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Abstract

We study reinforcement learning (RL) with linear function approximation under
the adaptivity constraint. We consider two popular limited adaptivity models: the
batch learning model and the rare policy switch model, and propose two efficient
online RL algorithms for episodic linear Markov decision processes, where the
transition probability and the reward function can be represented as a linear function
of some known feature mapping. In specific, for the batch learning model, our
proposed LSVI-UCB-Batch algorithm achieves an Õ(

√
d3H3T +dHT/B) regret,

where d is the dimension of the feature mapping, H is the episode length, T is
the number of interactions and B is the number of batches. Our result suggests
that it suffices to use only

√
T/dH batches to obtain Õ(

√
d3H3T ) regret. For the

rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys
an Õ(

√
d3H3T [1 + T/(dH)]dH/B) regret, which implies that dH log T policy

switches suffice to obtain the Õ(
√
d3H3T ) regret. Our algorithms achieve the

same regret as the LSVI-UCB algorithm (Jin et al., 2020), yet with a substantially
smaller amount of adaptivity. We also establish a lower bound for the batch learning
model, which suggests that the dependency on B in our regret bound is tight.

1 Introduction

Real-world reinforcement learning (RL) applications often come with possibly infinite state and
action space, and in such a situation classical RL algorithms developed in the tabular setting are
not applicable anymore. A popular approach to overcoming this issue is by applying function
approximation techniques to the underlying structures of the Markov decision processes (MDPs).
For example, one can assume that the transition probability and the reward are linear functions of a
known feature mapping φ : S ×A → Rd, where S and A are the state space and action space, and
d is the dimension of the embedding. This gives rise to the so-called linear MDP model (Yang and
Wang, 2019; Jin et al., 2020). Assuming access to a generative model, efficient algorithms under
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this setting have been proposed by Yang and Wang (2019) and Lattimore et al. (2020). For online
finite-horizon episodic linear MDPs, Jin et al. (2020) proposed an LSVI-UCB algorithm that achieves
Õ(
√
d3H3T ) regret, where H is the planning horizon (i.e., length of each episode) and T is the

number of interactions.

However, all the aforementioned algorithms require the agent to update the policy in every episode. In
practice, it is often unrealistic to frequently switch the policy in the face of big data, limited computing
resources as well as inevitable switching costs. Thus one may want to batch the data stream and
update the policy at the end of each period. For example, in clinical trials, each phase (batch) of
the trial amounts to applying a medical treatment to a batch of patients in parallel. The outcomes
of the treatment are not observed until the end of the phase and will be subsequently used to design
experiments for the next phase. Choosing the appropriate number and sizes of the batches is crucial
to achieving nearly optimal efficiency for the clinical trial. This gives rise to the limited adaptivity
setting, which has been extensively studied in many online learning problems including prediction-
from-experts (PFE) (Kalai and Vempala, 2005; Cesa-Bianchi et al., 2013), multi-armed bandits
(MAB) (Arora et al., 2012; Cesa-Bianchi et al., 2013) and online convex optimization (Jaghargh et al.,
2019; Chen et al., 2020), to mention a few. Nevertheless, in the RL setting, learning with limited
adaptivity is relatively less studied. Bai et al. (2019) introduced two notions of adaptivity in RL, local
switching cost and global switching cost, that are defined as follows

Nlocal =

K−1∑
k=1

H∑
h=1

∑
s∈S

1{πkh(s) 6= πk+1
h (s)} and Nglobal =

K−1∑
k=1

1{πk 6= πk+1}, (1.1)

where πk = {πkh : S → A}h∈[H] is the policy for the k-th episode of the MDP, πk 6= πk+1 means
that there exists some (h, s) ∈ [H]×S such that πkh(s) 6= πk+1

h (s), and K is the number of episodes.
Then they proposed a Q-learning method with UCB2H exploration that achieves Õ(

√
H3SAT )

regret with O(H3SA log(T/(AH)) local switching cost for tabular MDPs, but they did not provide
tight bounds on the global switching cost.

