
Supplementary Material
Detecting Errors and Estimating Accuracy on Unlabeled Data with

Self-training Ensembles

In Section A, we have some further discussions to clarify some important points about our work. In
Section B, we present our theoretical results, their proofs and the discussions on the benefit of using
ensembles. In Section C, we describe the detailed settings for the experiments and also present some
additional experimental results.

A Further Discussions

A.1 Comparisons with Proxy Risk

Our work and proxy risk work have the following similarities:

1. Both proxy risk and our framework train check models to estimate the accuracy of the pre-
trained model f on the unlabeled test dataset U and also identify misclassified points in
U ;

2. Both proxy risk and one instance of our framework (Algorithm 3) use domain-invariant
representations (DIR) to improve the accuracy of the check models on the target domain.

However, they also have the following differences:

1. The key ideas are different. The idea of Proxy Risk is to find a check model with maximum
disagreement in the good hypothesis class (the set of hypotheses that achieve small DIR
loss). Our idea is to increase the disagreement on the mis-classified points in each iteration
of self-training, and mis-classified data points are identified by either accurate prediction
or diversity using ensemble;

2. The training objectives are different: 1) Proxy Risk’s objective is applied on the whole
unlabeled test set U . Ours is only on the selected subset of U (i.e., the currently iden-
tified mis-classified points); 2) The terms in the objective to encourage disagreement are
different. Proxy risk tries to maximize the disagreement between the model f and the
check model h directly on the entire unlabeled test set U while maintaining a small DIR
loss (corresponding to the term −Ex∈UX

`(f(x), h′(x)) in their objective). In contrast,
our method encourages disagreement via fitting the check models to the pseudo-labeled
dataset R (corresponding to the term E(x,y)∈R`(h(x), y) in our objective). The two terms
E(x,y)∈R`(h(x), y) and −Ex∈UX

`(f(x), h′(x)) are different. For multi-class classifica-
tion, disagreeing with the pre-trained model is not equivalent to agreeing with the pseudo-
labels. This is because the check model can predict some labels different from both the
pre-trained model’s prediction f(x) and the pseudo-label ỹx. For example, suppose there
are 3 classes, and suppose the pre-trained model predicts f(x)= class 0, the pseudo-label
ỹx=class 1. Our term is ensuring h(x) to be class 1, while their term is ensuring h′(x)
to be either class 1 or class 2. As has been pointed out in our previous reply, our objec-
tive is more specific, and this leads to increasing disagreement and also potentially better
prediction from the ensemble, which then leads to the success of the self-training;

3. The implementation of the objectives are also different. The proxy risk method uses L2

norm: −Ex∼UX
[`(f(x), h′(x))] = Ex∼UX

[−‖h̄′(x) − f̄(x)‖2] 3 while our method uses
cross entropy loss E(x,y)∈R[`(h(x), y)] = E(x,y)∈R[− log h̄(x)y]. Here, h̄′ is the softmax
output of h (similarly for f̄ and h̄).

A.2 Comparisons with Standard Self-training and Ensemble

Our self-training ensembles method is different from the standard self-training and ensemble. The
differences are:

3See their code: https://github.com/chingyaoc/estimating-generalization

14

https://github.com/chingyaoc/estimating-generalization

1. The goals are different. Standard self-training+ensemble aims to get accurate predictions.
Ours is to increase disagreement on mis-classified points by either getting accurate predic-
tions or getting diversity.

2. The techniques are also different, due to the different goals. (1) For each identified mis-
classified point, we assign a pseudo-label that is different from the prediction of the pre-
trained model, but we do not need the pseudo-labels to be correct, as our goal is disagree-
ment. In contrast, standard methods typically hope the pseudo-labels are correct. (2) We
only assign pseudo-labels to the currently identified set of mis-classified points, while stan-
dard methods typically assign pseudo-labels for all unlabeled points. This is because we
want disagreement on mis-classified points rather than on all points, and we would like to
assign pseudo-labels to be different from the prediction of the pre-trained model on mis-
classified points.

B Complete Proofs and Discussions for Section 5

We first present the proof for our main theorem, and then provide some more discussion on the
benefit of using ensembles.

B.1 Provable Guarantees of the Framework

We first prove a technical lemma for constructing R and then use it to prove the theorem.

First recall the key notions.

Suppose on points where f is correct, the ensemble models are also approximately correct. Let ν
denote the average probability of h ∼ T making error on the test points where the pre-trained model
f is correct:

ν := Pr
(x,yx)∼U,h∼T

[h(x) 6= yx|f(x) = yx]. (5)

Suppose the ensemble training with regularization on the pseudo-labeled data R will make the en-
semble models disagree with f on RX . Let γ denote the average probability of h ∼ T agreeing
with f on the test points in RX :

γ := Pr
x∼RX ,h∼T

{h(x) = f(x)}. (6)

Suppose GX is the points in WX \ RX on which the ensemble agree with the true label yx with
more than 1− ν probability, i.e.,

GX := {x ∈WX \RX : Pr
h∼T
{h(x) = yx} ≥ 1− ν}. (7)

That is, GX are the points where the ensemble will have correct prediction with high confidence.
We would like the ensemble to have large diversity on the remaining points in WX \RX . Define the
diversity there to be

BX := WX \ (RX ∪GX), (8)

σ2 := E[σ2
x|x ∈ BX]. (9)

Lemma 1. Define

Bη := min{σ2, 1− ν2}. (10)

For any η ∈ (0, Bη), let τ =
√

1− η, and

R′X :=

{
x ∈ UX : Pr

h∼T
{h(x) = f(x)} < τ

}
. (11)

Then we have

|R′X ∩ (UX \WX)| ≤ ν

1− τ
|UX \WX |, and

(1− γ

τ
)|RX | ≤ |RX ∩R′X |, GX ⊆ R′X , |R′X ∩BX | ≥

σ2 − η
1− η

|BX |.

15

Proof. Consider x ∈ UX −WX . We have

Pr
(x,yx)∼U

{
Pr
h∼T
{h(x) = f(x)} < τ |f(x) = yx

}
(12)

= Pr
(x,yx)∼U

{
Pr
h∼T
{h(x) 6= yx} ≥ 1− τ |f(x) = yx

}
(13)

≤ ν

1− τ
. (14)

So only ν
1−τ fraction of the data points in UX \WX will be put into RX , proving the first statement.

