
A Hinge loss

The multiclass hinge loss is defined by

ℓt(W ) =


max{1−mt(W , yt), 0} if m⋆

t < κ

max{1−mt(W , yt), 0} if y⋆t ̸= yt and m⋆
t ≥ κ

0 if y⋆t = yt and m⋆
t ≥ κ,

(5)

where mt(W , y) = ⟨W y,xt⟩−maxk ̸=y⟨W k,xt⟩, m⋆
t = maxk mt(Wt, k), and κ ∈ [0, 1]. Setting

κ = 0 yields the multiclass hinge loss used in common implementations of the Perceptron. An
alternative version of Lemma 1 which holds for the hinge loss can be found in Lemma 3. This can
then be used to derive similar results for the hinge loss as for regular surrogate losses.
Lemma 3. Let ℓt be the multiclass hinge loss with κ = 1

2 and let a(Wt,xt) = ℓ
(
Wt,xt, y

⋆
t

)
,

where ℓ(·,xt, yt) = ℓt. Then GAPPLETRON satisfies∑
y∈[K]

p′t(y)1[y ̸= yt] ≤ max

{
2

3
,
K − 1

K

}
ℓt(Wt) + γt.

Furthermore, ℓt satisfies ∥∇ℓt(Wt)∥2 ≤ 4∥xt∥2ℓt(Wt).

Proof of Lemma 3. First, we have that∑
y∈[K]

p′t(y)1[y ̸= yt] ≤
(
1− ζtat − (1− ζt)γt

)
1[y⋆t ̸= yt] + ζtat

K − 1

K
+ (1− ζt)γt

≤ (1− at)1[y
⋆
t ̸= yt] + at

K − 1

K
+ γt,

where we used that ζ ∈ {0, 1} and the fact the number of mistakes while uniformly exploring on the
dominating set is upper bounded by 1.

To conclude the proof of the first statement we argue that the first two summands of the right hand
side are upper bounded by K−1

K ℓt(Wt). In order to show that, we split the analysis into two cases.
In the first case y⋆t = yt and the inequality follows by simply substituting at = ℓ

(
Wt,xt, y

⋆
t

)
=

ℓt(Wt). In the second case y⋆t ̸= yt and we have that

m⋆
t +mt(Wt, yt) =⟨W y⋆

t
t ,xt⟩ −max

k≠y⋆
t

⟨W k
t ,xt⟩+ ⟨W yt

t ,xt⟩ −max
k ̸=yt

⟨W k
t ,xt⟩

=⟨W yt

t ,xt⟩ −max
k ̸=y⋆

t

⟨W k
t ,xt⟩

≤⟨W yt

t ,xt⟩ − ⟨W yt

t ,xt⟩ = 0

and thus

m⋆
t ≤ −mt(Wt, yt). (6)

Since y⋆t ̸= yt we also have that

(1− at)1[y
⋆
t ̸= yt] + at

K − 1

K

=
(
1− ℓ

(
Wt,xt, y

⋆
t

))
+ ℓ
(
Wt,xt, y

⋆
t

)K − 1

K

= 1− 1

K
ℓ
(
Wt,xt, y

⋆
t

)
= 1− 1

K
1[m⋆

t < κ]
(
1−mt(Wt, y

⋆
t )
)
.

(7)

Now, if m⋆
t < κ then by equations (6) and (7) we have

(1− at)1[y
⋆
t ̸= yt] + at

K − 1

K
=

K − 1

K
+

1

K
m⋆

t ≤ K − 1

K
(1 +m⋆

t ) ≤
K − 1

K
ℓt(Wt).
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If m⋆
t ≥ κ, at = 0. Therefore, by equations (6) and (7) we have that

(1− at)1[y
⋆
t ̸= yt] + at

K − 1

K
=

1 +m⋆
t

1 +m⋆
t

≤ 1−mt(Wt, yt)

1 + κ
=

1

1 + κ
ℓt(Wt).

Setting κ = 1
2 completes the proof of the first statement.

For the proof of the second statement, first assume that y⋆t = yt. The case where m⋆
t ≥ κ is

straightforward, so suppose that m⋆
t < κ, in which case we have that

∥∇ℓt(Wt)∥2 ≤2∥xt∥2

=
1−m⋆

t

1−m⋆
t

∥xt∥2

≤4∥xt∥2ℓt(Wt).

The case where y⋆t ̸= yt is evident after observing that ℓt(Wt) ≥ 1 in that case.

B Details of Section 2 (Gappletron)

Lemma 2. Fix any feedback graph G and suppose that, for all t, ℓt is a regular surrogate loss
with respect to ℓ. If A satisfies equation (4) then, for any realization of the randomized predictions
y′1, . . . , y

′
T , GAPPLETRON, run on G with gap map a such that a(Wt,xt) = ℓ(Wt,xt, y

⋆
t ), satisfies

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt] ≤
T∑

t=1

ℓ̂t(U) +

T∑
t=1

γt

+ inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt)− vtℓt(Wt) + ηv2tLℓt(Wt)

)}
∀U ∈ W .