In this paper, based on the above motivation, we aim to develop online RL algorithms with linear
function approximation under adaptivity constraints. In detail, we consider time-inhomogeneous2

episodic linear MDPs (Jin et al., 2020) where both the transition probability and the reward function
are unknown to the agent. In terms of the limited adaptivity imposed on the agent, we consider two
scenarios that have been previously studied in the online learning literature (Perchet et al., 2016;
Abbasi-Yadkori et al., 2011): the batch learning model and the rare policy switch model. More
specifically, in the batch learning model (Perchet et al., 2016), the agent is forced to pre-determine
the number of batches (or equivalently batch size). Within each batch, the same policy is used to
select actions, and the policy is updated only at the end of this batch. The amount of adaptivity in
the batch learning model is measured by the number of batches, which is expected to be as small as
possible. In contrast, in the rare policy switch model (Abbasi-Yadkori et al., 2011), the agent can
adaptively choose when to switch the policy and therefore start a new batch in the learning process as
long as the total number of policy updates does not exceed the given budget on the number of policy
switches. The amount of adaptivity in the rare policy switch model can be measured by the number
of policy switches, which turns out to be the same as the global switching cost introduced in Bai et al.
(2019). It is worth noting that for the same amount of adaptivity3, the rare policy switch model can
be seen as a relaxation of the batch learning model since the agent in the batch learning model can
only change the policy at pre-defined time steps. In our work, for each of these limited adaptivity
models, we propose a variant of the LSVI-UCB algorithm (Jin et al., 2020), which can be viewed as
an RL algorithm with full adaptivity in the sense that it switches the policy at a per-episode scale.
Our algorithms can attain the same regret as LSVI-UCB, yet with a substantially smaller number of
batches/policy switches. This enables parallel learning and improves the large-scale deployment of
RL algorithms with linear function approximation.

The main contributions of this paper are summarized as follows:

2We say an episodic MDP is time-inhomogeneous if its reward and transition probability are different at
different stages within each episode. See Definition 3.2 for details.

3The number of batches in the batch learning model is comparable to the number of policy switches in the
rare policy switch model.
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• For thebatch learningmodel, we propose an LSVI-UCB-Batch algorithm for linear MDPs and
show that it enjoys aneO(

p
d3H 3T + dHT=B) regret, whered is the dimension of the feature

mapping,H is the episode length,T is the number of interactions andB is the number of batches.
Our result suggests that it suf�ces to use only

p
T=dH batches, rather thanT batches, to obtain the

same regreteO(
p

d3H 3T) achieved by LSVI-UCB (Jin et al., 2020) in the fully sequential decision
model. We also prove a lower bound of the regret for this model, which suggests that the required
number of batcheseO(

p
T) is sharp.

• For therare policy switchmodel, we propose an LSVI-UCB-RareSwitch algorithm for linear
MDPs and show that it enjoys aneO(

p
d3H 3T[1 + T=(dH )]dH=B ) regret, whereB is the number

of policy switches. Our result implies thatdH logT policy switches are suf�cient to obtain the
same regreteO(

p
d3H 3T) achieved by LSVI-UCB. The number of policy switches is much smaller

than that4 of the batch learning model whenT is large.

Concurrent to our work, Gao et al. (2021) proposed an algorithm achievingeO(
p

d3H 3T) regret
with a O(dH logK ) global switching cost in the rare policy switch model. They also proved a

( dH= logd) lower bound on the global switching cost. The focus of our paper is different from
theirs: our goal is to design ef�cient RL algorithms under a switching cost budgetB , while their goal
is to achieve the optimal rate in terms ofT with as little switching cost as possible. On the other hand,
for the rare policy switch model, our proposed algorithm (LSVI-UCB-RareSwitch) along its regret
bound can imply their results by optimizing our regret bound concerning the switching cost budget
B .

The rest of the paper is organized as follows. In Section 2 we discuss previous works related to
this paper, with a focus on RL with linear function approximation and online learning with limited
adaptivity. In Section 3 we introduce necessary preliminaries for MDPs and adaptivity constraints.
Sections 4 and 5 present our proposed algorithms and the corresponding theoretical results for the
batch learning model and the rare policy switch model respectively. In Section 6 we present the
numerical experiment which supports our theory. Finally, we conclude our paper and point out a
future direction in Section 7.

Notation We use lower case letters to denote scalars and use lower and upper case boldface letters
to denote vectors and matrices respectively. For any real numbera, we write [a]+ = max( a; 0).
For a vectorx 2 Rd and matrix� 2 Rd� d, we denote bykxk2 the Euclidean norm and de�ne
kxk� =

p
x> �x . For any positive integern, we denote by[n] the setf 1; : : : ; ng. For any �nite set

A, we denote byjAj the cardinality ofA. For two sequencesf an g andf bn g, we writean = O(bn )
if there exists an absolute constantC such thatan � Cbn , and we writean = 
( bn ) if there exists
an absolute constantC such thatan � Cbn . We useeO(�) to further hide the logarithmic factors.