Now, consider x ∈WX . For x ∈ RX , we have

Pr
x∼RX

{
Pr
h∼T
{h(x) = f(x)} ≥ τ

}
≤ γ

τ
. (15)

so more than 1− γ
τ fraction of the data points in RX will be put into R′X .

For x ∈ GX , since η < 1 − ν2, we have ν < τ . Note that f(x) 6= yx, thus x will be put into R′X .
In the following we consider x ∈ BX = WX \ (RX ∪GX).

We first show that a significant fraction of BX has variance larger than η. Since σ2
x ∈ [0, 1],

σ2 = E[σ2
x|x ∈ BX] (16)

≤ Pr{σ2
x ≤ η|x ∈ BX} · η + Pr{σ2

x > η|x ∈ BX} · 1 (17)

= (1− Pr{σ2
x > η|x ∈ BX}) · η + Pr{σ2

x > η|x ∈ BX} (18)

leading to

Pr{σ2
x > η|x ∈ BX} ≥

σ2 − η
1− η

. (19)

Now it is sufficient to show that any x ∈ WX with σ2
x > η will have a small agreement rate

Prh∼T {h(x) = f(x)}.

Pr
h∼T

[h(x) = f(x)] ≤
√∑
y∈Y

(Pr
h∼T

[h(x) = y])2 (20)

=
√

Pr
h1,h2∼T

[h1(x) = h2(x)] (21)

=
√

1− σ2
x (22)

< τ =
√

1− η. (23)

So any point x ∈ BX with σ2
x > η will fall into R′X , completing the proof.

Using the above lemma, we arrive at our main theorem.

Theorem 2 (Restatement of Theorem 1). Assume in each iteration of the framework, τ =
√

1− η
for some η ∈ (0, 3Bη/4) where Bη := min{σ2, 1 − ν2}. Let σ2

L > 0 be a lower bound on the
diversity σ2, γ̃ be an upper bound on γ, and ν̃ be an upper bound on ν over all iterations. Then for
any δ ∈ (0, σ2

L/4), after at most d1/δe iterations, we can get |UX\RX |
|UX | approximates the accuracy

acc(f) and RX approximates the mis-classified points WX as follows:

∣∣∣∣acc(f)− |UX \RX |
|UX |

∣∣∣∣ ≤ max{ ν̃

1− τ
(1− ef), εef}, where ε :=

γ̃
τ

(
1 + ν̃

1−τ
1−ef
ef

)
σ2
L

4 − δ + γ̃
τ

, (24)

|WX4RX | ≤
ν̃

1− τ
|UX \WX |+ ε|WX |. (25)

16

Proof. For each iteration, Lemma 1 implies that the new constructed set R′X satisfies:

|R′X ∩ (UX \WX)| ≤ ν

1− τ
|UX \WX |, and

(1− γ

τ
)|RX | ≤ |RX ∩R′X |, GX ⊆ R′X , |R′X ∩BX | ≥

σ2 − η
1− η

|BX |.

Since η ≤ 3σ2/4,

σ2 − η
1− η

≥ σ2

4
. (26)

Therefore,

|R′X ∩BX | ≥
σ2

4
|BX |. (27)

Suppose t∗ is the first iteration when less than ε fraction of WX is outside RX . Then in any iteration
before t∗, the newly constructed pseudo-labeled set R′X loses at most γ̃τ fraction of RX , and obtains

at least σ
2
L

4 fraction of BX ∩GX = WX \RX . Since more than ε fraction of WX is outside RX , it
can then be verified that

σ2
L

4
|WX \RX | −

γ̃

τ
|RX | > δ|WX \RX |. (28)

Therefore, after each iteration, the framework adds more than δ fraction of |WX \RX | in RX . This
can happen at most 1/δ iterations, so t∗ ≤ d1/δe.
Now consider the last iteration, and apply Lemma 1, then

|RX \WX | = |RX ∩ (UX \WX)| ≤ ν

1− τ
|UX \WX | ≤

ν̃

1− τ
|UX \WX |. (29)

Equation (29) together with the fact that there are less than ε fraction of WX outside RX lead to the
two statements in the theorem.

By setting the η = 7/16 and δ = 4γ̃/3, we have the following corollary as an example.
Corollary 1. Assume in each iteration of the framework, ν < 1/2, σ2 > 7/12, and τ = 3/4
where Bη := min{σ2, 1 − ν2}. Let σ2

L > 0 be a lower bound on the diversity σ2, γ̃ be an upper
bound on γ, and ν̃ be an upper bound on ν over all iterations. If σ2

L ≥
16γ̃
3 , then after at most

d3/(4γ̃)e iterations, we can get |UX\RX |
|UX | approximates the accuracy acc(f) and RX approximates

the mis-classified points WX as follows:∣∣∣∣acc(f)− |UX \RX |
|UX |

∣∣∣∣ ≤ max{4ν̃(1− ef), εef}, where ε :=
16γ̃

3σ2
L

(
1 + 4ν̃

1− ef
ef

)
, (30)

|WX4RX | ≤ 4ν̃|UX \WX |+ ε|WX |. (31)

Proof. In Theorem 1, note that η = 7/16 leads to τ = 3/4. The bounds on ν, γ, and σ2 comes from
the requirement that 3Bη/4 > 7/16 so that there exists such an η ∈ (7/16, 3Bη/4).

B.2 Discussion on Using Ensembles

Our analysis of the framework clearly relies on the effect of self-training. It also shows the benefit of
the ensemble: the diversity (combined with low errors of the ensemble on points correctly classified
by f) allows to identify mis-classified points.

Here we present more discussion on the approach of using ensembles to estimate the accuracy and to
provide further insight into their benefit compared to some other existing approaches. For simplicity,
we analyze binary classification with Y = {0, 1} in this section unless stated otherwise. We provide
an exact characterization of the estimation error (i.e., how far the agreement rate is from the actual
accuracy). It implies that to get a good estimation, one should use ensembles with small prediction

17

errors on the test points. More importantly, the estimation can be further improved if the ensemble’s
prediction has proper correlation with f , which then shows the advantage of an ensemble of models
instead of a single model.

Let eh,x be the indicator that h mis-classifies x, eT be the expected error of h on U (over the
distribution of h), and ef be the error of f :

eh,x := I[h(x) 6= yx], eT := Eh,x[eh,x], ef := Ex[ef,x].

Let arx(f, T) be the agreement rate between f and h’s on a point x, and ar(f, T) be that on the
whole test set:

arx(f, T) := Pr
h∼T
{h(x) = f(x)},

ar(f, T) := Ex∈UX
[arx(f, T)].