Proof of Lemma 2. By adding and subtracting the surrogate loss of the learner and using the guar-
antee of A we have

T∑
t=1

 ∑
y∈[K]

p′t(y)1[y ̸= yt]− ℓ̂t(U)


=

T∑
t=1

 ∑
y∈[K]

p′t(y)1[y ̸= yt]− ℓ̂t(Wt)

+

T∑
t=1

(
ℓ̂t(Wt)− ℓ̂t(U)

)

≤
T∑

t=1

 ∑
y∈[K]

p′t(y)1[y ̸= yt]− ℓ̂t(Wt)

+ h(U)

√√√√ T∑
t=1

∥ĝt∥2

≤ inf
η>0

h(U)2

2η
+

T∑
t=1

 ∑
y∈[K]

p′t(y)1[y ̸= yt]− ℓ̂t(Wt) +
η

2
∥ĝt∥2

 ,
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where in the last inequality we used
√
ab = infη>0

{
a
2η + η

2 b
}

. Recalling that ĝt = vt∇ℓt(Wt),
we continue by applying Lemma 1:

T∑
t=1

 ∑
y∈[K]

p′t(y)1[y ̸= yt]− ℓ̂t(U)


≤ inf

η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt) + γt − ℓ̂t(Wt) +

η

2
∥ĝt∥2

)}

= inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt) + γt − vtℓt(Wt) +

ηv2t
2

∥∇ℓt(Wt)∥2
)}

≤ inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt) + γt − vtℓt(Wt) + ηv2tLℓt(Wt)

)}
,

(8)

where in the final inequality we used equation (3). The lemma’s statement follows from rearranging
the last inequality.

C Details of Section 3 (Bounds that hold in expectation)

Theorem 4. Under the conditions of Lemma 2, GAPPLETRON with γ = 1
2h(U)

√
KρL satisfies:

E

[
T∑

t=1

1[y′t ̸= yt]

]

≤ E

[
T∑

t=1

ℓt(U)

]
+max

{
2K2Lh(U)2

max{1, |Q|}
, 2E

[
h(U)

√
ρKL

∣∣{t : y⋆t ̸∈ Q}
∣∣]}

Furthermore, if there exists a U ∈ W such that
∑T

t=1 ℓt(U) = 0 for all realizations of the learners’
actions, GAPPLETRON with γ = h(U)

√
Lρ satisfies:

E

[
T∑

t=1

1[y′t ̸= yt]

]

≤ E
[
max

{
4h(U)

√
ρL
∣∣{t : y⋆t ̸∈ Q}

∣∣, 4KLh(U)2

max{1, |Q|}

}]
− 1

K
E

[
T∑

t=1

ℓt(Wt)

]
.

Proof of Theorem 4. Denote by vmax = max{1,maxt vt}. Observe that Et[vt] = 1 and Et[v
2
t ] ≤

Et[vmax]. We start by applying Lemma 2 and taking expectations:

E

[
T∑

t=1

1[y′t ̸= yt]

]

− E

[
T∑

t=1

ℓt(U)

]
− E

[
T∑

t=1

γt

]

≤ E

[
inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt)− vtℓt(Wt) + ηv2tLℓt(Wt)

)}]

≤ inf
η>0

{
E
[
h(U)2

2η

]
+ E

[
T∑

t=1

(
ηvmaxL− 1

K

)
ℓt(Wt)

]}
≤ E

[
vmaxKLh(U)2

2

]
,
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where the last inequality follows from setting η = 1
KLvmax

. By using
∑J

j=1
1√
j
≤ 2

√
J we can see

that
∑T

t=1 γt ≤ 2γ
√∣∣{t : y⋆t ̸∈ Q}

∣∣. Now, observe that if y⋆t ∈ Q then Pt(yt ∈ out(y′t)) ≥
|Q|
K and

if y⋆t ̸∈ Q then Pt(yt ∈ out(y′t)) ≥ min
{

1
2ρ ,

γt

ρ

}
≥ min

{
1

2K , γT

ρ

}
. This means that

vmax ≤ max

{
ρ

γT
,

K

max{1, |Q|}

}
. (9)

Recall that γT = min{ 1
2 , γ/

√∣∣{t : y⋆t ̸∈ Q}
∣∣}. If ρ > 1 then |Q| = 0 which means that if 1

2 < γ√
T

then vmax ≤ 2K. On the other hand, if ρ = 1 then |Q| ≥ 1 which means that if 1
2 < γ√

T
then

vmax ≤ 2K
|Q| . This in turn means that

vmax ≤ max

ρ
√∣∣{t : y⋆t ̸∈ Q}

∣∣
γ

,
2K

max{1, |Q|}

 . (10)

Rearranging the previous inequality and substituting in γ = h(U)
√

L|S|,

E

[
T∑

t=1

1[y′t ̸= yt]

]
≤ E

[
T∑

t=1

ℓt(U)

]
+ E

[
h(U)

√
ρKL

∣∣{t : y⋆t ̸∈ Q}
∣∣]

+ E
[
max

{
h(U)

√
ρKL

∣∣{t : y⋆t ̸∈ Q}
∣∣, 2K2Lh(U)2

2max{1, |Q|}

}]
≤ E

[
T∑

t=1

ℓt(U)

]
+ E

[
max

{
2h(U)

√
ρKL

∣∣{t : y⋆t ̸∈ Q}
∣∣, 2K2Lh(U)2

max{1, |Q|}

}]
,

which completes the proof of the first statement of Theorem 4.

