
Appendices
A Pseudocode of CDS

We present the summary of the pseudocode of CDS in Algorithm 1.
Algorithm 1 CDS: Conservative Data Sharing
Require: Multi-task offline dataset ∪N

i=1Di.
1: Randomly initialize policy πθ(a|s, i).
2: for k = 1, 2, 3, · · · , do
3: Initialize Deff ← {}
4: for i = 1, · · · , N do
5: Deff

i = Di ∪ {(sj ,aj , s
′
j , ri) ∈ Dj→i : ∆

π(s,a) ≥ 0} using Eq. 6 (CDS) or Eq. 18 (CDS(basic)).
6: Improve policy by solving eq. 2 using samples from Deff to obtain πk+1

θ .

B Analysis of CDS

In this section, we will analyze the key idea behind our method CDS (Section 5) and show that the
abstract version of our method (Equation 5) provides better policy improvement guarantees than
naïve data sharing and that the practical version of our method (Equation 6) approximates Equation 5
resulting in an effective practical algorithm.

B.1 Analysis of the Algorithm in Equation 5

We begin with analyzing Equation 5, which is used to derive the practical variant of our method,
CDS. We build on the analysis of safe-policy improvement guarantees of conventional offline RL
algorithms [41, 39] and show that data sharing using CDS attains better guarantees in the worst case.
To begin the analysis, we introduce some notation and prior results that we will directly compare to.

Notation and prior results. Let πβ(a|s) denote the behavior policy for task i (note that index i
was dropped from πβ(a|s; i) for brevity). The dataset, Di is generated from the marginal state-
action distribution of πβ , i.e., D ∼ dπβ (s)πβ(a|s). We define dπD as the state marginal distribution
introduced by the dataset D under π. Let DCQL(p, q) denote the following distance between two
distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

Unless otherwise mentioned, we will drop the subscript “CQL” from DCQL and use D and DCQL
interchangeably. Prior works [39] have shown that the optimal policy π∗

i that optimizes Equation 1
attains a high probability safe-policy improvement guarantee, i.e., J(π∗

i) ≥ J(πβ)− ζi, where ζi is:

ζi = O
(

1

(1− γ)2

)
E
s∼d

π∗
i

Di

[√
DCQL(π∗

i , πβ)(s) + 1

|Di(s)|

]
+ αD(π∗

i , πβ). (7)

The first term in Equation 7 corresponds to the decrease in performance due to sampling error and
this term is high when the single-task optimal policy π∗

i visits rarely observed states in the dataset
Di and/or when the divergence from the behavior policy πβ is higher under the states visited by the
single-task policy s ∼ d

π∗
i

Di
.

Let JD(π) denote the return of a policy π in the empirical MDP induced by the transitions in the
dataset D. Further, let us assume that optimizing Equation 5 gives us the following policies:

π∗(a|s), π∗
β(a|s) := arg max

π,πβ∈Πrelabel
JDeff

i
(π)− αD(π, πβ)︸ ︷︷ ︸
:=f(π,πβ ;Deff

i)

, (8)

where the optimized behavior policy π∗
β is constrained to lie in a set of all policies that can be

obtained via relabeling, Πrelabel, and the dataset,Deff
i is sampled according to the state-action marginal

17

distribution of π∗
β , i.e., Deff

i ∼ dπ
∗
β (s,a). Additionally, for convenience, define, f(π1, π2;D) :=

JD(π1)− αD(π1, π2) for any two policies π1 and π2, and a given dataset D.

We now show the following result for CDS:
Proposition B.1 (Proposition 5.1 restated). Let π∗(a|s) be the policy obtained by optimizing Equa-
tion 5, and let πβ(a|s) be the behavior policy for Di. Then, w.h.p. ≥ 1 − δ, π∗ is a ζ-safe policy
improvement over πβ , i.e., J(π∗) ≥ J(πβ)− ζ, where ζ is given by:

ζ = O
(

1

(1− γ)2

)
Es∼dπ∗

Deff
i

√DCQL(π∗, π∗
β)(s) + 1

|Deff
i (s)|

−
αD(π∗, π∗

β) + J(π∗
β)− J(πβ)︸ ︷︷ ︸

(a)

 ,

where Deff
i ∼ dπ

∗
β (s) and π∗

β(a|s) denotes the policy π ∈ Πrelabel that maximizes Equation 5.

