
A Appendix

A.1 Architecture
In this section, we review in detail the architectural choices we made for this work. As we mentioned
previously, we impose no restriction on which models we can use on each part of MARK. Please, see
Figure 6 for an schematic diagram of the architectures we used. In our case, for each component:
• Feature Extractor (F t): As we explained in the main document, this feature extractor can be

any model, pretrained or otherwise. In the case of MARK-Task and MARK-Random, we use an
architecture similar to the one used in the private model in [18], consisting of 2 convolutional layers
with an activation function, batch normalization, and Max-Pooling, followed by a fully connected
layer with ReLU. The number of filters in each layer depends on the dataset used. For CIFAR-100
we use 32 filters per block, while for MiniImageNet we use 8 filters per block. These numbers are
similar as those used by ACL.

• Knowledge Base (KB): In this case, we use 3 shared blocks, each composed of 1 convolutional
layer with 64, 128, and 256 components respectively, accompanied by an activation function
(ReLU) and Max-Pooling. After these blocks, we add a fully connected layer that creates a
representation to be input into the task classifier.

• Mask-Generating functions (M t): As explained in the main document, we use a fully connected
layer for each function accompanied by an activation function (ReLU). Input dimensions depend
on the dataset, output is (64 + 128 + 256) = 448.

• Classifier (Ct): Is a fully connected layer.
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Figure 6: Schematic representation of the architectures used in MARK.

A.2 Experiment Details

We run all of our experiments using 3 different seeds and implemented using PyTorch. In terms of
hyperparameters, we use SGD with a learning rate of 0.01, weight decay of 0.01, a momentum of 0.9
and a batch size of 128. We set the momentum to 0 when updating the KB.

The F t are trained for 50 epochs each when using MARK-Task. During the KB querying phase,
mask functions and classifiers are trained for 50 epochs. In the KB Update step, we use 10 meta-tasks
(K), trained for Einner =40 epochs, each with a learning rate of 0.001. We repeat this training stage
15 times (Eouter). Our code will be made publicly available.

We also list the entire set of hyperparameters used for all methods which are compared against
MARK. We use no learning rate scheduling for any of these experiments.
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Table 2: Hyperparameters used for all methods compared against MARK

Method Dataset Learning Rate Epochs Optimizer Batch Size Result Origin

HAT CIFAR100 0.01 As ACL SGD 128 ACL Paper
A-GEM CIFAR100 0.01 100 SGD 128 Avalanche[52]
ACL CIFAR100 0.01 200 SGD 128 ACL Paper
GPM CIFAR100 0.01 100 SGD 128 Paper Code
Exp. Replay CIFAR100 0.01 100 SGD 128 Avalanche[52]
SupSup CIFAR100 0.001 100 SGD 128 Paper Code
Multitask CIFAR100 0.01 100 SGD 128 Code
HAT MiniImageNet 0.01 As ACL SGD 128 ACL Paper
A-GEM MiniImageNet 0.01 100 SGD 128 ACL Paper
ACL MiniImageNet 0.01 200 SGD 128 ACL Paper
GPM MiniImageNet - - - - GPM Paper
Multitask MiniImageNet 0.01 100 SGD 128 Paper Code

A.3 Some notes for particular methods

• A-GEM: though A-GEM is originally run as a single pass algorithm, both on the ACL
paper and on our own experiments ran it for multiple epochs to make results comparable.
On our implementation for CIFAR100 we used a memory size of 200 per task.

• Experience Replay: We used a memory of 250 elements per task. This number is taken to
make sure memory requirements between this baseline and MARK are similar.

• SupSup: We tried different values of sparsity until we were able to replicate the same results
of their paper with their setup. Using that sparsity value, we replaced their model with a
model similar to our KB but with extra parameters, similar to the model used in ACL and
GPM. We tried to use 0.01 as learning rate, but results were much worse.

• GPM: For MiniImageNet, we were unable to find hyperparameters used either on the paper
or code base.

A.4 CO2 Emission Related to Experiments
Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.432
kgCO2eq/kWh. A cumulative of 75.5 hours of computation was performed on hardware of type GTX
1080 Ti (TDP of 250W).

Total emissions are estimated to be 8.16 kgCO2eq of which 0% were directly offset.