Now, in the case where there exists a U ∈ W such that
∑T

t=1 ℓt(U) = 0 for all realizations of the
learners’ actions, by the guarantee of A we have

E

[
T∑

t=1

ℓt(Wt)

]
= E

[
T∑

t=1

(
ℓ̂t(Wt)− ℓ̂t(U)

)]

≤ inf
η>0

{
E
[
h(U)2

2η

]
+ E

[
T∑

t=1

ηvmax

2
∥∇ℓt(Wt)∥2

]}

≤ inf
η>0

{
E
[
h(U)2

2η

]
+ E

[
T∑

t=1

ηvmaxLℓt(Wt)

]}

≤ E
[
vmaxLh(U)2

]
+ 1

2 E

[
T∑

t=1

ℓt(Wt)

]
,

where we used that ℓt is a regular surrogate loss (in particular equation (3)) and plugged in
η = 2(E[vmax]L)

−1. After reordering, the above gives us

E

[
T∑

t=1

ℓt(Wt)

]
≤ 2E

[
vmaxLh(U)2

]
. (11)

16



Now, by using Lemma 1, (10) and equation (11) we have that

E

[
T∑

t=1

1[y′t ̸= yt]

]

≤ E

[
T∑

t=1

K − 1

K
ℓt(Wt)

]
+ E

[
T∑

t=1

γt

]
− E

[
T∑

t=1

ℓ̂t(Wt)

]
+ E

[
T∑

t=1

ℓ̂t(Wt)

]

≤ E

[
T∑

t=1

γt

]
− 1

K
E

[
T∑

t=1

ℓt(Wt)

]
+ 2E[vmax]Lh(U)2

≤ 2E
[
h(U)

√
L|S

∣∣{t : y⋆t ̸∈ Q}
∣∣]− 1

K
E

[
T∑

t=1

ℓt(Wt)

]

+ E
[
max

{
2h(U)

√
ρL
∣∣{t : y⋆t ̸∈ Q}

∣∣, 2KLh(U)2

max{1, |Q|}

}]
≤ E

[
max

{
4h(U)

√
ρL
∣∣{t : y⋆t ̸∈ Q}

∣∣, 4KLh(U)2

max{1, |Q|}

}]
− 1

K
E

[
T∑

t=1

ℓt(Wt)

]
,

which completes the proof for the second statement of Theorem 4.

D Details of Section 4 (Bounds that hold with high probability)

We first provide a Lemma due to Beygelzimer et al. (2011) which we use to prove our high-
probability bounds.

Lemma 4. (Beygelzimer et al., 2011, Theorem 1) Let Z1, . . . , ZT be a sequence of real-valued
random variables. Suppose that |Zt| ≤ B and Et[Zt] = 0. For λ ∈ [0, 1

B ] and δ ∈ (0, 1), with
probability at least 1− δ, we have that

T∑
t=1

Zt ≤ λ(e− 2)

T∑
t=1

Et[Z
2
t ] +

ln(1/δ)

λ
.

Theorem 5. Under the conditions of Lemma 2, with probability at least 1− δ, GAPPLETRON with

γ =
√

Kρ
(
4ℓmax ln

1
δ′ + Lh(U)2

)
satisfies:

T∑
t=1

1[y′t ̸= yt] ≤
T∑

t=1

ℓt(U) + 4K ln
1

δ′

+max

{
5

√
KρT

(
4ℓmax ln

1

δ′
+ Lh(U)2

)
,
4K2

(
4ℓmax ln

1
δ′ + Lh(U)2

)
max{1, |Q|}

}

Furthermore, if there exists a U ∈ W such that
∑T

t=1 ℓt(U) = 0 4, then with probability at least

1− δ GAPPLETRON run with γ =
√
ρ
(
2Lh(U)2 + 9ℓmaxK ln 1

2δ

)
satisfies:

T∑
t=1

1[y′t ̸= yt] ≤
(K − 1)9 ln(1/2δ)

2

+ 4max

{√
ρ

(
2Lh(U)2 + 9ℓmaxK ln

1

2δ

)
T ,

2K
(
2Lh(U)2 + 9ℓmaxK ln 1

2δ

)
max{1, |Q|}

}
4Note that

∑T
t=1 ℓt(U) = 0, where ℓt may depend on the learner’s randomness, is a weaker condition than

standard separability. For example, if some U satisfies this condition for the standard multiclass hinge loss,
then U satisfies the same condition also for our version of the multiclass hinge, see (5).
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Proof. Before starting, we find a deterministic upper bound on the right-hand side of (9) in the proof
of Theorem 4. First, consider γT . By definition it depends on |{t : y∗t /∈ Q}|, which is random,
however for any realization we can exploit the trivial bound |{t : y∗t /∈ Q}| ≤ T to argue that
γT ≥ min

{
1
2 ,

γ√
T

}
. Furthermore, if ρ > 1 then |Q| = 0 which means that if 1

2 < γ√
T

then

vmax ≤ 2K. On the other hand, if ρ = 1 then |Q| ≥ 1 which means that if 1
2 < γ√

T
then vmax ≤ 2K

|Q| .
With that in mind, we can further bound equation (9):

vmax ≤ max

{
ρ

γT
,

K

max{1, |Q|}

}
≤ max

{
ρ
√
T

γ
,

2K

max{1, |Q|}

}
= Vmax (12)

As a first step in the actual proof, we study the concentration of the random variables 1[y′t ̸= yt]
around their means

∑
y∈[K] p

′
t(y)1[y ̸= yt]. In order to do so, consider their differences zt =

1[y′t ̸= yt]−
∑

y∈[K] p
′
t(y)1[y ̸= yt], which have zero mean and are bounded in [−1, 1]. By Lemma

1 we have

Et

[
z2t
]
≤ Et

[
1[y′t ̸= yt]

]
≤
(
K − 1

K
ℓt(Wt) + γt

)
.

Thus, we can use Lemma 4 and, with probability at least 1− δ′ we have that for η ∈ [0, 1]

T∑
t=1

zt ≤
ln(1/δ′)

η
+ η

T∑
t=1

(
K − 1

K
ℓt(Wt) + γt

)

=
(K − 1) ln(1/δ′)

η′
+

T∑
t=1

(
η′

K
ℓt(Wt) +

η′

K − 1
γt

) (13)

where last equality follows by scaling η = η′

K−1 , thus the inequality holds for all η′ ∈ [0,K − 1].