Proof. To prove this proposition, we shall quantify the lower-bound on the improvement in the policy
performance due to Equation 8 in the empirical MDP, and the potential drop in policy performance
in the original MDP due to sampling error, and combine the terms to obtain our bound. First note
that for any given policy π, and a dataset Deff

i with effective behavior policy πβ(a|s), the following
bound holds [39]:

J(π) ≥ JDeff
i
(π)−O

(
1

(1− γ)2

)
Es∼dπ

Deff
i

√DCQL(π, π∗
β)(s) + 1

|Deff
i (s)|

 , (9)

where theO(·) notation hides constants depending upon the concentration properties of the MDP [41]
and 1− δ, the probability with which the statement holds. Next, we provide guarantees on policy
improvement in the empirical MDP. To see this, note that the following statements on f(π1, π2;D)
are true:

∀π′ ∈ Πrelabel, f(π∗, π∗
β ;Deff

i) ≥ f(π′, π′,Deff
i) (10)

=⇒ ∀π′ ∈ Πrelabel, JDeff
i
(π∗)− αD(π∗, π∗

β) ≥ JDeff
i
(π′). (11)

And additionally, we obtain:

∀π′ ∈ Πrelabel, f(π∗, π∗
β ;Deff

i) ≥ f(π∗, π′;Deff
i), (12)

=⇒ ∀π′ ∈ Πrelabel, D(π∗, π∗
β) ≤ D(π∗, π′). (13)

Utilizing 11, we obtain that:

JDeff
i
(π∗)−JDeff

i
(πβ) ≥ αD(π∗, π∗

β)+
(
JDeff

i
(π∗

β)− JDeff
i
(πβ)

)
≈ αD(π∗, π∗

β)+
(
J(π∗

β)− J(πβ)
)
,

(14)
where ≈ ignores sampling error terms that do not depend on distributional shift measures like DCQL
because π∗

β and πβ are behavior policies which generated the complete and part of the dataset,
and hence these terms are dominated by and subsumed into the sampling error for π∗. Combining
Equations 9 (by setting π = π∗) and 14, we obtain the following safe-policy improvement guarantee
for π∗: J(π∗)− J(πβ) ≥ ζ, where ζ is given by:

ζ = O
(

1

(1− γ)2

)
Es∼dπ∗

Deff
i

√DCQL(π∗, π∗
β)(s) + 1

|Deff
i (s)|

−
αD(π∗, π∗

β) + J(π∗
β)− J(πβ)︸ ︷︷ ︸

(a)

 ,

which proves the desired result.

Proposition B.1 indicates that when optimizing the behavior policy with Equation 5, we can improve
upon the conventional safe-policy improvement guarantee (Equation 7) with standard single-task
offline RL: not only do we improve via DCQL(π

∗, π∗
β), since, DCQL(π

∗, π∗
β) ≤ DCQL(π

∗, πβ), which
reduces sampling error, but utilizing this policy π∗

β also allows us to improve on term (a), since
Equation 8 optimizes the behavior policy to be close to the learned policy π∗ and maximizes the
learned policy return JDeff

i
(π∗) on the effective dataset, thus providing us with a high lower bound

on J(π∗
β). We formalize this insight as Lemma B.1 below:

18

Lemma B.1. For sufficiently large α, JDeff
i
(π∗

β) ≥ JDeff
i
(πβ) and thus (a) ≥ 0.