Recall that we are using ar(f, T) as an estimate of the accuracy of f on U .

Lemma 2. For binary classification,

acc(f)− ar(f, T) = eT (1− 2ef)− 2Cov(ef,x, eh,x) (32)

where Cov(ef,x, eh,x) is the covariance between ef,x and eh,x. For multi-class classification,

eT (1− 2ef)− 2Cov(ef,x, eh,x) ≤ acc(f)− ar(f, T) ≤ eT (1− ef)− Cov(ef,x, eh,x). (33)

Proof. We have

acc(f)− ar(f, T) = E{I[f(x) = yx]} − E{I[f(x) = h(x)]} (34)
= E {I[f(x) = yx]− I[f(x) = h(x)]} (35)
= E {I[f(x) 6= h(x)]− I[f(x) 6= yx]} . (36)

The first term can be decomposed into two parts:

I[f(x) 6= h(x)] = I[f(x) 6= h(x), f(x) = yx] + I[f(x) 6= h(x), f(x) 6= yx] (37)

and the two parts can be transformed as:

I[f(x) 6= h(x), f(x) = yx] = I[h(x) 6= yx, f(x) = yx] (38)
= eh,x(1− ef,x), (39)

I[f(x) 6= h(x), f(x) 6= yx] = I[h(x) = yx, f(x) 6= yx] (40)
= ef,x(1− eh,x) (41)

where the second to last line follows from that in binary classification, f(x) 6= h(x) and f(x) 6= yx
is equivalent to h(x) = yx and f(x) 6= yx. Therefore,

acc(f)− ar(f, T) = eT − 2E[eh,xef,x] (42)
= eT − 2(eT ef + Cov(eh,x, ef,x)). (43)

Rearranging the terms completes the proof.

For multi-class, we can replace (40) by the bounds:

I[h(x) = yx, f(x) 6= yx] ≤ I[f(x) 6= h(x), f(x) 6= yx] ≤ I[f(x) 6= yx]. (44)

The bound suggests using T with a small prediction error eT . More importantly, the estimation can
be improved by a proper correlation between f and the ensemble models: even when the ensemble
models don’t have very small error eT , they can still lead to a good estimation, as long as they
have a proper covariance with f . More precisely, typically ef < 1/2, so the covariance should not
be negative, but also should not be too positive. For example, when the ensemble models overly
agrees with f (e.g., in the extreme case h(x) = f(x) for all x ∈ UX and all h ∼ T), it leads to
over-estimation of the accuracy, and we should decrease the correlation (more discussion in the next
subsection).

18

It is also instructive to compare our method to some existing methods. (1) Our analysis is more
general and tighter than that for using a single model in [4]. The setting is a special case of ours.
More important, our bound is tighter and reveals that an ensemble with proper correlation can im-
prove the estimation, justifying the advantage of an ensemble over a single model. (2) Our analysis
is also more general than the classic notion of calibration. We show that if the ensemble has perfect
calibration then the agreement rate equals the accuracy of the pre-trained model. On the other hand,
our lemma shows that even without calibration, proper ensembles can still give good estimation.

Detailed comparisons are presented below.

Comparison with Proxy Risk. Recall that the proxy risk method [4] is to use invariant representa-
tion domain adaptation methods to find the h of maximum disagreement with f on UX . That is, it
aims to get the h ∈ H such that ar(f, h) is smallest where H is the set of hypotheses with small er-
rors on the original training data and small distances between the distributions of the representations
of the training and test data, i.e.,

H = {h ∈ P : error of h on the training data + αd(pφS , p
φ
T) ≤ ε} (45)

where P is the set of networks for domain adaptation, d(pφS , p
φ
T) is some distance between the

distributions of the representations of the training and the test data, and α, ε are hyperparameters.

The main idea behind the proxy risk method is Lemma 4 in their paper, which states (rephrased to
our context): ∣∣∣∣sup

h∈H
Ex∼UX

I[f(x) 6= h(x)]− ef
∣∣∣∣ ≤ sup

h∈H
eh (46)

where eh is the error of h on the test set, i.e., eh = E(x,yx)∼U{I[h(x) 6= yx]}.
Our bound is more general and tighter. We first show that their bound can be recovered from ours.
More precisely, the proxy risk method is equivalent to using an ensemble method T that outputs the
ĥ ∈ H of maximum disagreement with f . Then the output distribution of T concentrates on ĥ ∈ H.
Our bound then leads to:∣∣∣∣sup

h∈H
ExI[f(x) 6= h(x)]− ef

∣∣∣∣ =
∣∣∣ExI[f(x) 6= ĥ(x)]− ef

∣∣∣ (47)

=

∣∣∣∣acc(f)− Eh∼T [ar(f, h)]

∣∣∣∣ (48)

= |eT − 2E[ef,xeh,x]| (49)
= |eĥ − 2Ex[ef,xeh,x]|. (50)

Since ef,x and eh,x are in {0, 1}, it is easy to see that

0 ≤ Ex[ef,xeh,x] ≤ min{Ex[ef,x],Ex[eĥ,x]} = min{ef , eĥ}. (51)

Therefore, ∣∣∣∣sup
h∈H

ExI[f(x) 6= h(x)]− ef
∣∣∣∣ = |eĥ − 2Ex[ef,xeh,x]| (52)

≤ eĥ (53)
≤ sup
h∈H

eh (54)

recovering the bound in the proxy risk paper.

The above calculation also shows that our bound is tighter. Their bound is only for the case when
only one check model ĥ is learned and also for the worst case. First, it is challenging to find an
ĥ with a small error in many practical scenarios. For example, the test data contains outlier inputs
which are not similar to the training data. It is then unlikely to find an ĥ with small errors on these
data points since no enough label information is available. However, it is still possible to have a
good estimation of the accuracy, since the outlier data are different from the training data and thus
can be detected, and we know that f is likely to make errors on them. Second, the bound is also too
pessimistic. In the experiments, we observed that the proxy risk method can still achieve reasonable

19

estimation (about 10% away from the true accuracy), even when the error of ĥ is very large (e.g.,
> 60% while suph∈H eh is even larger).

Our lemma suggests that by allowing an ensemble h ∼ T with proper diversity, we have more
flexibility and can significantly improve the pessimistic bound. For the example given above, the
ensemble method can potentially handle the outlier input data: for hypotheses agreeing with the
training data, they are still likely to have disagreement on the outlier data and this disagreement thus
reveals the potential error of f there, leading to an accurate estimation of the accuracy. We thus
propose to use an ensemble method for estimating the accuracy.