2 Related Works

Reinforcement Learning with Linear Function Approximation Recently, there have been many
advances in RL with function approximation, especially the linear case. Jin et al. (2020) proposed
an ef�cient algorithm for the �rst time for linear MDPs of which the transition probability and the
rewards are both linear functions with respect to a feature mapping� : S � A ! Rd. Under similar
assumptions, different settings (e.g., discounted MDPs) have also been studied in Yang and Wang
(2019); Du et al. (2020); Zanette et al. (2020); Neu and Pike-Burke (2020) and He et al. (2021). A
parallel line of work studies linear mixture MDPs (a.k.a. linear kernel MDPs) based on a ternary
feature mapping : S � A � S ! Rd (see Jia et al. (2020); Zhou et al. (2021b); Cai et al. (2020);
Zhou et al. (2021a)). For other function approximation settings, we refer readers to generalized
linear model (Wang et al., 2021), general function approximation with Eluder dimension (Wang et al.,
2020; Ayoub et al., 2020), kernel approximation (Yang et al., 2020), function approximation with
disagreement coef�cients (Foster et al., 2021) and bilinear classes (Du et al., 2021).

Online Learning with Limited Adaptivity As we mentioned before, online learning with limited
adaptivity has been studied in two popular models of adaptivity constraints: the batch learning model
and the rare policy switch model.

4The number of policy switches is identical to the number of batches in the batch learning model.
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For thebatch learning model, Altschuler and Talwar (2018) proved that the optimal regret bound for
prediction-from-experts (PFE) iseO(

p
T logn) when the number of batchesB = 
(

p
T logn), and

min( eO(T logn=B); T) whenB = O(
p

T logn), exhibiting a phase-transition phenomenon5. Here
T is the number of rounds andn is the number of actions. For general online convex optimization,
Chen et al. (2020) showed that the minimax regret bound iseO(T=

p
B ). Perchet et al. (2016) studied

batched 2-arm bandits, and Gao et al. (2019) studied the batched multi-armed bandits (MAB). Dekel
et al. (2014) proved a
( T=

p
B ) lower bound for batched MAB, and Altschuler and Talwar (2018)

further characterized the dependence on the number of actionsn and showed that the corresponding
minimax regret bound ismin( eO(T

p
n=

p
B ); T). For batched linear bandits with adversarial contexts,

Han et al. (2020) showed that the minimax regret bound iseO(
p

dT + dT=B) whered is the dimension
of the context vectors. Better rates can be achieved for batched linear bandits with stochastic contexts
as shown in Esfandiari et al. (2021); Han et al. (2020); Ruan et al. (2020).

For therare policy switch model, the minimax optimal regret bound for PFE isO(
p

T logn) in
terms of both the expected regret (Kalai and Vempala, 2005; Geulen et al., 2010; Cesa-Bianchi et al.,
2013; Devroye et al., 2015) and high-probability guarantees (Altschuler and Talwar, 2018), where
T is the number of rounds, andn is the number of possible actions. For MAB, the minimax regret
bound has been shown to beeO(T2=3n1=3) by Arora et al. (2012); Dekel et al. (2014). For stochastic
linear bandits, Abbasi-Yadkori et al. (2011) proposed a rarely switching OFUL algorithm achieving
eO(d

p
T) regret withlog(T) batches. Ruan et al. (2020) proposed an algorithm achievingeO(

p
dT)

regret with less thanO(d logd logT) batches for stochastic linear bandits with adversarial contexts.

For episodic RL with �nite state and action space, Bai et al. (2019) proposed an algorithm achieving
eO(

p
H 3SAT ) regret withO(H 3SA log(T=(AH ))) local switching cost whereS andA are the

number of states and actions respectively. They also provided a
( HSA) lower bound on the
local switching cost that is necessary for sublinear regret. For the global switching cost, Zhang
et al. (2021) proposed an MVP algorithm with at mostO(SA log(KH )) global switching cost for
time-homogeneous tabular MDPs.

3 Preliminaries

3.1 Markov Decision Processes

We consider the time-inhomogeneous episodic Markov decision process, which is denoted by a tuple
M (S; A ; H; f r h gh2 [H ]; f Ph gh2 [H ]). HereS is the state space (may be in�nite),A is the action
space where we allow the feasible action set to change from step to step,H is the length of each
episode, andr h : S � A ! [0; 1] is the reward function for each stageh 2 [H ]. At each stage
h 2 [H ], Ph (s0js; a) is the transition probability function which represents the probability for states
to transit to states0 given actiona. A policy � consists ofH mappings,f � h : S ! Ag h2 [H ]. For
any policy� , we de�ne the action-value functionQ�

h (s; a) and value functionV �
h (s) as follows:

Q�
h (s; a) = r h (s; a) + E�

� HX

i = h

r i (si ; ai )

