

‖∇k(L(n)u)‖L2(Ω) ≤
n∑
i=1

∥∥∥(L(n−i) ◦ Lk ◦ L(i−1)
)

(u)
∥∥∥
L2(Ω)

+ ‖L(n)(∇ku)‖L2(Ω)

≤ (n) · (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω) + (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω)

≤ (n+ 1) · (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω) (56)
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Finally, for k, l ∈ [d] we have

‖∇kl(L(n)u)‖L2(Ω) ≤
∑
i,j
i<j

∥∥∥(L(n−i) ◦ Lk ◦ L(j−i−1) ◦ Ll ◦ L(j−1)
)
u
∥∥∥
L2(Ω)

+
∑
i,j
i>j

∥∥∥(L(n−j) ◦ Lk ◦ L(i−j−1) ◦ Ll ◦ L(i−1)
)
u
∥∥∥
L2(Ω)

+
∑
i

∥∥∥(L(n−i) ◦ Lkl ◦ L(i−1)
)
u
∥∥∥
L2(Ω)

+ ‖L(n)(∇klu)‖L2(Ω)

≤ n(n+ 1) · (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω)

+ n · (n!)2 · Cn max
α:|α|≤n+2

‖∂αu‖L2(Ω) + Cn max
α:|α|≤n+3

‖∂αu‖L2(Ω)

=⇒ ‖∇kl(L(n)u)‖L2(Ω) ≤ ((n+ 1)!)
2 · Cn max

α:|α|≤n+3
‖∂αu‖L2(Ω)

(57)

Thus, the claim follows.

Lemma 17. Let A(i)
n , i ∈ [n] be defined as a composition of (n − i) applications of L and i

applications of L ◦ Σ (in any order), s.t. ‖Σ‖ ≤ δ. Then, we have:

‖L−(n)A(i)
n ‖ ≤ δi (58)

Proof. We prove the above claim by induction on n.

For n = 1 we have two cases. If A(1) = L ◦ Σ, we have:

‖L−1 ◦ L ◦ Σ‖ ≤ δ

If A(1) = L we have:
‖L−1L‖ = 1

Towards the inductive hypothesis, assume that for m ≤ n− 1 and i ∈ [n− 1] it holds that,

‖L(n−1)A
(i)
(n−1)‖ ≤ δ

i

For n, we will have two cases. First, if A(i+1)
(n) = A

(i)
(n−1) ◦ L ◦ Σ, by submultiplicativity of the

operator norm, as well as the fact that similar operators have identical spectra (hence equal operator
norm) we have:

‖L−(n) ◦A(i+1)
n ‖ = ‖L−1 ◦ L−(n−1) ◦A(i)

n−1 ◦ L ◦ Σ‖

= ‖L−(n−1) ◦A(i)
n−1 ◦ L ◦ Σ ◦ L−1‖

≤ δ‖L−(n−1)A
(i−1)
(n−1)‖‖L ◦ Σ ◦ L−1‖

≤ δiδ = δi+1

so the inductive claim is proved. In the second case, A(i)
(n) = A

(i)
(n−1)L and we have, by using the fact

that the similar operators have identical spectra:

‖L(−n) ◦A(i)
(n) ◦ L‖ = ‖L−(n−1) ◦A(i)

(n−1) ◦ L ◦ L
−1‖

= ‖L−(n−1) ◦A(i)
(n−1)‖ ≤ δ

i

where the last inequality follows by the inductive hypothesis.
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