Similarly, we can argue about the concentration of vtrt around rt, where rt = ℓt(U)−K−η′

K ℓt(Wt).
Note that Et[vtrt − rt] = 0 and |vtrt − rt| ≤ 2ℓmaxVmax. Moreover

Et[(vtrt − rt)
2] ≤ Et

[
(vtrt)

2
]
≤ 2Vmaxℓmax|rt| ≤ 2Vmaxℓmax (ℓt(Wt) + ℓt(U)) .

We can finally apply Lemma 4 on vtrt − rt. Therefore, with probability at least 1 − δ′, for η ∈
[0, 1/(2ℓmaxVmax)] it holds that

T∑
t=1

(vtrt − rt) ≤
ln(1/δ)

η
+ η

T∑
t=1

2Vmaxℓmax (ℓt(Wt) + ℓt(U))

=
2VmaxℓmaxK

η′
ln(1/δ) +

η′

K

T∑
t=1

(ℓt(Wt) + ℓt(U)) ,

(14)

where last inequality is due to scaling η = η′

2VmaxℓmaxK
, thus the inequality holds for all η′ ∈ [0,K].

Choosing δ′ = δ
2 , we can conclude that both (13) and (14) hold with probability at least 1−δ, for any

η ∈ [0,K − 1]. The rest of the proof consists then in showing that (13) and (14) deterministically
imply the claimed bound. In particular, we study two different cases, i.e., when

∑T
t=1 ℓt(U) >∑T

t=1 ℓt(Wt) and its converse.
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We first consider
∑T

t=1 ℓt(U) ≤
∑T

t=1 ℓt(Wt). By Lemma 2 we find that for any η′ ∈ (0, 1]

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt]−
T∑

t=1

γt

≤
T∑

t=1

vtℓt(U) + inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt)− vtℓt(Wt) + ηv2tLℓt(Wt)

)}

≤
T∑

t=1

vtℓt(U) + inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
K − 1

K
ℓt(Wt)− vtℓt(Wt) + ηVmaxvtLℓt(Wt)

)}

≤
T∑

t=1

vtℓt(U) +
KLVmaxh(U)2

2η′
+

T∑
t=1

(
K − 1

K
ℓt(Wt)−

K − η′

K
vtℓt(Wt)

)

=

T∑
t=1

ℓt(U) +

T∑
t=1

(vtrt − rt) +
KLVmaxh(U)2

2η′
+

T∑
t=1

η′ − 1

K
ℓt(Wt),

where we have scaled down η′ = KLVmaxη. Substituting in (14), we get
T∑

t=1

∑
y∈[K]

p′t(y)1[y ̸= yt] ≤
T∑

t=1

γt +

(
1 +

η′

K

) T∑
t=1

ℓt(U) +
KLVmaxh(U)2

2η′

+

T∑
t=1

2η′ − 1

K
ℓt(Wt) +

2VmaxℓmaxK

η′
ln(1/δ). (15)

Equations (13) and (15) are all the ingredients we need to conclude the first case, in fact:
T∑

t=1

1[y′t ̸= yt]− ℓt(U)

≤
T∑

t=1

1[y′t ̸= yt]−
∑
y∈[K]

p′t(y)1[y ̸= yt]

+

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt]− ℓt(U)

≤ 4η′ − 1

K

T∑
t=1

ℓt(Wt) +

(
1 +

η′

K − 1

) T∑
t=1

γt

+
LKVmaxh(U)2

2η′
+

(K − 1) ln(1/δ′)

η′
+

2VmaxℓmaxK

η′
ln(1/δ)

≤ 5

4

T∑
t=1

γt + (1 + 8Vmaxℓmax)K ln
1

δ′
+ 2VmaxK

(
Lh(U)2

)
,

where in the last step make the substitution η′ = 1
4 . Now, we have that

∑T
t=1 γt ≤ 2γ

√
T and hence

we obtain
T∑

t=1

1[y′t ̸= yt]−
T∑

t=1

ℓt(U)

≤ 3γ
√
T +K ln

1

δ′

+max

{
ρK

√
T

γ
,

2K2

max{1, |Q|}

}(
8ℓmax ln

1

δ′
+ 2Lh(U)2

)
≤ K ln

1

δ′

+max

{
5

√
KρT

(
4ℓmax ln

1

δ′
+ Lh(U)2

)
,
4K2

(
4ℓmax ln

1
δ′ + Lh(U)2

)
max{1, |Q|}

}
.

(16)
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Consider now the second case, where
∑T

t=1 ℓt(U) >
∑T

t=1 ℓt(Wt). We are still assuming (13)
and (14) both hold, even though in this case we need only (13). The

∑T
t=1

∑
y∈[K] p

′
t(y)1[y ̸= yt]

term is upper bounded using (13). We have:
T∑

t=1

(
1[y′t ̸= yt]− ℓt(U)

)
=

T∑
t=1

(1[y′t ̸= yt]−
∑
y∈[K]

p′t(y)1[y ̸= yt]) +

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt]−
T∑

t=1

ℓt(U)

≤ (K − 1) ln(1/δ′)

η′
+

T∑
t=1

(
η′

K
ℓt(Wt) +

η′

K − 1
γt

)
+

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt]−
T∑

t=1

ℓt(U)

≤ (K − 1) ln(1/δ′)

η′
+

T∑
t=1

(
η′

K
ℓt(Wt) +

η′

K − 1
γt

)
+

T∑
t=1

K − 1

K
ℓt(Wt) + γt −

T∑
t=1

ℓt(Wt)

= (K − 1)4 ln(1/δ′) +

T∑
t=1

1

4K
ℓt(Wt) +

T∑
t=1

K − 1

K
ℓt(Wt) +

5

4

T∑
t=1

γt −
T∑

t=1

ℓt(Wt)

≤ 4K ln(1/δ′) +
5

4

T∑
t=1

γt

≤ 4K ln(1/δ′) + 3γ
√
T

= 4K ln(1/δ′) + 3

√
TKρ

(
4ℓmax ln

1

δ′
+ Lh(U)2

)
.