Proof. To prove this, we note that using standard difference of returns of two policies, we get the
following inequality: JDeff

i
(π∗

β) ≥ JDeff
i
(π∗)− C Rmax

1−γ DTV(π
∗, π∗

β). Moreover, from Equation 11,
we obtain that: JDeff

i
(π∗)− αD(π∗, π∗

β) ≥ JDeff
i
(πβ). So, if α is chosen such that:

CRmax

1− γ
DTV(π

∗, π∗
β) ≤ αD(π∗, π∗

β), (15)

we find that:

JDeff
i
(π∗

β) ≥ JDeff
i
(π∗)− C

Rmax

1− γ
DTV(π

∗, π∗
β) ≥ JDeff

i
(π∗)− αD(π∗, π∗

β) ≥ JDeff
i
(πβ),

implying that (a) ≥ 0. For the edge cases when either DTV(π
∗, π∗

β) = 0 or DCQL(π
∗, π∗

β) = 0,
we note that π∗(a|s) = π∗

β(a|s), which trivially implies that JDeff
i
(π∗

β) = JDeff
i
(π∗) ≥ JDeff

i
(πβ),

because π∗ improves over πβ on the dataset. Thus, term (a) is positive for large-enough α and the
bound in Proposition B.1 gains from this term additionally.

Finally, we show that the sampling error term is controlled when utilizing Equation 5. We will show
in Lemma B.2 that the sampling error in Proposition B.1 is controlled to be not much bigger than the
error just due to variance, since distributional shift is bounded with Equation 5.

Lemma B.2. If π∗ and π∗
β obtained from Equation 5 satisfy, DCQL(π

∗, π∗
β) ≤ ε≪ 1, then:

($) := Es∼dπ∗
Deff

i

√DCQL(π∗, π∗
β)(s) + 1

|Deff
i (s)|

 ≤ (1 + ε)
1
2 Es∼dπ∗

Deff
i

[√
1

|Deff
i (s)|

]
︸ ︷︷ ︸

:=sampling error w/o distribution shift

. (16)

Proof. This lemma can be proved via a simple application of the Cauchy-Schwarz inequality. We
can partition the first term as a sum over dot products of two vectors such that:

($) =
∑
s

√
dπ

∗

Deff
i

(s)(DCQL(π∗, π∗
β)(s) + 1)

√
dπ

∗

Deff
i

(s)

|Deff
i (s)|

≤

√√√√(∑
s

dπ
∗

Deff
i

(s)(DCQL(π∗, π∗
β)(s) + 1)

)
·

(∑
s

dπ
∗

Deff
i

(s)

|Deff
i (s)|

)

=

√
Es∼dπ∗

Deff
i

[
DCQL(π∗, π∗

β)(s) + 1
]
Es∼dπ∗

Deff
i

[
1

|Deff
i (s)|

]
≤ (1 + ε)0.5Es∼dπ∗

Deff
i

[√
1

|Deff
i (s)|

]
,

where we note that Es∼dπ∗
Deff

i

[
DCQL(π

∗, π∗
β)(s)

]
= DCQL(π

∗, π∗
β) ≤ ε (based on the given informa-

tion in the Lemma) and that
√∑

i wi
1
xi
≤
∑

i wi
1√
xi

for xi, wi > 0 and
∑

i wi = 1, via Jensen’s
inequality for concave functions.

To summarize, combining Lemmas B.1 and B.2 with Proposition B.1, we conclude that utilizing
Equation 5 controls the increase in sampling error due to distributional shift, and provides improve-
ment guarantees on the learned policy beyond the behavior policy of the original dataset. We also
briefly now discuss the comparison between CDS and complete data sharing. Complete data sharing
would try to reduce sampling error by increasing |Deff

i (s)|, but then it can also increase distributional
shift, DCQL(π

∗, π∗
β) as discussed in Section 4. On the other hand, CDS increases the dataset size

while also controlling for distributional shift (as we discussed in the analysis above), making it enjoy
the benefits of complete data sharing and avoiding its pitfalls, intuitively. On the other hand, no data
sharing will just incur high sampling error due to limited dataset size.

19

B.2 From Equation 5 to Practical CDS (Equation 6)

The goal of our practical algorithm is to convert Equation 5 to a practical algorithm while retaining
the policy improvement guarantees derived in Proposition B.1. Since our algorithm does not utilize
any estimator for dataset counts |Deff

i (s)|, and since we operate in a continuous state-action space,
our goal is to retain the guarantees of increased return of π∗

β , while also avoiding sampling error.