�
�
�
�sh = s; ah = a

�
; V �

h (s) = Q�
h (s; � h (s)) ;

whereai � � i (�jsi ) and si +1 � Pi (�jsi ; ai ). The optimal value functionV �
h and the optimal

action-value functionQ�
h (s; a) are de�ned asV � (s) = sup � V �

h (s) andQ�
h (s; a) = sup � Q�

h (s; a),
respectively. For simplicity, for any functionV : S ! R, we denote[PV ](s; a) = Es0� P( �j s;a ) V(s0).
In the online learning setting, at the beginning ofk-th episode, the agent chooses a policy� k and the
environment selects an initial statesk

1 , then the agent interacts with environment following policy
� k and receives statessk

h and rewardsr h (sk
h ; ak

h ) for h 2 [H ]. To measure the performance of the
algorithm, we adopt the following notion of the total regret, which is the summation of suboptimalities
between policy� k and optimal policy� � :
De�nition 3.1. We denoteT = KH , and the regret Regret(T) is de�ned as

Regret(T) =
KX

k=1

h
V �

1 (sk
1 ) � V � k

1 (sk
1 )

i
:

5They call itB -switching budget setting, which is identical to the batch learning model.
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3.2 Linear Function Approximation

In this work, we consider a special class of MDPs calledlinear MDPs(Yang and Wang, 2019; Jin
et al., 2020), where both the transition probability function and reward function can be represented
as a linear function of a given feature mapping� : S � A ! Rd. Formally speaking, we have the
following de�nition for linear MDPs.
De�nition 3.2. M (S; A ; H; f r h gh2 [H ]; f Ph gh2 [H ]) is called a linear MDP if there exist aknown

feature mapping� (s; a) : S � A ! Rd, unknownmeasuresf � h = ( � (1)
h ; � � � ; � (d)

h )gh2 [H ] over
S and unknown vectorsf � h 2 Rdgh2 [H ] with maxh2 [H ]fk � h (S)k2; k� h kg �

p
d, such that the

following holds for allh 2 [H ]:

• For any state-action-state triplet(s; a; s0) 2 S � A � S , Ph (s0js; a) = h� (s; a); � h (s0)i .

• For any state-action pair(s; a) 2 S � A , r h (s; a) = h� (s; a); � h i .

Without loss of generality, we also assume thatk� (s; a)k2 � 1 for all (s; a) 2 S � A :

With De�nition 3.2, it is shown in Jin et al. (2020) that the action-value function can be written as a
linear function of the features.
Proposition 3.3 (Proposition 2.3, Jin et al. 2020). For a linear MDP, for any policy� , there ex-
ist weight vectorsf w �

h gh2 [H ] such that for any(s; a; h) 2 S � A � [H ], we haveQ�
h (s; a) =

h� (s; a); w �
h i . Moreover, we havekw �

h k2 � 2H
p

d for all h 2 [H ].

Therefore, with the known feature mapping� (�; �), it suf�ces to estimate the weight vectors
f w �

h gh2 [H ] in order to recover the action-value functions. This is the core idea behind almost
all the algorithms and theoretical analyses for linear MDPs.

3.3 Models for Limited Adaptivity

In this work, we consider RL algorithms with limited adaptivity. There are two typical models for
online learning with such limited adaptivity:batch learning model(Perchet et al., 2016) andrare
policy switch model(Abbasi-Yadkori et al., 2011).

For the batch learning model, the agent pre-determines the batch grids1 = t1 < t 2 < � � � < t B <
tB +1 = K + 1 at the beginning of the algorithm, whereB is the number of batches. Theb-th batch
consists oftb-th to (tb+1 � 1)-th episodes, and the agent follows the same policy within each batch.
The adaptivity is measured by the number of batches.

For the rare policy switch model, the agent can decide whether she wants to switch the current policy
or not. The adaptivity is measured by the number of policy switches, which is de�ned as

Nswitch =
K � 1X

k=1

1f � k 6= � k+1 g;

where� k 6= � k+1 means that there exists some(h; s) 2 [H ] � S such that� k
h (s) 6= � k+1

h (s). It is
worth noting thatNswitch is identical to theglobal switching costde�ned in (1.1).

Given a budget on the number of batches or the number of policy switches, we aim to design RL
algorithms with linear function approximation that can achieve the same regret as their full adaptivity
counterpart, e.g., LSVI-UCB (Jin et al., 2020).

4 RL in the Batch Learning Model

In this section, we consider RL with linear function approximation in the batch learning model, where
given the number of batchesB , we need to pin down the batches before the agent starts to interact
with the environment.