(17)
The first inequality is due to (13), while the second one to Lemma 1. The third inequality follows
from bounding 1

4K ≤ 1
K and finally, the last equality follows by substituting the stated γ.

In order to prove the second statement, we assume there exists a U ∈ W such that
∑T

t=1 ℓt(U) = 0
for all realizations of the learners’ predictions. By the guarantee on A and inequality (3) we have

T∑
t=1

ℓ̂t(Wt) =

T∑
t=1

(
ℓ̂t(Wt)− ℓ̂t(U)

)
≤ inf

η>0

{
h(U)2

2η
+

η

2

T∑
t=1

v2t ∥∇ℓt(Wt)∥2
}

≤ inf
η>0

{
h(U)2

2η
+ ηVmaxL

T∑
t=1

vtℓt(Wt)

}

≤ VmaxLh(U)2 +
1

2

T∑
t=1

vtℓt(Wt),

which, after recalling that ℓ̂t(Wt) = vtℓt(Wt), and reordering, gives us
T∑

t=1

ℓ̂t(Wt) ≤ 2VmaxLh(U)2. (18)

By Lemma 4, we have that for η ∈ [0, 1
2ℓmaxVmax

] and δ′ ∈ (0, 1), with probability at least 1− δ′

T∑
t=1

(
ℓt(Wt)− vtℓt(Wt)

)
≤

ln 1
δ′

η
+ η2ℓmaxVmax

T∑
t=1

ℓt(Wt)

=
2ℓmaxVmaxK ln 1

δ′

η′
+

η′

K

T∑
t=1

ℓt(Wt),

(19)
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for all η′ ∈ [0,K]. By equation (13), with probability at least 1−δ′ we have that for all η′ ∈ [0,K−1]

T∑
t=1

1[y′t ̸= yt] =

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt] +

T∑
t=1

1[y′t ̸= yt]−
∑
y∈[K]

p′t(y)1[y ̸= yt]


≤

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt] +
(K − 1) ln(1/δ′)

η′
+

T∑
t=1

(
η′

K
ℓt(Wt) +

η′

K − 1
γt

)
.

We continue by using Lemma 1 to bound
∑

y∈[K] p
′
t(y)1[y ̸= yt]:

T∑
t=1

1[y′t ̸= yt] ≤
T∑

t=1

K − 1

K
ℓt(Wt) + (1 +

η′

K − 1
)

T∑
t=1

γt +
(K − 1) ln(1/δ′)

η′
+

T∑
t=1

η′

K
ℓt(Wt)

=(1 +
η′

K − 1
)

T∑
t=1

γt +
(K − 1) ln(1/δ′)

η′
+

T∑
t=1

η′ − 1

K
ℓt(Wt)

+

T∑
t=1

vtℓt(Wt) +

T∑
t=1

(ℓt(Wt)− vtℓt(Wt)) .

By equation (19) and the union bound, with probability at least 1− 2δ′:
T∑

t=1

1[y′t ̸= yt] ≤(1 +
η′

K − 1
)

T∑
t=1

γt +
(K − 1) ln(1/δ′)

η′
+

T∑
t=1

2η′ − 1

K
ℓt(Wt)

+

T∑
t=1

vtℓt(Wt) +
2ℓmaxVmaxK ln 1

δ′

η′

≤(1 +
η′

K − 1
)

T∑
t=1

γt +
(K − 1) ln(1/δ′)

η′
+

T∑
t=1

2η′ − 1

K
ℓt(Wt)

+ 2VmaxLh(U)2 +
2ℓmaxVmaxK ln 1

δ′

η′
,

where the final inequality is due to equation (18). We now use
∑T

t=1 γt ≤ 2γ
√
T , set η′ = 1

2 , set
δ′ = 1

2δ, and use the definition of Vmax in equation (12) to continue:
T∑

t=1

1[y′t ̸= yt] ≤ 3γ
√
T + 2(K − 1) ln(1/2δ) + 2VmaxLh(U)2 + 4ℓmaxVmaxK ln

1

2δ

= 3γ
√
T + (K − 1)2 ln(1/2δ)

+ max

{
ρ
√
T

γ
,

2K

max{1, |Q|}

}(
Lh(U)2 + 4ℓmaxK ln(1/2δ)

)
≤ (K − 1)2 ln(1/2δ) + 4max

{√
ρ

(
2Lh(U)2 + 4ℓmaxK ln

1

2δ

)
T ,

2K
(
2Lh(U)2 + 4ℓmaxK ln 1

2δ

)
max{1, |Q|}

}
,

which holds with probability at least 1 − δ and completes the proof of the second statement of
Theorem 5.

We now restate Theorem 3, after which we prove it.
Theorem 3. Under the conditions of Lemma 2, with probability at least 1−δ, GAPPLETRON satisfies

MT ≤
T∑

t=1

ℓt(U) +KLh(U)2 +
3K ln(1/δ)

2
∀U ∈ W .
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Furthermore, for all U ∈ W such that
∑T

t=1 ℓt(U) = 0, then with probability at least 1 − δ,
GAPPLETRON satisfies MT ≤ 4Lh(U)2 + 3

4 ln
1
δ .