With this goal, we first need to relax the state-distribution in Equation 5: while both JDeff
i
(π) and

DCQL(π, πβ) are computed as expectations under the marginal state-distribution of policy π(a|s) on
the MDP defined by the dataset Deff

i , for deriving a practical method we relax the state distribution
to use the dataset state-distribution dπ

∗
β and rewrite the objective in accordance with most practical

implementations of actor-critic algorithms [12, 1, 26, 21, 46] below:

(Practical Equation 5) max
π

max
πβ∈Πrelabel

Es∼Deff
i
[Ea∼π(a|s)[Q(s,a)]− αD(π(·|s), πβ(·|s))] (17)

This practical approximation in Equation 17 is even more justified with conservative RL algorithms
when a large α is used, since a larger α implies a smaller value for D(π∗, π∗

β) found by Equation 5,
which in turn means that state-distributions dπ

∗
β and dπ

∗
are close to each other [65]. Thus, our policy

improvement objective optimizes the policies π and πβ by maximizing the conservative Q-function:

Q̂π(s,a) = Q(s,a)− α
(

π(a|s)
πβ(a|s) − 1

)
, that appears inside the expectation in Equation 17. While

optimizing the policy π with respect to this conservative Q-function Q̂π(s,a) is equivalent to a
standard policy improvement update utilized by most actor-critic methods [21, 26, 39], we can
optimize Q̂π(s,a) with respect to πβ ∈ Πrelabel by relabeling only those transitions (s,a, r′i, s

′) ∈
Dj→i that increase the expected conservative Q-value Es∼Deff

i

[
Ea∼πβ(·|s)

[
Q̂π(s,a)

]]
. Note that

we relaxed the expectation a ∼ π(a|s) to a ∼ πβ(a|s) in this expectation, which can be done upto a
lower-bound of the objective in Equation 17 for a large α, since the resulting policies π and πβ are
close to each other.

The last step in our practical algorithm is to modify the solution of Equation 17 to still retain
the benefits of reduced sampling error as discussed in Proposition B.1. To do so, we want to
relabel as many points as possible, thus increasing |Deff

i (s)|, which leads to reduced sampling
error. Since quantifying |Deff

i (s)| in continuous state-action spaces will require additional machinery
such as density-models, we avoid these for the sake of simplicity, and instead choose to relabel
every datapoint (s,a) ∈ Dj→i that satisfies Qπ(s,a; i) ≥ Es,a∼Di

[Q̂π(s,a; i)] ≥ 0 to task i.
These datapoints definitely increase the conservative Q-value and hence increase the objective in
Equation 17 (though do not globally maximize it), while also enjoying properties of reduced sampling
error (Proposition B.1). This discussion motivates our practical algorithm in Equation 6.

C Experimental details

In this section, we provide the training details of CDS in Appendix C.1 and also include the details
on the environment and datasets that we use for the evaluation in Appendix C.2. Finally, we include
the discussion on the compute information in Appendix C.3. We also compare CDS to an offline RL
with pretrained representations from multi-task datasets method [86].

C.1 Training details

The pseudocode of CDS is summarized in Algorithm 1 in Appendix A. The complete variant of
CDS can be directly implemented using the rule in Equation 6 with conservative Q-value estimates
obtained via any offline RL method that constrains the learned policy to the behavior policy. For
implementing CDS (basic), we reparameterize the divergence D in Equation 4 to use the learned
conservative Q-values. This is especially useful for our implementation since we utilize CQL as the
base offline RL method, and hence we do not have access to an explicit divergence. In this case,
∆π(s,a) can be redefined as, ∆π(s,a) :=

Es′∼Di

[
Ea′∼π[Q̂(s′,a′, i)]− Ea′′∼Di

[Q̂(s′,a′′, i)]
]
−
(
Ea′∼π[Q̂(s,a′, i)]−Q(s,a, i)

)
, (18)

20

Equation 18 can be viewed as the difference between the CQL [39] regularization term on a given
(s,a) and the original dataset for task i, Di. This CQL regularization term is equal to the divergence
between the learned policy π(·|s) and the behavior policy πβ(·|s), therefore Equation 18 practically
computes Equation 4.