4.1 Algorithm and Regret Analysis

We propose LSVI-UCB-Batch algorithm as displayed in Algorithm 1, which can be regarded as
a variant of the LSVI-UCB algorithm proposed in Jin et al. (2020) yet with limited adaptivity.
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Algorithm 1 LSVI-UCB-Batch
Require: Number of batchesB , con�dence radius� , regularization parameter�
1: Setb  1, t i  (i � 1) � bK=B c + 1 ; i 2 [B ]
2: for episodek = 1 ; 2; : : : ; K do
3: Receive the initial statesk

1
4: if k = tb then
5: b  b+ 1 , Qk

H +1 (�; �)  0
6: for stageh = H; H � 1; : : : ; 1 do
7: � k

h  
P k � 1

� =1 � (s�
h ; a�

h )� (s�
h ; a�

h )> + � I
8: w k

h  (� k
h ) � 1 P k � 1

� =1 � (s�
h ; a�

h ) � [r h (s�
h ; a�

h ) + max a2A Qk
h+1 (s�

h+1 ; a)]
9: � k

h (�; �)  � � [� (�; �)> (� k
h ) � 1� (�; �)]1=2

10: Qk
h (�; �)  minf � (�; �)> w k

h + � k
h (�; �); H � h + 1g+ , � k

h (�)  argmaxa2A Qk
h (�; a)

11: end for
12: else
13: Qk

h  Qk � 1
h , � k

h  � k � 1
h , 8h 2 [H ]

14: end if
15: for stageh = 1 : : : ; H do
16: Take the actionak

h  � k
h (sk

h ), receive the rewardr h (sk
h ; ak

h ) and the next statesk
h+1

17: end for
18: end for

Algorithm 1 takes a series of batch gridsf t1; : : : ; tB +1 g as input, where thei -th batch starts att i
and ends att i +1 � 1. LSVI-UCB-Batch takes the uniform batch grids as its selection of grids, i.e.,
t i = ( i � 1) � bK=B c + 1 ; i 2 [B ]. By Proposition 3.3, we know that for eachh 2 [H ], the optimal
value functionQ�

h has the linear formh� (�; �); w �
h i . Therefore, to estimate theQ�

h , it suf�ces to
estimatew �

h . At the beginning of each batch, Algorithm 1 calculatesw k
h as an estimate ofw �

h by
ridge regression (Line 8). Meanwhile, in order to measure the uncertainty ofw k

h , Algorithm 1 sets
the estimateQk

h (�; �) as the summation of the linear functionh� (�; �); w k
h i and a Hoeffding-type

exploration bonus term� k
h (�; �) (Line 10), which is calculated based on the con�dence radius� . Then

it sets the policy� k
h as the greedy policy with respect toQk

h . Within each batch, Algorithm 1 simply
keeps the policy used in the previous episode without updating (Line 13). Apparently, the number of
batches of Algorithm 1 isB .

Here we would like to make a comparison between our LSVI-UCB-Batch and other related algorithms.
The most related algorithm is LSVI-UCB proposed in Jin et al. (2020). The main difference between
LSVI-UCB-Batch and LSVI-UCB is the introduction of batches. In detail, whenB = K , LSVI-
UCB-Batch degenerates to LSVI-UCB. Another related algorithm is the SBUCB algorithm proposed
by Han et al. (2020). Both LSVI-UCB-Batch and SBUCB take uniform batch grids as the selection
of batches. The difference is that SBUCB is designed for linear bandits, which is a special case of
episodic MDPs withH = 1 .

The following theorem presents the regret bound of Algorithm 1.
Theorem 4.1. There exists a constantc > 0 such that for any� 2 (0; 1), if we set� = 1 , � =
cdH

p
log(2dT=�), then under Assumption 3.2, the total regret of Algorithm 1 is bounded by

Regret(T) � 2H

s

T log
�

2dT
�

�
+

dHT
2B log 2

log
�

T
dH

+ 1
�

+ 4c

s

2d3H 3T log
�

2dT
�

�
log

�
T

dH
+ 1

�

with probability at least1 � � .

Theorem 4.1 suggests that the total regret of Algorithm 1 is bounded byeO(
p

d3H 3T + dHT=B).
WhenB = 
(

p
T=dH), the regret of Algorithm 1 iseO(

p
d3H 3T), which is the same as that of

LSVI-UCB in Jin et al. (2020). However, it is worth noting that LSVI-UCB needsK batches, while
Algorithm 1 only requires

p
T=dH batches, which can be much smaller thanK .
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Algorithm 2 LSVI-UCB-RareSwitch
Require: Policy switch parameter� , con�dence radius� , regularization parameter�
1: Initialize � h = � 0

h = � I d for all h 2 [H ]
2: for episodek = 1 ; 2; : : : ; K do
3: Receive the initial statesk