Proof of Theorem 3. Denote by zt =
(
1[y′t ̸= yt]−

∑
y∈[K] p

′
t(y)1[y ̸= yt]

)
. By Lemma 4, for

λ ∈ [0, 1], with probability at least 1− δ we have that

T∑
t=1

zt ≤ λ(e− 2)

T∑
t=1

Et

[
z2
t

]
+

ln(1/δ)

λ

Since the variance is bounded by the second moment, we have that

Et

[
z2t
]
≤ Et [1[y

′
t ̸= yt]] ≤

K − 1

K
ℓt(Wt),

where the last inequality is due to Lemma 1. By applying Lemma 2, and recalling that γt = 0 and
vt = 1 because we are in the full information setting, we find that with probability at least 1− δ

T∑
t=1

1[y′t ̸= yt] ≤
T∑

t=1

ℓt(U) + inf
η>0

{
h(U)2

2η
+

T∑
t=1

(
ηL− 1

2K

)
ℓt(Wt)

}

+

(
λ
3

4
− 1

2K

) T∑
t=1

ℓt(Wt) +
ln(1/δ)

λ

≤
T∑

t=1

ℓt(U) +KLh(U)2 +
3K ln(1/δ)

2
,

where in the last inequality we used λ = 2
3K , which completes the proof in the non-separable case.

In the separable case, when there exists a U ∈ W such that
∑T

t=1 ℓt(U) = 0, we can use Lemma 1
to show that, for some λ ∈ [0, 1], with probability at least 1− δ

T∑
t=1

1[y′t ̸= yt] ≤
3λ

4

T∑
t=1

Et [1[y
′
t ̸= yt]] +

ln(1/δ)

λ
+

T∑
t=1

∑
y∈[K]

p′t(y)1[y ̸= yt]

≤
(
1 +

3λ

4

) T∑
t=1

K − 1

K
ℓt(Wt) +

ln(1/δ)

λ

≤ 3

4
ln(1/δ) + 2

T∑
t=1

ℓt(Wt)

≤ 3

4
ln(1/δ) + 4Lh(U)2,

where in the last inequality we used equation (18) with Vmax = 1.

E Details of Section 5 (Lower Bounds)

Theorem 6. In the spam filtering classification setting with smooth hinge loss, the surrogate regret
of any (possibly randomized) algorithm satisfies

E

[
T∑

t=1

1[y′t ̸= yt]

]
=

T∑
t=1

ℓt(Û) + Ω
(√

T
)

for some label sequence y1, . . . , yT ∈ {1, 2}, for some sequence of feature vectors xt such that∥∥xt

∥∥
2
=

√
2 for all t, and for some Û such that

∥∥Û∥∥
2
≤

√
5.

Proof. We adapt an argument from Daniely et al. (2015, Lemma 3). Let R =
⌊√

T/2
⌋

and divide
the T rounds in 2R segments T1, . . . , T2R of size T/(2R) each (without loss of generality, assume
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that 2R divides T ). For each segment Ti, define the components xt,z of the feature vectors xt at
rounds t ∈ Ti as follows: xt,z = 1 if z ∈ {1, i+ 1} and xt,z = 0 otherwise.

Fix an algorithm A and assume yt = 1 for all t. Denote by N2 the rounds in which A predicts 2. If
E [|N2|] ≥ R, then A makes more than R = Ω

(√
T
)

mistakes and we are done because
T∑

t=1

ℓt(Û) =

T∑
t=1

max
{(

1− Û1
1 + Û2

1

)2
, 0
}
= 0

for Û defined as follows: Û1
1 = 1, Û1

z = 0 for z > 1, and Û2
z = 0 for all z. Consider then

E [|N2|] ≤ R. Since there are 2R segments, we must have that E [|N2 ∩ Tj |] ≤ 1
2 for some j ∈ [2R],

because otherwise E [|N2|] = E
[∑2R

i=1 |N2 ∩ Ti|
]
> R. Now, by Markov’s inequality we have that

P(|N2 ∩ Tj | ≥ 1) ≤ 1
2 which means that A does not predict 2 in segment j with probability at least

1
2 .

Now set yt = 2 for all t ∈ Tj . Since we are in the spam filtering setting, if label 2 is never predicted
in segment j, A cannot detect that the label has changed, and so it makes a mistake on each round
in Tj , which has length T/(2R). Hence

E

[
T∑

t=1

1[y′t ̸= yt]

]
≥ T

2R
P

(
T∑

t=1

1[y′t ̸= yt] ≥
T

2R

)
≥ T

4R
= Ω

(√
T
)

Define a new comparator Û as follows: Û1
z = 1 if z = 1 and Û1

z = 0 otherwise, and Û2
z = 2 if

z = j + 1 and Û2
z = 0 otherwise. For the same sequence of labels yt, we have that

T∑
t=1

ℓt(Û) =
∑
t∈Tj

max
{(

1− Û2
1 − Û2

j+1 + Û1
1 + Û1

j+1

)2
, 0
}
+
∑

t∈[T ]\Tj

max
{(

1− Û1
1 + Û2

1

)2
, 0
}

where the sums in the right-hand side are easily seen to be zero. This concludes the proof.

