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A Mirror Sample In Optimal Transport Theory

The mirror sample can be defined in terms of optimal transport (OT) theory[1]. It does not affect
the understanding of the main paper without this session. We hope this formal definition of mirror
samples in OT theory can inspire more theoretic understandings and further researches.

The proposed concept mirror is expected to reflect equivalent sample cross domains. Formally, define
the mirror pair as the two realizations of the random variables from the supports of the source and
target distributions that play “similar roles” w.r.t. their own distributions. In terms of the optimal
transportation theory, let Ts and Tt be the two transforms (push-forwards operators) on ps and pt such
that the resulting distributions are same, i.e. Ts

#p
s = Tt

#p
t. xs ∈ DS and xt ∈ DT are the mirror for

each other if Ts
#p

s(xs) = Tt
#p

t(xt). In general, infinite number of mirror pairs can be found since
∀xs ∈ DS , we could always find xt ∈ DT such that Ts

#p
s(xs) = Tt

#p
t(xt)[1]. An ideal distribution

alignment can be achieved by aligning every mirror pairs. However, it is impractical to directly find
the mirrors in real application since we only have datasets XS and XT , which are actually random
samplings from the underlying distributions ps and pt. The real mirror for xsi ∈ XS may not exist
at all in XT (but in the support DT ). Fig.1 gives an illustrative example of this case. The middle
ellipse refers to the aligned domain by the ideal transports Ts and Tt from source and target domains.
The sample sets, i.e. {a, d, e, b, f} and {ã, b̃, c̃, h̃, ĩ, j̃} are the training data sampled from their own
underlying distributions. So d, e, f and c̃, h̃, ĩ, j̃ do not have their mirrors in the opposite domain
dataset. Without the real mirrors, it is infeasible to investigate the optimal Ts and Tt. Admittedly, it
is beneficial to find those mirrors rather than imposing certain form of sample-to-sample mapping
[10, 6, 7] since the mirrors reflect the natural correspondence of the underlying distributions. That
means if the consistency of the mirrors is assured, the model trained in source domain can generalize
well in target domain.

B Algorithm Details

The detailed algorithm is presented in Algorithm 1.

C Proofs of Propositions

In order to present the propositions and proofs clearly, we also present the lemma here.
∗Equal Contribution
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Figure 1: The mirror sample illustration in terms of optimal transport theory

Algorithm 1 Mirror Alignment Algorithm for UDA
Require: Source domain dataset {xsi , ysi }

ns
i=1, target dataset {xtj}

nt
j=1, epoch number N , batch size

B, iteration number T per epoch, where T = bN/Bc, hyperparameter γ.
Ensure: the parameters of backbone θf , newly-added FC layer θg and the classifier θc

1: for epoch = 1 to N do
2: Calculate the source features fsi , gsi for each sample and the class centers µs

f,c, µs
g,c by

µs
f,c = 1

ns
c

∑
ys
i =c f

s
i and µs

g,c = 1
ns
c

∑
ys
i =c g

s
i .

3: Calculate the target features f ti , gti using current θg, θf and θc, generate pseudo labels ytj
for each target sample by k-means [9] initialized by µs

f,c and µs
g,c, then calculate µt

f =
1
nt
c

∑
yt
f=c f

t
j and µt

g,c = 1
nt
c

∑
yt
j=c g

t
j

4: for step =1 to T do
5: Choose a batch data {xsi}Bb=1 and {xtj}Bb=1 from XS , XT , with features {fsi }Bb=1, {f ti }Bb=1,

{gsi }Bb=1, {gti}Bb=1.
6: Find the mirrors using anchors µs

f,c, µt
f,c for f and µs

g,c, µt
g,c for g.

7: Calculate total loss by Mirror Loss Lmr,f , Lmr,g as well as Ls and Lt.
8: Update parameters θg , θf and θc by SGD.
9: end for

10: end for

Lemma 1. [2] Given the hypothesis classH, we have

∀h ∈ H,RT (h) ≤RS(h) +
1

2
dH∆H(S, T ) + λ (1)

where
λ = min

h∈H
{RS(h, hS) +RT (h, hT )} (2)

and
dH∆H(S, T ) = 2 sup

h,h′∈H
| Pr
x∼DS

[h(x) 6= h′(x)]− Pr
x∼DT

[h(x) 6= h′(x)]| (3)

hS and hT are the labeling function in each domain.

The proof of Lemma 1 is in [2].

Proposition 1. Denote ΦS(x),ΦT (x) as the density function for domain S and T , with supports as
DT andDS respectively. H as the hypothesis class from features to label space. If ΦS(x)

a.s.
= ΦT (x),

then dH∆H(S, T )→ 0.