Comparison with Calibration. A classic notion for uncertainty estimation is calibration of the
machine learning model. It is well-known that if the pre-trained model f outputs confidence scores
for class labels and the confidence is well-calibrated, then the average confidence approximates its
accuracy. Unfortunately, it has been observed that many machine learning systems, in particular
modern neural networks, are poorly calibrated, especially on test data with distribution shift [14, 30]
which is the most interesting case for accuracy estimation.

On the other hand, one can hope to obtain an ensemble of models that is well calibrated, such as
the deep ensemble method [25]. Below we show that well-calibration of the ensemble implies the
agreement rate between the ensemble and the pre-trained model is a good estimation of the accuracy
of the pre-trained model. Formally, we consider the simplified setting of perfect calibration defined
as follows.

Definition 4 (Perfect Calibration). An ensemble T of classifiers has perfect calibration on the
dataset U = {(x, yx)}, if for any class label k ∈ Y and any p ∈ [0, 1],

Pr
(x,yx)∼U

[yx = k|Ck(x) = p] = p. (55)

where Ck(x) := Prh∼T [h(x) = k] is the confidence score of T for label k on the input x.

(The definition and the later analysis also applies to a classifier Ck(x) outputting confidence scores,
or replacing U with a data distribution.)

Proposition 1. If the ensemble T has perfect calibration, then ar(f, T) = acc(f).

Proof. By definition, we have

ar(f, T) = Pr
h,x

[h(x) = f(x)] (56)

= Ex
[
Pr
h

[h(x) = f(x)]

]
(57)

= Ex
[
Cf(x)(x)

]
(58)

= E
{
E
{
E
[
Cf(x)(x)|Ck(x) = p

]
|f(x) = k

}}
(59)

= E
{
E {E [Ck(x)|Ck(x) = p] |f(x) = k}

}
(60)

= E
{
E {E [p|Ck(x) = p] |f(x) = k}

}
(61)

= E
{
E {E [yx = k|Ck(x) = p] |f(x) = k}

}
(62)

= E[yx = f(x)] (63)
= acc(f). (64)

The third line follows from the definition of Ck(x), the fourth line from the law of total expectation,
the seventh line from perfect calibration, and the eighth line from the law of total expectation.

On the other hand, our Lemma 2 is more general: it shows even if the ensemble is not well calibrated,
it is still possible for the agreement rate to be a good estimation of the accuracy. For illustration,
consider a simple example with 4 points in U , and only one model h from T (if h(x) = k, we view

20

x x−2 x−1 x+1 x+2
yx − − + +
f(x) − + − +
h(x) − + + −

Table 2: An illustrative example showing even if the ensemble is not well calibrated, it is still possible for the
agreement rate to be a good estimation of the accuracy.

it as Prh[h(x) = k] = 1). The predictions of f and h are shown in Table 2. It is easy to see that h
is not well-calibrated, e.g.,

Pr
h

[yx = +|C+(x) = 1] = Pr
h

[yx = +|h(x) = +] = 1/2� 1.

On the other hand, ar(f, T) = acc(f) = 1/2. From the perspective of Lemma 2, although the
ensemble has a large error eT = 1/2, its predictions and those of f are properly correlated, such
that

acc(f)− ar(f, T) = eT − 2E[eh,xef,x] =
1

2
− 2 · 1

4
= 0

leading to an accurate estimation of the accuracy of f .

C Experimental Details

C.1 Setup

C.1.1 Computing Infrastructure

We run all experiments with PyTorch and NVIDIA GeForce RTX 2080Ti GPUs.

C.1.2 Dataset

In our problem setting, we need a training dataset D and a test dataset U . We evaluate our meth-
ods on five dataset categories. Each dataset category contains several evaluation tasks (or several
training-test dataset pairs). We introduce each of the dataset categories below.

Digits. We investigate four digit datasets, which are MNIST [26], MNIST-M [12], SVHN [29]
and USPS [19]. They all contain digit images with digits from 0 to 9. MNIST contains 60,000
training images and 10,000 test images; MNIST-M contains 59,001 training images and 9,001 test
images; SVHN contains 73,257 training images and 26,032 test images; USPS contains 7,291 train-
ing images and 2,007 test images. We can construct 12 different training-test dataset pairs from
them.

Office-31. [33] is the most widely used dataset for visual domain adaptation, with 4,652 images and
31 categories collected from three distinct domains: Amazon(A), Webcam(W), and Dslr(D). Amazon
contains 2,817 images; Webcam contains 795 images; Dslr contains 498 images. The images are
cropped to be the size of 224 × 224. We can construct 6 different training-test dataset pairs from
them.

CIFAR10-C. We use CIFAR10 [24] as the training dataset and CIFAR10-C [16] as the test dataset.
CIFAR10 contains 50,000 training images and 10,000 test images. CIFAR10-C contains test images
with 19 corruption types and 5 severity levels. We only consider severity level of 5. For each
corruption type, it contains 10,000 test images generated from CIFAR10 test images by applying the
corruption. We have 19 different training-test dataset pairs in total.

iWildCam. The iWildCam 2020 Competition Dataset [1] contains animal images with 186 species
collected by various camera traps. The task is multi-class species classification. We use a variant
of it, which is proposed by [23]. It contains 142,202 training images and 7,861 in-distribution test
images from 245 locations. The validation set contains 20,784 images from 32 locations and the
test set contains 38,943 images from 47 locations. The locations in the validation set and the test
set are different from those in the training set. We create 10 target datasets by sampling data from
the validation set and the test set. Each target dataset contains images from 50 locations, which

21

are different from those in the training data. So we have 10 training-test dataset pairs. To reduce
computational cost, we resize each image to 64× 64.

Amazon Review. The Multi-Domain Sentiment Dataset constructed in [2] is a dataset for sentiment
domain adaptation. It contains Amazon product reviews for four different product types: books,
DVDs, electronics and kitchen appliances. For each domain, it has 1,000 positive and 1,000 negative
examples. We name it Amazon Review dataset and construct 12 different training-test dataset pairs
from it.