1
4: for stageh = 1 ; 2; � � � ; H do
5: � k

h  
P k � 1

� =1 � (s�
h ; a�

h )� (s�
h ; a�

h )> + � I d
6: end for
7: if 9h 2 [H ]; det(� k

h ) > � � det(� h ) then
8: Qk

H +1 (�; �)  0
9: for steph = H; H � 1; � � � ; 1 do

10: � h  � k
h

11: w k
h  (� k

h ) � 1 P k � 1
� =1 � (s�

h ; a�
h ) � [r h (s�

h ; a�
h ) + max a2A Qk

h+1 (s�
h+1 ; a)]

12: � k
h (�; �)  � � [� (�; �)> (� k

h ) � 1� (�; �)]1=2

13: Qk
h (�; �)  minf � (�; �)> w k

h + � k
h (�; �); H � h + 1g+ , � k

h (�)  argmaxa2A Qk
h (�; a)

14: end for
15: else
16: Qk

h  Qk � 1
h , � k

h  � k � 1
h , 8h 2 [H ]

17: end if
18: for stageh = 1 : : : ; H do
19: Take the actionak

h  � k
h (sk

h ), receive the rewardr h (sk
h ; ak

h ) and the next statesk
h+1

20: end for
21: end for

Next, we present a lower bound to show the dependency of the total regret on the number of batches
for the batch learning model.

Theorem 4.2. Suppose thatB � (d� 1)H=2. Then for any batch learning algorithm withB batches,
there exists a linear MDP such that the regret over the �rstT rounds is lower bounded by

Regret(T) = 
( dH
p

T + dHT=B):

Theorem 4.2 suggests that in order to obtain a standard
p

T-regret, the number of batchesB should
be at least in the order of
(

p
T), which is similar to its counterpart for batched linear bandits (Han

et al., 2020).

5 RL in the Rare Policy Switch Model

In this section, we consider the rare policy switch model, where the agent can adaptively choose the
batch sizes according to the information collected during the learning process.

5.1 Algorithm and Regret Analysis

We �rst present our second algorithm, LSVI-UCB-RareSwitch, as illustrated in Algorithm 2. Again,
due to the nature of linear MDPs, we only need to estimatew �

h by ridge regression, and then calculate
the optimistic action-value function using the Hoeffding-type exploration bonus� k

h (�; �) along with
the con�dence radius� . Note that the size of the bonus term inQk

h is determined by� k
h . Intuitively

speaking, the matrix� k
h in Algorithm 2 represents how much information has been learned about the

underlying MDP, and the agent only needs to switch the policy after collecting a signi�cant amount
of additional information. This is re�ected by the determinant of� k

h , and the upper con�dence bound
will become tighter (shrink) asdet(� k

h ) increases. The determinant based criterion is similar to the
idea of doubling trick, which has been used in the rarely switching OFUL algorithm for stochastic
linear bandits (Abbasi-Yadkori et al., 2011), UCRL2 algorithm for tabular MDPs (Jaksch et al., 2010),
and UCLK/UCLK+ for linear mixture MDPs in the discounted setting (Zhou et al., 2021b,a).

As shown in Algorithm 2, for each stageh 2 [H ] the algorithm maintains a matrix� h which is
updated at each policy switch (Line 10). For everyk 2 [K ], we denote bybk the episode from which
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the policy� k is computed. This is consistent with the one de�ned in Algorithm 1 in Section 4. At the
start of each episodek, the algorithm computesf � k

h gh2 [H ] (Line 5) and then compares them with
f � h gh2 [H ] using the determinant-based criterion (Line 7). The agent switches the policy if there
exists someh 2 [H ] such thatdet(� k

h ) has increased by some pre-determined parameter� > 1,
followed by policy evaluation (Lines 11-13). Otherwise, the algorithm retains the previous policy
(Line 16). Here the hyperparameter� controls the frequency of policy switch, and the total number
of policy switches can be bounded by a function of� .

Algorithm 2 is also a variant of LSVI-UCB proposed in Jin et al. (2020). Compared with LSVI-UCB-
Batch in Algorithm 1 for the batch learning model, LSVI-UCB-RareSwitch adaptively decides when
to switch the policy and can be tuned by the hyperparameter� and therefore �ts into the rare policy
switch model.

We present the regret bound of Algorithm 2 in the following theorem.

Theorem 5.1. There exists some constantc > 0 such that for any� 2 (0; 1), if we set� = 1 ,
� = cdH

p
log(2dT=�) and� = (1 + K=d)dH=B , then the number of policy switchesNswitch in

Algorithm 2 will not exceedB . Moreover, the total regret of Algorithm 2 is bounded by

Regret(T) � 2H

s

T log
�

2dT
�

�
+ 2c

p
2d3H 3T �

s
�

T
dH

+ 1
� dH

B

log
�

T
dH

+ 1
�

log
�

2dT
�

�

(5.1)

with probability at least1 � � .

A few remarks are in order.