Theorem 7. Consider the full information setting with smooth hinge loss. For any integer B ≥ 2,
the surrogate regret of any (possibly randomized) algorithm satisfies

E

[
T∑

t=1

1[y′t ̸= yt]

]
≥ min

U∈W

T∑
t=1

ℓt(U) + (B2 − 1)(K − 1) +
K − 1

K

for some label sequence y1, . . . , yT ∈ [K] and for some sequence of feature vectors xt such that∥∥xt

∥∥
2
= 1 for all t, where W =

{
W :

∥∥W∥∥ ≤ B
}

.

Proof. We sample the labels yt uniformly at random for the first M +1 rounds, where M = (B2 −
1)K2. Then we set yt = yM+1 for each t > M+1. The feature vectors xt have M+1 components.
For t = 1, . . . ,M we set the components xt,z of the feature vectors xt as xt,t = 1 and xt,z = 0
for z ̸= t. For each t ≥ M + 1, we set xt,M+1 = 1 and xt,i = 0 for all i = 1, . . . ,M . We
now define a comparator Û as follows. For each z = 1, . . . ,M we set Ûy

z = 1
K for y = yt and

Ûy
z = 0 otherwise. Then we set Ûy

M+1 = 1 if y = yM+1 and Ûy
M+1 = 0 otherwise. Note that,

deterministically,
∥∥Û∥∥2

2
= 1+

∑M
t=1

(
Uyt

t

)2
= 1+ M

K2 = B2. Now fix any (possibly randomized)
algorithm A. With these choices, in the first M rounds we have

E

[
M∑
t=1

1[y′t ̸= yt]

]
− ℓt(Û) = M

K − 1

K
−M

(
1− 1

K

)2

= M

(
1

K
− 1

K2

)
.

In the next T −M rounds we have

E

[
T∑

t=M+1

1[y′t ̸= yt]

]
≥ K − 1

K
and

T∑
t=M+1

ℓt(Û) = 0 .

The above expectations are both with respect to the random draw of y1, . . . , yM+1 and to A’s internal
randomization. This implies that there exists a sequence y1, . . . , yM+1 such that the two above
bounds hold in expectation with respect to A’s internal randomization. Putting the two bounds
together concludes the proof.
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Figure 3: Results of the synthetic experiments for the bandit setting. The parameters of algorithms
are set to 1, except for T . The rows are the different values for K and the columns are the different
values for d. The whiskers represent the minimum and maximum error rates of the ten repetitions.
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Figure 4: Results of the synthetic experiments for the bandit setting with theoretical tuning. The
rows are the different values for K and the columns are the different values for d. The whiskers
represent the minimum and maximum error rates of the ten repetitions.

F Details of Section 6 (Experiments)

The feature vectors xt ∈ {0, 1}d and class labels are generated as follows. For each class we reserve
the first 10d′ bits to generate “keywords”. For each class, 1d′ to 5d′ of these bits are randomly turned
on to represent the keywords for that class. The remaining 30d′ bits are reserved for unrelated words,
of which 5d′ are randomly turned on. For each t we select a class uniform at random and set xt to be
the feature vector described above. Then, with probability 0, 0.05, or 0.1, we replace the class with
a uniformly at random chosen class. We varied between 6, 9, or 12 classes and varied d′ ∈ [2, 3, 4].
In the multiclass spam filtering setting we fixed Q = {1}, i.e., querying yt corresponds to predicting
label 1.

As suggested by Hazan and Kale (2011), we tuned PNewtron with α = 10 and chose the unit ball as
domain. For SOBAdiag, we used the adaptive tuning for the exploration rate in the experiment with
theoretical tuning and used a fixed exploration rate in the experiment with tuning based only on T .

For the experiments in the partial information setting we tuned the algorithms according to what
theory suggests for the worst case. Additionally, we also ran experiments with all parameters set to
1, except for T . Initially we only tuned the algorithms with theoretical tuning, but we found that
in the bandit setting two of the algorithms we compare with did not have satisfactory performance.
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Figure 5: Results of the synthetic experiments for multiclass spam filtering. The parameters of
algorithms are set to 1, except for T . The rows are the different values for K and the columns are
the different values for d. The whiskers represent the minimum and maximum error rates of the ten
repetitions.
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Figure 6: Results of the synthetic experiments for multiclass spam filtering with theoretical tuning.
The rows are the different values for K and the columns are the different values for d. The whiskers
represent the minimum and maximum error rates of the ten repetitions.

All parameters based on (an upper bound on) ∥U∥ we set to 1 as to not advantage or disadvantage
algorithms that did not use tuning based on ∥U∥. All experiments involving randomness due to the
algorithms we repeated ten times.

All experiments were run on a system with 8GB of ram, an Intel i5-6300U CPU, and in python 3.8.5
on a Windows 10 operating system. The results of the experiments are summarized in Figures 3,
4, 5, 6, 7, and 8. We also ran experiments in for the label efficient graph comparing GAPPLETRON
with the label efficient PERCEPTRON of Cesa-Bianchi et al. (2006). However, as they assume that
labels come without a cost it was not clear how to tune their algorithm. We tried several parameter
values which still guarantees sublinear regret in T . However, with none of the choices of parameters
the label efficient PERCEPTRON performed as well as GAPPLETRON, so we choose not to report the
results of these experiments.