C.1.3 Implementation and Hyperparameters

In our algorithms, we need to set hyperparameters T , N , α and γ. We specify α in the training
configuration (See Section C.1.4). We set T = 5 for all dataset pairs. We set N = 20 for Amazon
Review dataset and set N = 5 for other dataset categories. For the implementation of self-training
objective, we randomly sample data points from D ∪ R in batches and weight the loss term on the
pseudo labeled data by γ. We set γ = 0.1 for all dataset pairs. For dataset pairs in Digits that
use USPS as target dataset, we repeat R ten times and then add it to the training set due to the
much smaller size of the test set in USPS compared to the source training set. This is equivalent to
multiplying γ by 10.

C.1.4 Model Architecture and Training Configuration

We introduce the model architectures and the training configurations for each dataset category below.

Digits. We use a neural network named CNN-BN, which has two convolutional layers, two full
connected layers and batch normalization layers as the typical DNN model. The DANN architecture
is adapted from the one used in [4]. We train all models using Adam optimizer with learning rate
of 10−3 and batch size of 128. For supervised learning, we train the model for 20 epochs. For
domain adaptive learning, we train DANN for 100 epochs. We adopt the original progressive training
strategy for the discriminator [12] where the weight α for the domain-invariant loss is initiated at
0 and is gradually changed to 0.1 using the schedule α = (2

1+exp(−10·p) − 1) · 0.1, where p is the
training progress linearly changing from 0 to 1. When fine-tuning the models, we set α = 0.1 and
use Adam optimizer with learning rate of 10−3. The model architecture for DANN is presented
below.

Encoder

nn.Conv2d(3, 64, kernel size=5)
nn.BatchNorm2d
nn.MaxPool2d(2)

nn.ReLU
nn.Conv2d(64, 128, kernel size=5)

nn.BatchNorm2d
nn.Dropout2d

nn.MaxPool2d(2)
nn.ReLU

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.BatchNorm2d

nn.ReLU
×2

Predictor

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.BatchNorm2d

nn.ReLU
×3

flatten
nn.Linear(2048, 256)

nn.BatchNorm1d
nn.ReLU

nn.Linear(256, 10)
nn.Softmax

Discriminator

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.ReLU
×5

Flatten
nn.Linear(2048, 256)

nn.ReLU
nn.Linear(256, 2)

nn.Softmax

22

Office-31. We use ResNet50 [15] as the typical DNN model. For the DANN architecture, we use ResNet50
followed by a four-layer fully connected network with width 256 as the feature extractor. The main classifier is
a three-layer fully connected network with width 256 and the auxiliary classifier is a seven-layer fully connected
network with width 256. We train all models for 100 epochs using Adam optimizer with batch size of 32 and
learning rate schedule. The initial learning rate is 10−5 and it decreases to 10−6 after 50 epochs training. We
augment the training data using random resized crop and random horizontal flip. The weight α for DANN
training is initiated at 0 and is gradually changed to 1 using the same schedule discussed above. When fine-
tuning the models, we setα = 1 and use Adam optimizer with learning rate of 5×10−6. The model architecture
for DANN is presented below.

Encoder

ResNet50(pretrained=True)
nn.Linear(2048, 256)

nn.ReLU
nn.Linear(256, 256)

nn.ReLU
×4

Predictor

nn.Linear(256, 256)
nn.BatchNorm1d

nn.ReLU
×2

nn.Linear(256, 31)
nn.Softmax

Discriminator

nn.Linear(256, 256)
nn.ReLU
×6

nn.Linear(256, 2)
nn.Softmax

CIFAR10-C. We use ResNet34 [15] as the typical DNN model. For the DANN architecture, we use ResNet34
as the feature extractor. The main classifier is a three-layer fully connected network with width 256 and the
auxiliary classifier is a seven-layer fully connected network with width 256. We train all models for 100 epochs
using Stochastic Gradient Decent (SGD) optimizer with Nesterov momentum and learning rate schedule. We
set momentum 0.9 and `2 weight decay with a coefficient of 10−4. The initial learning rate is 0.1 and it
decreases by 0.1 at 50, 75 and 90 epoch respectively. The batch size is 128. We augment the training data
using random crop with padding and random horizontal flip. The weight α for DANN training is initiated at 0
and is gradually changed to 0.1 using the same schedule discussed above. When fine-tuning the models, we set
α = 0.1 and use the same SGD optimizer with a learning rate of 10−4. The model architecture for DANN is
presented below.

Encoder

ResNet34
nn.Linear(512, 256)

nn.ReLU

Predictor

nn.Linear(256, 256)
nn.ReLU
×2

nn.Linear(256, 10)
nn.Softmax

Discriminator

nn.Linear(256, 256)
nn.ReLU
×6

nn.Linear(256, 2)
nn.Softmax

iWildCam. We use ResNet50 [15] as the typical DNN model. For the DANN architecture, we use ResNet50
followed by a four-layer fully connected network with width 256 as the feature extractor. The main classifier is
a three-layer fully connected network with width 256 and the auxiliary classifier is a seven-layer fully connected
network with width 256. We train all models for 50 epochs using Adam optimizer with batch size of 128 and
learning rate of 10−5. The weight α for DANN training is initiated at 0 and is gradually changed to 1 using
the same schedule discussed above. When fine-tuning the models, we set α = 1 and use Adam optimizer with
learning rate of 10−5. The model architecture for DANN is presented below.

Encoder

ResNet50(pretrained=True)
nn.Linear(2048, 256)

nn.ReLU
nn.Linear(256, 256)

nn.ReLU
×4

Predictor

nn.Linear(256, 256)
nn.BatchNorm1d

nn.ReLU
×2

nn.Linear(256, 186)
nn.Softmax

Discriminator

nn.Linear(256, 256)
nn.ReLU
×6

nn.Linear(256, 2)
nn.Softmax

Amazon Review. We use TF-IDF [34] to transform texts into feature vectors with dimension 5,000. Then
we build fully connected networks with ReLU activation. For typical DNN model, we use a four-layer fully
connected network with width 128. For the DANN architecture, we use a four-layer fully connected network
with width 128 as the feature extractor. The main classifier is a three-layer fully connected network with width
128 and the auxiliary classifier is a seven-layer fully connected network with width 256. We train all models
for 50 epochs using Adam optimizer with batch size of 8 and learning rate of 10−3. The weight α for DANN
training is initiated at 0 and is gradually changed to 1 using the same schedule discussed above. When fine-
tuning the models, we set α = 1 and use Adam optimizer with learning rate of 10−3. The model architecture
for DANN is presented below.