Note that both variants of CDS train a policy, π(a|s; i), either conditioned on the task i (i.e., with
weight sharing) or a separate π(a|s) policy for each task with no weight sharing, using the resulting
relabeled dataset, Deff

i . Next, we discuss the training details of the complete version of CDS.

Our practical implementation of CDS optimizes the following objectives for training the critic and
the policy:

Q̂k+1 ← argmin
Q̂

Ei∼[N]

[
β
(
Ej∼[N]

[
Es∼Dj ,a∼µ(·|s,i)

[
wCDS(s,a; j → i)Q̂(s,a, i)

]
−Es,a∼Dj

[
wCDS(s,a; j → i)Q̂(s,a, i)

]])
+
1

2
Ej∼[N],(s,a,s′)∼Dj

[
wCDS(s,a; j → i)

(
Q̂(s,a, i)− B̂πQ̂k(s,a, i)

)2
]]

,

and
π ← argmax

π′
Ei∼[N]

[
Ej∼[N],s∼Dj ,a∼π′(·|s,i)

[
wCDS(s,a; j → i)Q̂π(s,a, i)

]]
,

where β is the coefficient of the CQL penalty on distribution shift, µ is a wide sampling distribution
as in CQL and B̂ is the sample-based Bellman operator.

To compute the relabeling weight wCDS(s,a; j → i) := σ
(

∆(s,a;j→i)
τ

)
, we need to pick the value

of the temperature term τ . Instead of tuning τ manually, we follow the the adaptive temperature
scaling scheme from [38]. Specifically, we compute an exponential running average of ∆(s,a; j → i)
with decay 0.995 for each task and use it as τ . We additionally clip the adaptive temperature term
with a minimum and maximum threshold, which we tune manually. For multi-task halfcheetah,
walker2d and ant, we clip the adaptive temperature such that it lies within [10,∞], [5,∞] and [10, 25]
respectively. For the multi-task Meta-Wold experiment, we use [1, 50] for the clipping. For multi-task
Antmaze, we used a range of [10,∞] for all the domains. We do not clip the temperature term on
vision-based domains.

For state-based experiments, we use a stratified batch with 128 transitions for each task for the critic
and policy learning. For each task i, we sample 64 transitions from Di and another 64 transitions
from ∪j ̸=iDj→i, i.e. the relabeled datasets of all the other tasks. When computing ∆(s,a; j → i),
we only apply the weight to relabeled data on multi-task Meta-World environments and multi-task
vision-based robotic manipulation tasks while also applying the weight to the original data drawn
from Di with 50% chance for each task i ∈ [N] in the remaining domains.

We use CQL [39] as the base offline RL algorithm. On state-based experiments, we mostly follow the
hyperparameters provided in prior work [39]. One exception is that on the multi-task ant domain, we
set β = 5.0 and on the other two locomotion environments and the multi-task Meta-World domain,
we use β = 1.0. On multi-task AntMaze, we use the Lagrange version of CQL, where the multiplier
β is automatically tuned against a pre-specific constraint value on the CQL loss equal to τ = 5.0.
We use a policy learning rate 1e− 4 and a critic learning rate 3e− 4 as in [39]. On the vision-based
environment, instead of using the direct CQL algorithm, we follow [8] and sample unseen actions
according to the soft-max distritbution of the Q-values and set its Q target value to 0. This algorithm
can be viewed the version of CQL with β = 1.0 in Eq.1 in [39], i.e. removing the term of negative
expected Q-values on the dataset. We follow the other hyperparameters from prior work [32, 8, 33].

For the choice architectures, in the domains with low-dimensional state inputs, we use 3-layer
feedforward neural networks with 256 hidden units for both the Q-networks and the policy. We
append a one-hot task vector to the state of each environment. For the vision-based experiment, our
Q-network architecture follows from multi-headed convolutional networks used in MT-Opt [33].
For the observation input, we use images with dimension 472 × 472 × 3 along with additional
state features (gstatus, gheight) as well as the one-hot task vector as in [33]. For the action input, we
use Cartesian space control of the end-effector of the robot in 4D space (3D position and azimuth
angle) along with two discrete actions for opening/closing the gripper and terminating the episode
respectively. More details can be found in [32, 33].