In the experiments with bandit feedback, as we mentioned, Figure 4 shows that with theoretical
tuning both PNewtron and SOBAdiag performed poorly. We suspect this is due to the tuning with
d, as when we do not tune with d the performance of these algorithms greatly improved (see Fig-
ure 3). The error rate of BANDITRON was the lowest with theoretical tuning in roughly half of the
experiments. For GapLog and GapSmH the performance also improved when only tuning with T ,
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Figure 7: Results of the synthetic experiments for the full information setting. The rows are the
different values for K and the columns are the different values for d. The whiskers represent the
minimum and maximum error rates of the ten repetitions.
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Figure 8: Results of the synthetic experiments for the multiclass spam filtering. The plot shows the
best results of algorithms with parameters suggested by theory, or tuned with all parameters set to 1,
except for T . The rows are the different values for K and the columns are the different values for d.
The whiskers represent the minimum and maximum error rates of the ten repetitions.

especially in experiments with no noise. GapHin became more unstable when tuning only with T ,
as can been seen from the spread of the results. We suspect this is due to the fact that with the hinge
loss, GAPPLETRON explores less than with the smooth hinge loss and the logistic loss. Note that
with the smooth hinge loss GAPPLETRON explores less than with the logistic loss, which also seems
to become apparent from the range of performance of these two versions of GAPPLETRON. With
theoretical tuning, in low noise settings Banditron is on par with the performance of all versions of
GAPPLETRON, but with high noise GapLog and GapSmH outperform all other algorithms. With
tuning that only depends on T , GapLog and GapSmH strictly outperform all other algorithms. Fig-
ure 2 contains the results for the best version of each bandit algorithm, which shows that GapLog
and GapSmH outperform all other algorithms.

In the multiclass spam filtering setting we compared GAPPLETRON with the importance weighted
version of Banditron, which explored the revealing action with probability max{ 1

2 , (X
2/T )1/3} or

with probability max{ 1
2 , (1/T )

1/3}, where the former is the theoretical tuning and ∥xt∥2 ≤ X .

In multiclass spam filtering with theoretical tuning (Figure 6), BANDITRON had the lowest error rate
in the no-noise experiments. For experiments with noise we see that as K increases the performance
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Figure 9: Results of the synthetic experiments for Gaptron and Gappletron in the full information
setting. The rows are the different values for K and the columns are the different values for d. The
whiskers represent the minimum and maximum error rates of the ten repetitions.

of GAPPLETRON deteriorates compared to the performance of BANDITRON. We suspect this is
due the

√
K in the exploration of GAPPLETRON, which does not appear in the exploration of BAN-

DITRON5. In Figure 5 we can see that with tuning based solely on T , the spread of the algorithms
seems to increase, as was the case in the bandit setting. Either GapHin or GapSmH had the lowest
error rate in these experiments, which is also true when comparing the algorithms across the tuning
for the exploration rate (Figure 8). The performance of GapLog get worse as K increases, is was the
case in the full information setting. We suspect this is due the fact that GapLog explores more than
GapHin and GapSmH. While in the bandit setting extra exploration gives additional information, in
multiclass spam filtering it does not provide additional information and it only leads to making more
mistakes.

In the full information setting we compare GAPPLETRON with the diagonal version of the second-
order Perceptron, soPerceptron (Cesa-Bianchi et al., 2005), the multiclass Perceptron, and the
passive-aggressive version of the multiclass perceptron (Crammer et al., 2006). In Figure 7, we
can see that if there is no label noise, essentially all algorithms find the separating hyperplane. Note
that GapLog has the worst performance in this case. This is due to the fact that with the logistic loss,
GAPPLETRON never stops with playing at random, leading to sometimes unnecessarily playing the
wrong action. We also see this behavior in experiments with label noise, where GapLog performs
worse than the other versions of GAPPLETRON, although its performance in still either on par with or
better than the non-GAPPLETRON algorithms in these experiments. Overall, in the full information
experiments GapSmH appears to have the best performance.

F.1 Gappletron and Gaptron Comparison

We also compared the performance of GAPPLETRON against that of GAPTRON. We use GTronHin
as an abbreviation for GAPTRON with the hinge loss, GTronLog as an abbreviation for GAPTRON
with the logistic loss, and GTronSmH as an abbreviation for GAPTRON with the smooth hinge loss.

In Figure 9 we see the results of the experiments with full information feedback. For the logistic
loss and the hinge loss, GAPPLETRON seems to outperform GAPTRON, especially for larger K. We
suspect this is due to the choice of gap map, which is one of the most apparent differences between
the two algorithms. The optimizers used by GAPPLETRON and GAPTRON also differ, but this seems
to have a smaller impact as for the smooth hinge loss the gap maps coincide and the performances
are roughly equivalent.

5Although no bound exists for this algorithm in literature, one can adapt the proof of Kakade et al. (2008)
to prove a O((X∥U∥)1/3T 2/3) surrogate regret bound.
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Figure 10: Results of the synthetic experiments for Gaptron and Gappletron with theoretical tuning
in the bandit setting. The rows are the different values for K and the columns are the different values
for d. The whiskers represent the minimum and maximum error rates of the ten repetitions.
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Figure 11: Results of the synthetic experiments for Gaptron and Gappletron in the bandit setting.
The parameters of algorithms are set to 1, except for T . The rows are the different values for K and
the columns are the different values for d. The whiskers represent the minimum and maximum error
rates of the ten repetitions.

In the bandit setting, we did two experiments with GAPTRON: one experiment in which the param-
eters are set as suggested by theory (Figure 10) and one experiment in which all parameters are set
to 1, except for T (Figure 11). With the hinge loss the performance of the algorithms is roughly
on par, although with in the separable case GAPTRON slightly outperforms GAPPLETRON whereas
in the non-separable setting it is the other way around. For the smooth hinge loss and the logistic
loss GAPPLETRON has a smaller error rate, which we suspect is due to the exploration rate. In the
experiments where all parameters are set to 1 expect for T GAPPLETRON outperforms GAPTRON.
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