23

Encoder

nn.Linear(5000, 128)
nn.ReLU

nn.Linear(128, 128)
nn.ReLU
×3

Predictor

nn.Linear(128, 128)
nn.ReLU
×2

nn.Linear(128, 2)
nn.Softmax

Discriminator

nn.Linear(128, 256)
nn.ReLU

nn.Linear(256, 256)
nn.ReLU
×5

nn.Linear(256, 2)
nn.Softmax

C.1.5 Evaluation Metrics

Unsupervised Accuracy Estimation. We use the absolute estimation error | ˆacc− acc(f, U)| to measure the
performance of the accuracy estimator ˆacc.

Error Detection. We formulate error detection as a binary classification problem (a test point detected to be
mis-classified is regarded as in the positive class). Then we can use F1 score to measure the performance of the
algorithms quantitatively.

C.1.6 Baselines

We consider the following baselines:

Proxy Risk. We consider proxy risk method [4] as a baseline for both unsupervised accuracy estimation
and error detection tasks. In proxy risk method, they train the check model and fine-tune it to maximize
the disagreement using a separate target training dataset sampled from the distribution of the test dataset UX .
However, in practice, we might not have such a training dataset. Thus, in our implementation, we will useUX as
the training dataset if a separate target training dataset is not available. Specifically, for Digits, we use a separate
target training dataset, while for other dataset categories, we use UX as the target training dataset. Note that
our method doesn’t need a separate target training dataset. We follow their settings to set the hyperparameters.
Specifically, for all experiments, we set λ = 50 and T2 = 20. In Digits and CIFAR10-C experiments, we set
α = 0.1 and ε = 1.1 · ε0; in Office-31 and iWildCam experiments, we set α = 1 and ε = 1.05 · ε0, where ε0
is the value of divergence loss RS(f

′g′) + αd(pg
′

S (Z), pg
′

T (Z)) computed using the pre-trained check model
h′ = f ′g′. The way to pre-train the check model h′ is the same as the DANN training method in Section C.1.4.
For fine-tuning the check model to maximize the disagreement, we use SGD optimizer for CIFAR10-C and
Adam optimizer for other datasets. The learning rate is set to be 10−3 in Digits, 10−6 in Office-31, 10−4 in
CIFAR10-C, 10−5 in iWildCam and 10−3 in Amazon Review.

Avg Conf. We consider the average confidence score as a baseline for unsupervised accuracy estimation task.
We know if the model is well calibrated on UX , then the average confidence of the model on UX can represent
the accuracy. [9] propose to use the average confidence score as a metric to measure the performance drop of a
model. In our context, it is equivalent to using the average confidence as a measure for the accuracy.

Ens Avg Conf. Deep ensemble [25] has been shown to be an effective technique to improve the model
calibration. So we consider the average confidence score of an ensemble model as a baseline for unsupervised
accuracy estimation task. We use the same architecture and training procedure of the pre-trained model f to
train the models in the ensemble. The number of models in the ensemble is 10.

MSP. We consider Maximum Softmax Probability (MSP) [17] as a baseline for error detection. We pick
the confidence threshold using a test dataset Dtest sampled from the training distribution PX,Y such that the
fraction of data points in Dtest whose confidence scores are less than the threshold is equal to the error of the
given model on Dtest.

Trust Score. We consider Trust Score [21] as a baseline for error detection task. We use the logit layer as the
input to Trust Score. And we pick the threshold using a test dataset Dtest sampled from the training distribution
PX,Y such that the fraction of data points in Dtest whose trust scores are less than the threshold is equal to the
error of the given model on Dtest.

C.2 Full Plots for Unsupervised Accuracy Estimation

We plot the results for using typical DNN as the model f ’s architecture in Figure 3 and the results for using
DANN-arch as the model f ’s architecture in Figure 4.

C.3 Multiple Runs of Experiments

Since proxy risk method and our method require training and fine-tuning the models, there might be some
variance in the results. Thus, we repeat each experiment in Table 1 for proxy risk method and our method five

24

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

Digits
MNIST
MNIST-M
SVHN
USPS

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc
Ta

rg
et

 A
cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

Office-31
Amazon
Dslr
Webcam

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

CIFAR10-C

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

iWildCam

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

Amazon Review
Books
Dvd
Electronics
Kitchen

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

Figure 3: Accuracy estimation results for each dataset pair. We use typical DNN as the architecture for the
model f . We use symbols to represent training datasets and colors to represent test datasets. For CIFAR10-
C and iWildCam, there is only one training dataset with multiple test datasets. The dashed line represents
perfect prediction (target accuracy = estimated accuracy). Points beneath (above) the dashed line indicate
overestimation (underestimation). The solid lines are regression lines of the results.

times, and show the box plots of the results measured by average absolute estimation error and average F1 score
(See Figure 5). The results show that our method is consistently better than proxy risk method and the variance
of the results of our method is generally smaller than that of proxy risk method.

C.4 Validating the Theoretical Analysis

Our analysis relies on three conditions: (A) The ensemble models make small error on the test inputs correctly
classified by f (and thus tend to over-estimate the accuracy); (B) The ensemble models mostly disagree with f
onRX ; (C) The ensemble models have large diversity onBX . Since we don’t use threshold in our implementa-
tion,BX here is the data points inWX \RX where the prediction of the ensemble (via majority vote) is wrong.
Our experiments on six dataset pairs over two dataset categories (MNIST→MNIST-M, MNIST→USPS and
MNIST-M→USPS on the Digits dataset category; Amazon→Dslr, Dslr→Webcam, and Amazon→Webcam on
the Office-31 dataset category) show that empirically they are roughly satisfied.

Table 3 shows the actual accuracy, the estimated accuracy obtained via the initial ensemble (Estimated Acc
w/o self-training), and the estimated accuracy after applying the self-training (Estimated Acc w/ self-training).
The comparison confirms the over-estimation and shows the self-training can rectify that. The table also shows
the upper bound ν̃ on average error on correct points ν over all iterations is small. The upper bound γ̃ on the

25

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

Digits
MNIST
MNIST-M
SVHN
USPS

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc
Ta

rg
et

 A
cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

Office-31
Amazon
Dslr
Webcam

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

CIFAR10-C

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

iWildCam

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Avg Conf

Amazon Review
Books
Dvd
Electronics
Kitchen

0.00 0.25 0.50 0.75 1.00

Ens Avg Conf

0.00 0.25 0.50 0.75 1.00

Proxy Risk

0.00 0.25 0.50 0.75 1.00

Ours (RI)

0.00 0.25 0.50 0.75 1.00

Ours (RM)

Estimated Acc

Ta
rg

et
 A

cc

Figure 4: Accuracy estimation results for each dataset pair. We use DANN-arch as the architecture for the
model f . We use symbols to represent training datasets and colors to represent test datasets. For CIFAR10-
C and iWildCam, there is only one training dataset with multiple test datasets. The dashed line represents
perfect prediction (target accuracy = estimated accuracy). Points beneath (above) the dashed line indicate
overestimation (underestimation). The solid lines are regression lines of the results.

average probability of agreement γ between the ensemble models and f on RX over all iterations is close to
0, so the ensemble models mostly disagree with f on RX . Finally, the lower bound σ2

L on the diversity of the
ensemble σ2 over all iterations is relatively large.