21

C.2 Environment and dataset details

In this subsection, we discuss the details of how we set up the multi-task environment and how we
collect the offline datasets. We want to acknowledge that all datasets with state inputs use the MIT
License.

Multi-task locomotion domains. We construct the environment by changing the reward func-
tion in [5]. On the halfcheetah environment, we follow [91] and set the reward functions of
task run forward, run backward and jump as r(s, a) = max{vx, 3} − 0.1 ∗ ∥a∥22, r(s, a) =
−max{vx, 3} − 0.1 ∗ ∥a∥22 and r(s, a) = −0.1 ∗ ∥a∥22 + 15 ∗ (z − init z) respectively where vx
denotes the velocity along the x-axis and z denotes the z-position of the half-cheetah and init z
denotes the initial z-position. Similarly, on walker2d, the reward functions of the three tasks are
r(s, a) = vx − 0.001 ∗ ∥a∥22, r(s, a) = −vx − 0.001 ∗ ∥a∥22 and r(s, a) = −∥vx∥ − 0.001 ∗
∥a∥22 + 10 ∗ (z − init z) respectively. Finally, on ant, the reward functions of the three tasks are
r(s, a) = vx− 0.5 ∗ ∥a∥22− 0.005 ∗ contact-cost, r(s, a) = −vx− 0.5 ∗ ∥a∥22− 0.005 ∗ contact-cost
and r(s, a) = −∥vx∥ − 0.5 ∗ ∥a∥22 − 0.005 ∗ contact-cost + 10 ∗ (z − init z).

On each of the multi-task locomotion environment, we train each task with SAC [26] for 500 epochs.
For medium-replay datasets, we take the whole replay buffer after the online SAC is trained for 100
epochs. For medium datasets, we take the online single-task SAC policy after 100 epochs and collect
500 trajectories with the medium-level policy. For expert datasets, we take the final online SAC
policy and collect 5 trajectories with it for walker2d and halfcheetah and 20 trajectories for ant.

Meta-World domains. We take the door open, door close, drawer open and drawer close
environments from the open-sourced Meta-World [90] repo1. We put both the door and the drawer
on the same scene to make sure the state space of all four tasks are shared. For offline training,
we use sparse rewards for each task by replacing the dense reward defined in Meta-World with the
success condition defined in the public repo. Therefore, each task gets a reward of 1 if the task is
fully completed and 0 otherwise.

For generating the offline datasets, we train each task with online SAC using the dense reward defined
in Meta-World for 500 epochs. For medium-replay datasets, we take the whole replay buffer of the
online SAC until 150 epochs. For the expert datasets, we run the final online SAC policy to collect
10 trajectories.

AntMaze domains. We take the antmaze-medium-play and antmaze-large-play datasets from
D4RL [19] and convert the datasets into multi-task datasets in two ways. In the undirected version of
these tasks, we split the dataset randomly into equal sized partitions, and then assign each partition to
a particular randomly chosen task. Thus, the task data observed in the data for each task is largely
unsuccessful for the particular task it is assigned to and effective data sharing is essential for obtaining
good performance. The second setting is the directed data setting where a trajectory in the dataset is
marked to belong to the task corresponding to the actual end goal of the trajectory. A sparse reward
equal to +1 is provided to an agent when the current state reaches within a 0.5 radius of the task goal
as was used default by Fu et al. [19].

Vision-based robotic manipulation domains. Following MT-Opt [33], we use sparse rewards for
each task, i.e. reward 1 for success episodes and 0 otherwise. We define successes using the success
detectors defined in [33]. To collect data for vision-based experiments, we train a policy for each task
individually by running QT-Opt [32] with default hyperparameters until the task reaches 40% success
rate for picking skills and 80% success rate for placing skills. We take the whole replay buffer of
each task and combine all of such replay buffers to form the multi-task offline dataset with total 100K
episodes where each episode has 25 transitions.

C.3 Computation Complexity

For all the state-based experiments, we train CDS on a single NVIDIA GeForce RTX 2080 Ti for one
day. For the image-based robotic manipulation experiments, we train it on 16 TPUs for three days.