We run 3 experiments on a single GPU at the same time. Experiments on CIFAR-100 take 133
minutes, while on MiniImageNet take 622 minutes. We consider 6 variations for both datasets, each
run with 3 different seeds.

Estimations were conducted using the MachineLearning Impact calculator presented in [53].

A.5 Parameters
Table 3 reports number of parameters for models used by different methods. Numbers for HAT,
A-GEM and ACL are taken from the respective articles. GPM numbers were calculated using the
author’s code.

A.6 Importance of Metalearning and Mask Functions
We supply an augmented version of Figure 5 in Figure 7 which includes data from MARK-Random
and MARK-Resnet. The figure shows that using different input representations for the mask-
generating functions has direct impact on the method’s accuracy, but has little to no impact on
BWT.

We hypothesize this behaviour is taking place because MARK’s masks are acting as a kind of
self-attention mechanism. With richer features, this mechanism is able to select more appropriate
information to solve any given task. However, as expected, richer features aid nothing in attenuating
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Table 3: Model Parameters for different methods in the Catastrophic Forgetting literature. HAT, A-
GEM, ACL numbers were taken directly from the respective articles. GPM, SupSup were calculated
based on author’s code. Experience Replay was calculated based on our own code.

Method CIFAR100 Mini-Imagenet

HAT 6.8M 30.9M
A-GEM 6.4M 25.7M
ACL 6.3M 28.3M
GPM 2.4M 1.5M
SupSup 20.9M -
Experience Replay 2.9M -
Multitask 7.4M 15.4M

MARK-Random 1.7M 6.7M
MARK-Task 4.7M 15.6M
MARK-Resnet 16.1M 19.7M

Catastrophic Forgetting. The role of features is to provide information with which to decide, while
Backward Transfer is about forgetting how to decide.

A.7 Critical Dimensions
We also wanted to understand the importance of each dimension the masks were modulating. To
test this, we take one of our trained models and selectively turn off (i.e. set to zero) the mask value
associated with each activation map from the KB. We then analyze how many samples from the
test set are incorrectly labelled compared to the regular model. We use this measure as a proxy for
understanding the relevance of each activation map.

Table 4 shows that, for a given task, relatively few feature maps (on their own) have a critical impact
on classification. However, a few feature maps show a disproportionate effect on classifying samples.
These are feature maps that when turned off result in accuracy loss of 1% or more in task accuracy.
We term these critical dimensions. Blocks closer to the output show an increase in the number of
samples affected by a critical dimension. We hypothesize this is because layers closer to the output
are believed to be more discriminative in nature, which would naturally lead to having more critical
dimensions. This type of analysis, however, is limited in nature. We believe the impact of these
dimensions should be studied not in isolation, but by their interactions with other dimensions. We
have not found any tractable way of approaching such an analysis.

Table 4: The average percentage of dimensions that have a certain level of impact on performance
for a model trained in 20-split CIFAR100. Results are averaged by the number of tasks. We see that
most dimensions have no impact on samples, while a relative small part of them have relevant impact.
Each column shows the percentage of dimensions that negatively impacts the accuracy by an X or
greater percent for some task

No impact Impact Critical

Block 0% >0% >1% >2% >3% >4% >5% >8% >10%

Block 1 90.31 9.69 1.17 0.31 0.08 0.0 0.0 0.0 0.0
Block 2 95.0 5.0 1.52 1.25 1.09 0.98 0.86 0.78 0.66
Block 3 95.53 4.47 2.32 1.93 1.76 1.68 1.6 1.37 1.25

We then test how many of these critical dimensions are shared between tasks. We can see the results
in Figure 8. A perfect KB would be composed of mostly reusable knowledge with some specific
knowledge that is only relevant for a single task. What we see is that critical modules are shared
between small groups of tasks (with one exception that is shared by 85% of the tasks). However, it is
difficult to extrapolate conclusions over these findings. It is not clear how to quantify the ratio of
specific knowledge to reusable knowledge, nor how to evaluate such a number if it was available.
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(a) Shared (b) Shared + MetaLearning

(c) Shared + Masks (d) MARK + Task

(e) MARK + Random (f) MARK + Resnet

Figure 7: CF and accuracy for different versions of MARK tested on 20-Split CIFAR100. (a)Without
using metalearning and mask-functions, performance is low and CF is high. (b) Adding only
metalearning, performance is still low, but there is almost no forgetting. (c) Adding only mask-
functions, performance increases but forgetting is still high. (d) MARK-Task, our full model,achieves
high performance with almost no forgetting. (e) and (f) Quality of input features for mask-generating
functions impacts overall accuracy but not forgetting. We hypothesize this is so because masks are
acting as a self-attention mechanism that improves as richer features are provided.