Besides, to support our claims regarding pseudo-labels, we perform experiments (using the same settings as
the experiments in Table 3) on MNIST→MNIST-M, our observations are: (1) the pseudo-labels are not all
correct. The accuracies of the pseudo-labels over three iterations are 93.89%, 94.02% and 93.82%. (2) the new
ensemble will become more accurate with the help of correct pseudo-labels. The accuracies of the ensembles
on U over three iterations are 89.56%, 93.51% and 94.53%. (3) the new ensemble will be less diverse on the
pseudo-labeled data. The upper bound of average σ2

x on the pseudo-labeled data over all iterations is 4.78%,
which is relatively small compared to σ2

L = 26.54%.

Furthermore, we perform an experiment (using the same settings as the experiments in Table 3) on
MNIST→MNIST-M to verify if our conditions still hold when the pre-trained classifier is a majority vote
over an ensemble. The ensemble contains 10 models trained on D with different random initializations. The
results are similar to those for a single model. Our success conditions are still roughly satisfied and the accuracy
estimation is great: ν̃ = 2.61%, γ̃ = 0.59%, σ2

L = 28.94% and the estimation error is 0.0009.

26

Typical DNN DANN-arch

0.04

0.06

0.08

0.10

M
ea

n
Es

tim
at

io
n

Er
ro

r

Digits

Method
Proxy Risk
Ours (RM)

Typical DNN DANN-arch

0.015

0.020

0.025

0.030

0.035

0.040
Office-31

Method
Proxy Risk
Ours (RM)

Typical DNN DANN-arch
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 CIFAR10-C
Method

Proxy Risk
Ours (RM)

Typical DNN DANN-arch

0.04

0.06

0.08

0.10

iWildCam

Method
Proxy Risk
Ours (RM)

Typical DNN DANN-arch
0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300 Amazon Review
Method

Proxy Risk
Ours (RM)

(a) Unsupervised Accuracy Estimation

Typical DNN DANN-arch

0.80

0.82

0.84

0.86

0.88

F1
 S

co
re

Digits
Method

Proxy Risk
Ours (RM)

Typical DNN DANN-arch
0.60

0.65

0.70

0.75

0.80
Office-31

Method
Proxy Risk
Ours (RM)

Typical DNN DANN-arch

0.84

0.85

0.86

0.87

CIFAR10-C
Method

Proxy Risk
Ours (RM)

Typical DNN DANN-arch

0.76

0.77

0.78

0.79

0.80

0.81
iWildCam

Method
Proxy Risk
Ours (RM)

Typical DNN DANN-arch
0.405

0.410

0.415

0.420

0.425

0.430

0.435

0.440
Amazon Review

Method
Proxy Risk
Ours (RM)

(b) Error Detection
Figure 5: Results for multiple runs of experiments.

Dataset Category Digits Office-31
Dataset Pair M→MM M→U MM→U A→D D→W A→W
Actual Acc 27.19 67.56 60.04 76.31 95.97 72.96

Estimated Acc w/o self-training 33.05 70.30 69.76 80.52 95.85 74.34
Estimated Acc w/ self-training 27.50 68.21 64.28 78.11 95.09 70.57

ν̃ 3.15 2.18 4.22 6.16 2.17 11.11
γ̃ 0.57 0.90 3.82 1.92 0.20 0.29
σ2
L 26.54 12.89 24.57 15.61 8.80 14.67

Table 3: Empirical results to support the theoretical analysis. We use typical DNN as the architecture for
the model f . M is MNIST, MM is MNIST-M, U is USPS, A is Amazon, D is Dslr and W is Webcam. The
ensemble training algorithm we use is TRM. On Digits, we use N = 10 and T = 3 while on Office-31, we use
N = 15 and T = 2. All values are percentages.

C.5 Evaluation on Pre-trained Models with Various Architectures

We evaluate our method on pre-trained models with different deep learning model architectures on Digits. The
architectures considered are Convolutional Neural Network (CNN) [27], Convolutional Neural Network with
Batch Normalization (CNN-BN), ResNet18, ResNet34 [15], DenseNet40 and DenseNet100 [18]. The results
in Table 4 demonstrate that our method consistently outperforms other methods on pre-trained models with
various architectures.

C.6 Implementation of the Framework with Explicit Thresholding

We also implement the Framework 1 with explicit thresholding. We use TRM to construct the ensemble {hi}Ni=1

and use the following pseudo-labeling strategy: for each x ∈ RX , if the majority vote of the ensemble on x is
different from f(x), then we use the majority vote as the pseudo-label; otherwise, we use a random label that
is different from f(x) as the pseudo-label. We perform experiments on Digits dataset category to compare the
method using thresholding with Algorithm 1 where we don’t use thresholding. The results in Table 5 show that
using explicit thresholding leads to similar performance as Algorithm 1.

C.7 Ablation Study on CIFAR10-C

We perform an additional ablation study on CIFAR10-C and the results are shown in Figure 6. We observe a
similar trend as that on Digits.