1The Meta-World environment can be found at the public repo https://github.com/rlworkgroup/
metaworld

22

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld

D Visualizations, Comparisons and Additional Experiments

In this section, we perform diagnostic and ablation experiments to: (1) understand the efficacy of
CDS when applied with other base offline RL algorithms, such as BRAC [82], (2) visualize the
weights learned by CDS to understand if the weighting scheme induced by CDS corresponds to
what we would intuitively expect on different tasks, and (3) compare CDS to a prior approach that
performs representation learning from offline multi-task datasets and then runs vanilla multi-task RL
algorithm on top of the learned representations. We discuss these experiments next.

D.1 Applying CDS with BRAC [82], A Policy-Constraint Offline RL Algorithm

We implemented CDS on top of BRAC which is different from CQL that penalizes Q-functions.
BRAC computes the divergence D(π, πβ) in Equation 1 explicitly and penalizes the reward function
r(s,a) with this value in the Bellman backups. To apply CDS to BRAC, we need to compute a
conservative estimate of the Q-value as discussed in Section 5.2. While the Q-function from CQL
directly provides us with this conservative estimate, BRAC does not directly learn a conservative
Q-function estimator. Therefore, for BRAC, we compute this conservative estimate by explicitly
subtracting KL divergence between the learned policy π(a|s) and the behavior policy πβ on state-
action tuples (s, a) from the learned Q-function’s prediction. Formally, this means that we utilize
Q̂(s, a) := Q(s, a)−αDKL(π(a|s), πβ(a|s)) as our conservative Q-value estimate for BRAC. Given
these conservative Q-value estimate, CDS weights can be computed directly using Equation 6.

Environment Tasks / Dataset type BRAC + CDS (ours) BRAC + No Sharing BRAC + Sharing All

door open / expert 44.0%±3.0% 35.0%±25.9% 38.0%±2.2%
door close / medium-replay 32.5% ± 5.0% 5.0% ± 8.6% 8.6% ± 3.4%

Meta-World [90] drawer open / medium-replay 28.5%±3.5% 21.8%±5.6% 0.0% ± 0.0%
drawer close / expert 100%±0.0% 100.0%±0.0% 99.0%±0.7%
average 52.5%±7.4% 22.5%±13.3% 40.0%±5.0%

Table 5: Applying CDS on top of BRAC. Note that CDS + BRAC imrpoves over both BRAC + Sharing All and
BRAC + No sharing, indicating that CDS is effective over other offline RL algorithms such as BRAC as well.
The ± values indicate the value of the standard deviation of runs, and results are averaged over three seeds.

We evaluated BRAC + CDS on the Meta-World tasks and compared it to BRAC + Sharing All and
BRAC + No Sharing. We present the results in Table 5. We use ± to denote the 95%-confidence
interval. As observed below, BRAC + CDS significantly outperforms BRAC with Sharing All and
BRAC with No sharing. This indicates that CDS is effective on top of BRAC.

D.2 Analyzing CDS weights for Different Scenarios

Next, to understand if the weights assigned by CDS align with our expectation for which transitions
should be shared between tasks, we perform diagnostic analysis studies on the weights learned by
CDS on the Meta-World and Antmaze domains.

On the Meta-World environment, we would expect that for a given target task, say Drawer Close,
transitions from a task that involves a different object (door) and a different skill (open) would not be
as useful for learning. To understand if CDS weights reflect this expectation, we compare the average
CDS weights on transitions from all the other tasks to two target tasks, Door Open and Drawer Close,
respectively and present the results in Table 6. We sort the CDS weights in the descending order. As
shown, indeed CDS assigns higher weights to more related tasks and thus shares data from those
tasks. In particular, the CDS weights for relabeling data from the task that handles the same object as
the target task are much higher than the weights for tasks that consider a different object.

For example, when relabeling to the target task Door Open, datapoints from task Door Close are
assigned with much higher weights than those from either task Drawer Open or task Drawer Close.
This suggests that CDS filters the irrelevant transitions for learning a given task.