Remark 5.2. Algorithm 2 needs to update the value of eachdet(� k
h ), and thanks to the special

structure of� k
h , this can be done ef�ciently by applying the matrix determinant lemma along with

the Sherman Morrison formula for ef�ciently updating each(� k
h ) � 1. For simplicity and clarity of

the presentation, we do not include these details in the pseudo-code.

Remark 5.3. By ignoring the non-dominating term, Theorem 5.1 suggests that the total regret of
Algorithm 2 is bounded byeO(

p
d3H 3T[1 + T=(dH )]dH=B ). Also, if we are allowed to choose

B , we can chooseB = 
( dH logT) to achieveeO(
p

d3H 3T) regret, which is the same as that
of LSVI-UCB in Jin et al. (2020). This also signi�cantly improves upon Algorithm 1 whenT is
suf�ciently large since previously we needB = 
(

p
T=dH). Our result exhibits a trade-off between

the total regret bound and the number of policy switches, i.e., as the adaptivity budgetB increases,
the regret bound decreases. This will also be re�ected by the numerical results later in Section 6.

Remark 5.4. Concurrent to our work, Gao et al. (2021) proposed an algorithm withB =

( dH logT) policy switches. Note thatB = 
( dH logT) corresponds to choosing� to be a
constant, which can be viewed as a special case of our algorithm. Their algorithm does not adapt to
different values of budgetB . Also, they did not study the batch learning model (Section 4) which we
think is of equally important practical interest.

Remark 5.5. Gao et al. (2021) established a lower bound, which claims that any rare policy switch
RL algorithm suffers a linear regret whenB = eo(dH ). However, unlike our lower bound for the
batch learning model (Theorem 4.2), their result does not provide a �ne-grained regret lower bound
for arbitrary adaptivity constraintB . It remains an open problem to establish such kind of lower
bound for the rare policy switch model.

6 Numerical Experiment

In this section, we provide numerical experiments to support our theory. We run our algorithms,
LSVI-UCB-Batch and LSVI-UCB-RareSwitch, on a synthetic linear MDP given in Example 6.1, and
compare them with the fully adaptive baseline, LSVI-UCB (Jin et al., 2020).

Example 6.1 (Hard-to-learn linear MDP, Zhou et al. 2021b). Let d > 0 be some integer and
� 2 (0; 1) be a constant. The state spaceS = f 0; 1g consists of two states, and the action space
A = f� 1gd� 3 contains2d� 3 actions where each action is represented by a(d � 3)-dimensional

8



(a) LSVI-UCB-Batch (b) LSVI-UCB-RareSwitch

Figure 1: Plot of average regret (Regret(T)=K ) v.s. the number of episodes. The results are averaged
over 50 rounds of each algorithm, and the error bars are chosen to be[20%; 80%]empirical con�dence
intervals.

vectora. For each state-action pair(s;a) 2 S � A , the feature vector is given by

� (s; a) =
�

(� a> ; 1 � �; � )> s = 0 ;
(0; : : : ; 0; �; 1 � � ) s = 1 :

(6.1)

For eachh 2 [H ], let 
 h 2 f� �=(d � 2)gd� 2 and de�ne the corresponding vector-valued measure as

� h (s) =
�

(
 >
h ; 1; 0)> s = 0

(� 
 >
h ; 0; 1)> s = 1

: (6.2)

Finally, we set� h � (0; : : : ; 0; � �=(1 � 2� ); (1 � � )=(1 � 2� )) 2 Rd for all h 2 [H ].

It is straightforward to verify that the feature vectors in(6.1)and the vector-valued measures in(6.2)
constitute a valid linear MDP such that, for alla 2 A andh 2 [H ],

r h (s;a) = 1f s = 1g; Ph (s0js; a) =

8
>><

>>:

1 � � � h a; 
 h i (s; s0) = (0 ; 0);
� + ha; 
 h i (s; s0) = (0 ; 1);
� (s; s0) = (1 ; 0);
1 � � (s; s0) = (1 ; 1):

In our experiment6, we setH = 10, K = 2500, � = 0 :35andd = 13, thusA contains 1024 actions.
Now we apply our algorithms, LSVI-UCB-Batch and LSVI-UCB-RareSwitch, to this linear MDP
instance, and compare their performance with the fully adaptive baseline LSVI-UCB (Jin et al.,
2020) under different parameter settings. In detail, for LSVI-UCB-Batch, we run the algorithm for
B = 10; 20; 30; 40; 50 respectively; for LSVI-UCB-RareSwitch, we set� = 2 ; 4; 8; 16; 32. We plot
the average regret (Regret(T)=K ) against the number of episodes in Figure 1. In addition to the
regret of the proposed algorithms, we also plot the regret of a uniformly random policy (i.e., choosing
actions uniformly randomly in each step) as a baseline.