C.8 Analysis on Target Accuracy

The target accuracy of our ensemble check models can be higher or lower than that of the pre-trained model
f depending on the datasets and in both cases, our method can achieve good performance. In Table 6, we

27

Task Accuracy Estimation Error Detection
Architecture of f Method Estimation Error ↓ Method F1 score ↑

CNN

Avg Conf 0.252±0.159 MSP 0.595±0.228
Ens Avg Conf 0.141±0.111 Trust Score 0.567±0.125
Proxy Risk 0.080±0.167 Proxy Risk 0.817±0.129
Ours (RI) 0.120±0.125 Ours (RI) 0.735±0.170
Ours (RM) 0.020±0.022 Ours (RM) 0.865±0.075

CNN-BN

Avg Conf 0.404±0.180 MSP 0.467±0.195
Ens Avg Conf 0.337±0.229 Trust Score 0.496±0.195
Proxy Risk 0.085±0.142 Proxy Risk 0.844±0.118
Ours (RI) 0.164±0.218 Ours (RI) 0.698±0.235
Ours (RM) 0.023±0.020 Ours (RM) 0.881±0.084

ResNet18

Avg Conf 0.434±0.330 MSP 0.365±0.193
Ens Avg Conf 0.245±0.220 Trust Score 0.408±0.176
Proxy Risk 0.111±0.165 Proxy Risk 0.787±0.178
Ours (RI) 0.173±0.154 Ours (RI) 0.684±0.246
Ours (RM) 0.039±0.043 Ours (RM) 0.834±0.128

ResNet34

Avg Conf 0.399±0.261 MSP 0.484±0.114
Ens Avg Conf 0.288±0.242 Trust Score 0.551±0.153
Proxy Risk 0.115±0.196 Proxy Risk 0.795±0.179
Ours (RI) 0.181±0.170 Ours (RI) 0.670±0.168
Ours (RM) 0.042±0.043 Ours (RM) 0.834±0.129

DenseNet40

Avg Conf 0.389±0.309 MSP 0.470±0.097
Ens Avg Conf 0.199±0.205 Trust Score 0.560±0.064
Proxy Risk 0.115±0.168 Proxy Risk 0.794±0.185
Ours (RI) 0.170±0.154 Ours (RI) 0.697±0.239
Ours (RM) 0.041±0.046 Ours (RM) 0.833±0.144

DenseNet100

Avg Conf 0.388±0.350 MSP 0.430±0.229
Ens Avg Conf 0.248±0.254 Trust Score 0.533±0.155
Proxy Risk 0.127±0.176 Proxy Risk 0.759±0.200
Ours (RI) 0.186±0.182 Ours (RI) 0.677±0.256
Ours (RM) 0.047±0.052 Ours (RM) 0.803±0.160

Table 4: Evaluate the methods for unsupervised accuracy estimation and error detection on pre-trained models
with various model architectures. The models are trained using supervised learning method. We show the mean
and standard deviation of absolute estimation error and F1 score (mean±std). The numbers are calculated over
the training-test dataset pairs constructed in the Digits dataset category. Bold numbers are the superior results.

Method Accuracy Estimation Error Detection
Thresholding Threshold τ Estimation Error ↓ F1 score ↑

Yes 0.5 0.026±0.023 0.881±0.086
Yes 0.4 0.033±0.030 0.877±0.086
No - 0.023±0.020 0.881±0.084

Table 5: Results for comparing our methods with and without thresholding. We use typical DNN as the
architecture for the model f . We show the mean and standard deviation of absolute estimation error and F1
score (mean±std). The numbers are calculated over the training-test dataset pairs in Digits dataset category.

compare the target accuracy of the pre-trained model f and the ensemble check models {hi}Ni=1 generated by
our method with TRM on some dataset pairs in Digits and iWildCam. The results show that on Digits where
the domain adaptation method can work well, the target accuracy of {hi}Ni=1 built by TRM is usually higher
than that of the pre-trained model f . In such cases, the high accuracy of {hi}Ni=1 plays an important role in
the good performance of our method. However, on iWildCam where the domain adaptation method fails, the
target accuracy of {hi}Ni=1 is typically not higher than that of f . In such cases, our method can still achieve
good performance due to the diversity of the ensemble.

28

2 4 6 8 10
N

0.855

0.860

0.865

0.870

0.875

Av
er

ag
e

F1
 S

co
re

CIFAR10-C (T=5, =0.1)

Typical DNN
DANN-arch

2 4 6 8 10
T

0.84

0.85

0.86

0.87

Av
er

ag
e

F1
 S

co
re

CIFAR10-C (N=5, =0.1)

Typical DNN
DANN-arch

0.00 0.25 0.50 0.75 1.00
0.80

0.82

0.84

0.86

0.88

0.90

Av
er

ag
e

F1
 S

co
re

CIFAR10-C (T=5, N=5)

Typical DNN
DANN-arch

Figure 6: Ablation study for the effect of ensemble and self-training techniques on CIFAR10-C. N is the
number of models in the ensemble, T is the number of self-training iterations, and γ is the weighting parameter
for the loss term on the pseudo-labeled data. The ensemble training algorithm we use is TRM.

Dataset
Category

Dataset
Pair

Target Acc.
of f

Ours (RM)
Target Acc. of {hi}Ni=1 Estimation Error F1 score

Digits
M→MM 27.19% 93.99% 0.0013 0.9901
M→U 67.56% 92.53% 0.0065 0.9418
S→U 54.46% 67.46% 0.0010 0.7941

iWildCam
0→1 46.40% 39.66% 0.0202 0.7872
0→2 46.90% 42.73% 0.0335 0.7996
0→9 34.01% 24.50% 0.0376 0.7871

Table 6: Results of comparing the target accuracy of the pre-trained model f and the ensemble check models
{hi}Ni=1. We use typical DNN as the architecture for the model f . The prediction of the ensemble {hi}Ni=1 is
produced via majority vote. M is MNIST, MM is MNIST-M, U is USPS and S is SVHN.

C.9 Analysis on Proxy Risk

Proxy Risk has two stages: first train a check model using domain-invariant representations (DIR) and then
fine-tune it to maximize the disagreement between the pre-trained model f and the check model h on the
target data while maintaining small DIR loss. To study the effect of the disagreement maximization in Proxy
Risk, we perform an experiment on Digits for the typical DNN f by removing the disagreement maximization
component from Proxy Risk. The results show that without disagreement maximization, the mean F1 score of
Proxy Risk on Digits will decrease from 0.844 to 0.812.

Besides, to see whether combining Proxy Risk with ensemble could lead to better results than our method,
we perform an experiment on Digits for a variant of Proxy Risk: the check model is an ensemble of models
h′1, . . . , h

′
t via majority vote and each model h′j in the ensemble is fine-tuned from the pre-trained check model

h′ using Proxy Risk’s maximizing disagreement training objective with different randomness. We set t = 5
and use typical DNN as the model architecture of f . The experimental result on Digits is: the mean absolute
estimation error is 0.0814 and the mean F1 score is 0.8515. The performance of this variant of Proxy Risk is
worse than that of our method with TRM (the result for our method is: mean estimation error is 0.0230 and mean
F1 score is 0.8810).

29