A.8 Importance of Training Stages
We analyze the contribution of the different steps behind the training of MARK. As our method
requires multiple steps in a particular order, it begs the question: are all of these steps necessary? To
answer this, we compare two different versions of our model to MARK:

• Feature: This baseline is trained using only F t with a classifier on top. It does not use KB,
mask-functions M t, or task specific classifiers Ct. This setup tests for no knowledge reuse between
tasks.

• No-Retraining: We perform the KB-Querying phase of training only at the start of training a
task. This setup tests the importance of retraining the mask functions and classifiers to take into
consideration the new knowledge provided by the metalearning process.

Figure 9 shows the impact of each training method on task accuracy. We observe that, as expected, as
we use more of MARK’s components results are better. What is interesting is the difference between
No Retraining and MARK at the beginning and by the end of training. For earlier tasks, not being
able to capitalize on the full knowledge of the KB hurts the current’s task accuracy greatly. However,
as we near the end of our training, the difference between using the fully trained KB vs not using it
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(a) Block 1 (64 modules) (b) Block 2 (128 modules) (c) Block 3 (256 modules)

Figure 8: Number of tasks that use a given critical dimension for each convolutional layer for a
model trained on 20-split CIFAR100. Critical dimensions are defined as those that when turned off
affect the correct classification of samples over a threshold. As we move closer to the output, layers
increase the amount of critical modules, as well as intertask dependency on dimensions. However,
no dimensions are universally useful. This suggests that while knowledge is reusable, there is still
task-specific knowledge being stored in the KB. We use a threshold of N=5 samples which is a 1%
deviation in accuracy.

Figure 9: Accuracy in each of the 20 tasks in the 20-Split MiniImagenet sequence. First, we obtain the
accuracy by only using the feature extractor. The No Retraining method shows a vast improvement on
average, with MARK being the superior model. Note how the differences between No Retraning and
MARK dwindle the more tasks we have trained. This suggests that MARK’s KB is storing reusable
knowledge that is available already at the start of training later tasks. The final three columns show
the average of the complete sequence.

dwindles. We hypothesize this is because MARK’s KB has already acquired sufficient knowledge
from previous tasks, to perform well on the current task.

A.9 Number of Updated Parameters

In section 4.2.1 we mention a metric based on "number of updated parameters", however, we do not
explain exactly what it means. We explain this now. For every task we compare the model before
training on task t and after training. We compare the mean of the absolute difference between the

“before” and “after” model against a threshold that is dependent on the standard deviation of the
weights of the “before” model. If it’s above this threshold we assume the weight was updated, else
we don’t. Standard deviations and means are calculated on a per-channel basis.

n∑
i=1

|θibefore − θiafter|
n

< µσbefore
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NeurIPS Paper Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? Yes. For metalearning as key component for not forgetting,
see section 4.2.3. For state of the art results, see Table 2. For reduced parameter use,
see "Parameters" section in Appendix.

(b) Did you describe the limitations of your work? Yes.
(c) Did you discuss any potential negative societal impacts of your work? No. Our work

is too broad and applicable for us to determine immediate applications that may be
harmful to society.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? Yes.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? n/a
(b) Did you include complete proofs of all theoretical results? n/a

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? Yes. We include a
.zip file with our code, and we list some hyperparameters in the Experiments section
and all of them in the appendix.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? Yes. See the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Yes. We include standard deviations on all of our figures. We
run experiments with 3 seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? Yes. See appendix for GPU details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? Yes.
(b) Did you mention the license of the assets? No. We use CIFAR-100 and MiniImageNet,

very standard benchmarks.
(c) Did you include any new assets either in the supplemental material or as a URL? No.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? No. We use CIFAR-100 and MiniImageNet, very standard benchmarks.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? No. We use CIFAR-100 and MiniImageNet, very
standard benchmarks.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? n/a
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? n/a
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? n/a
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