From Figure 1, we can see that for LSVI-UCB-Batch, whenB �
p

K , it achieves a similar regret as
the fully adaptive LSVI-UCB as it collects more and more trajectories. For LSVI-UCB-RareSwitch,
a constant value of� yields a similar order of regret compared with LSVI-UCB as suggested by
Theorem 5.1. By comparing Figure 1(a) and 1(b), we can see that the performance of LSVI-UCB-
RareSwitch is consistently close to that of the fully-adaptive LSVI-UCB throughout the learning
process, while the performance gap between LSVI-UCB-Batch and LSVI-UCB is small only whenk
is large. This suggests a better adaptivity of LSVI-UCB-RareSwitch than LSVI-UCB-Batch, which
only updates the policy at pre�xed time steps, thus being not adaptive enough.

6All experiments are performed on a PC with Intel i7-9700K CPU.
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Moreover, we can also see the trade-off between the regret and the adaptivity level: with more
limited adaptivity (smallerB or larger� ) the regret gap between our algorithms and the fully adaptive
LSVI-UCB becomes larger. These results indicate that our algorithms can indeed achieve comparable
performance as LSVI-UCB, even under adaptivity constraints. This corroborates our theory.

7 Conclusions

In this work, we study online RL with linear function approximation under the adaptivity constraints.
We consider both the batch learning model and the rare policy switch models and propose two
new algorithms LSVI-UCB-Batch and LSVI-UCB-RareSwitch for each setting. We show that
LSVI-UCB-Batch enjoys aneO(

p
d3H 3T + dHT=B) regret and LSVI-UCB-RareSwitch enjoys

an eO(
p

d3H 3T[1 + T=(dH )]dH=B ) regret. Compared with the fully adaptive LSVI-UCB algo-
rithm (Jin et al., 2020), our algorithms can achieve the same regret with a much fewer number of
batches/policy switches. We also prove the regret lower bound for the batch learning learning model,
which suggests that the dependency onB in LSVI-UCB-Batch is tight.

For the future work, we would like to prove the regret lower bound for the rare policy switching
model that explicitly depends on the given adaptivity budgetB .
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(a) LSVI-UCB-Batch (b) LSVI-UCB-RareSwitch

Figure 2: Plot of average regret (Regret(T)=K ) v.s. the number of episodes in log-scale. The results
are averaged over 50 rounds of each algorithm, and the error bars are chosen to be[20%; 80%]
empirical con�dence intervals.

A Additional Details on the Numerical Experiments

A.1 Log-scaled Plot of the Average Regret

We also provide log-scaled plot of the average regret in Figure 2. We can see that the slope of the
average regret curves for our proposed algorithms is similar to that of the fully adaptive LSVI-UCB,
all indicating aneO(1=

p
T) scaling.

A.2 Misspeci�ed Linear MDP

We also empirically evaluate our algorithms on linear MDP with different levels of misspeci�cation.
In particular, based on the linear MDP instance constructed in Example 6.1, we follow the de�nition
of � -approximate linear MDP in Jin et al. (2020), and consider a corrupted transition given by

Ph (s0j0; a) = (1 � f (a)) � (0; a)> � h (s0) + f (a) 1f s0 = g(a)g

wheref : A ! [0; � ], � 2 (0; 1) andg : A ! S are unknown. The two additional functions,f
andg, can be constructed by random sampling before running the algorithms, and the magnitude of
� 2 (0; 1) characterizes the level of model misspeci�cation. All the other components of the model
and the experiment con�gurations remain the same as those in Section 6.

Under this misspeci�ed model with levels� = 0 :05; 0:1; 0:2; 0:4, we run LSVI-UCB-Batch with
B = 50 and LSVI-UCB-RareSwitch with� = 8 respectively. We plot the average regret of the
algorithms in Figure 3. We can see that our algorithms can still achieve a reasonably good performance
under considerable levels of model misspeci�cation.

B Proofs of Theorem 4.1

In this section we prove Theorem 4.1

For simplicity, we usebk to denote the batchtb satisfyingtb � k < t b+1 . Let � k
h (�; �) be � �

[� (�; �)> (� k
h ) � 1� (�; �)]1=2 for anyh 2 [H ]; k 2 [K ]. First, we need the following lemma which

gives Regret(T) a high probability upper bound that depends on the summation of bonuses.

Lemma B.1. With probability at least1 � � , the total regret of Algorithm 1 satis�es

Regret(T) �
KX

k=1

HX

h=1

min
n

H; 2� bk
h (sk

h ; ak
h )

o
+ 2H

s

T log
�

2dT
�

�
:
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