On the AntMaze-large environment, with undirected data, we visualize the CDS weight for the
various tasks (goals) in the form of a heatmap and present the results in Figure 4. To generate this plot,
we sample a set of state-action pairs from the entire dataset for all tasks, and then plot the weights
assigned by CDS as the color of the point marker at the (x, y) locations of these state-action pairs in
the maze. Each plot computes the CDS weight corresponding to the target task (goal) indicated by the

23

Relabeling Direction CDS weight

door close→ door open 0.46
drawer open→ door open 0.10
drawer close→ door open 0.02

drawer open→ drawer close 0.35
door open→ drawer close 0.26
door close→ drawer close 0.22

Table 6: On the Meta-World domain, we visualize the CDS weights of data relabeled from other tasks to the
two target tasks door open and drawer close shown in the second row and third row respectively. We sort the
CDS weights for relabeled tasks to a particular target task in the descending order. As shown in the table, CDS
upweights tasks that are more related to the target task, e.g. manipulating the same object.

Figure 4: A visualization of the weights assigned by CDS to various transitions in the antmaze dataset for six
target goals (indicated by × clustered by their spatial location. Note that CDS up-weights transitions spatially
close to the target goal (indicated in the brighter yellow color), matching our expectation.

red × in the plot. As can be seen in Figure 4, CDS assigns higher weights to transitions from nearby
goals as compared to transitions from farther away goals. This matches our expectation: transitions
from nearby (x, y) locations are likely to be the most useful in learning a particular target task and
CDS chooses to share these transitions to the target task.

D.3 Comparison of CDS with Other Alternatives to Data Sharing: Utilizing Multi-Task
Datasets for Learning Pre-Trained Representations

Finally, we aim to empirically verify how other alternatives to data sharing perform on multi-task
offline RL problems. One simple approach to utilize data from other tasks is to use this data to
learn low-dimensional representations that capture meaningful information about the environment
initially in a pre-training phase and then utilize these representations for improved multi-task RL
without any specialized data sharing schemes. To assess the efficacy of this alternate approach of
using multi-task offline data, in Table 7, we performed an experiment on the Meta-World domain
that first utilizes the data from all the tasks to learn a shared representation using the best method,
ACL [86] and then runs standard offline multi-task RL on top of this representation. We denote the
method as Offline Pretraining. We include the average task success rates of all tasks in the table
below. While the representation learning approach improves over standard multi-task RL without
representation learning (No Sharing) consistent with the findings in [86], we still find that CDS with
no representation learning outperforms this representation learning approach by a large margin on
multi-task performance, which suggests that conservative data sharing is more important than pure
pretrained representation from multi-task datasets in the offline multi-task setting. We finally remark
that in principle, we could also utilize representation learning approaches in conjunction with data
sharing strategies and systematically characterizing this class of hybrid approaches is a topic of future
work.

24

Environment Tasks / Dataset type CDS (ours) No Sharing Offline Petraining [86]

door open / expert 58.4%±9.3% 14.5%±12.7% 48.0%±40.0%
door close / medium-replay 65.3%±27.7% 4.0%±6.1% 9.5%±8.4%

Meta-World [90] drawer open / medium-replay 57.9%±16.2% 16.0%±17.5% 1.3% ± 1.4%
drawer close / expert 98.8%±0.7% 99.0%±0.7% 96.0%±0.9%
average 70.1%±8.1% 33.4%±8.3% 38.7%±11.1%

Table 7: Comparison between CDS and Offline Pretraining [86] that pretrains the representation from the
multi-task offline data and then runs multi-task offline RL on top of the learned representation on the Meta-World
domain. Numbers are averaged across 6 seeds, ± the 95%-confidence interval. CDS significantly outperforms
Offline Pretraining.

25

	Pseudocode of CDS
	Analysis of CDS
	Analysis of the Algorithm in Equation 5
	From Equation 5 to Practical CDS (Equation 6)

	Experimental details
	Training details
	Environment and dataset details
	Computation Complexity

	Visualizations, Comparisons and Additional Experiments
	Applying CDS with BRAC wu2019behavior, A Policy-Constraint Offline RL Algorithm
	Analyzing CDS weights for Different Scenarios
	Comparison of CDS with Other Alternatives to Data Sharing: Utilizing Multi-Task Datasets for Learning Pre-Trained Representations