Proof. Denote ΦS(x) and ΦT (x) as the density function for domain S and T in the learned feature
space D, with supports as DS and DT respectively. H is the hypothesis class of functions mapping
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from D to Y . Following the definition of dH∆H(S, T ) in Lemma 1, we have

dH∆H(S, T ) = sup
h,h′∈H

|
∫
x∼DS

ΦS(x)I(h(x) 6= h′(x))dx

−
∫
x∼DT

ΦT (x)I(h(x) 6= h′(x))dx|
(4)

considering the fact that Pr[x] = E[I(x)], where I is the indicator function. If S and T are aligned
in space D, then both the density functions ΦS , ΦT and their supports DS , DT are same. We have

|
∫
x∼DS

ΦS(x)I(h(x) 6= h′(x))dx

−
∫
x∼DT

ΦT (x)I(h(x) 6= h′(x))dx|

≤
∫
x∼D
|ΦS(x)− ΦT (x)||I(h(x) 6= h′(x))|dx→ 0

(5)

Proposition 2. Define λ = minh∈H{RS(h, hS) +RT (h, hT )} same to [2], where hS and hT are
the labeling functions in each domain. Denote λm + 1

2d
m
H∆H as the term of λ+ 1

2dH∆H when Lmr,x

is minimized. If minimizing Lmr,x aligns the distribution in the learned space, we have

λm +
1

2
dmH∆H ≤ λ+

1

2
dH∆H (6)

Proof. Based on [2], we have

λ = min
h∈H
{RS(h, hS) +RT (h, hT )} (7)

Based on the Proposition 1, dH∆H(S, T ) will approach 0 empirically if Lmr,x is minimized indepent
withH. Thus ∀h ∈ H, we have

λm +
1

2
dmH∆H = λm

= min
h∈H
{RS(h, hS) +RT (h, hT )}

(8)

When the model is trained without Lmr,x, we can define a setH′ ⊂ H that satisfies dH′∆H′ = 0.

IfH′ = ∅, the Eq.(6) holds naturally.

IfH′ 6= ∅, then ∀h ∈ H, we have

λ+
1

2
dH∆H = min{min

h∈H′
{RS(h, hS) +RT (h, hT )},

min
h∈H−H′

{RS(h, hS) +RT (h, hT )}+
1

2
dH∆H}

≥ min
h∈H
{RS(h, hS) +RT (h, hT )}

= λm +
1

2
dmH∆H

(9)

since for any subset H′ ⊆ H, minh∈H′ {h} ≥ minh∈H{h}. hS and hT are the labeling functions
for source and target domains [2].

D Details of Datasets

We use Office-31 [25], Office-Home[28], ImageCLEF and VisDA2017[24] to validate our proposed
method. Office-31 has three domains: Amazon(A), Webcam(W) and Dslr(D) with 4,110 images
belonging to 31 classes. Office-Home is a more challenging benchmark dataset for unsupervised
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domain adaption. It contains 15,500 images of 65 classes with four domains: Art(Ar), Clipart(Cl),
Product(Pr) and RealWorld(Rw). ImageCLEF contains 600 images of 12 classes, where the images
are divided into three domains: Caltech-256(C), ILSVRC 2012(I), Pascal VOC 2012(P). For the
above three datasets, we use all the adaption tasks. VisDA2017 is a large-scale dataset which contains
∼280K images belonging to 12 classes. These images are divided into three parts: train, validation
and test. We use “train” as source domain and “validation” as target domain. The source domain
is composed of 152,397 images, which are generated from synthetic renderings of 3D models. The
target domain is composed of 55,388 images cropped from Microsoft COCO dataset [20].

E Detailed Results

E.1 Experiment Results with SOTA methods

In this section, we describe the task-level detailed results of our experiment comparing with SOTA
methods. Table 1 shows the result of 6 tasks on Office-31 dataset. Compared with the SOTA result
of SRDC [26], the average accuracy of our model increases by 0.3%. Specially, we achieve a 2.4%
improvement on task A to W, 1.2% on task A to D. Table 2 shows the result on Office-Home. Table 3
shows the result of 6 tasks on ImageCLEF dataset. For all tasks, our method gains a new SOTA and
the average accuracy is 91.6% which has a 0.7% improvement. For large-scale dataset VisDA2017,
we migrated the proposed mirror loss to the existing method CAN [16]. We can observe from Table 4
that the average accuracy increases by 0.7% over the SOTA.

Table 1: Test accuracy(%) on Office-31 dataset for unsupervised domain adaptation based on
ResNet50.

Method A-W D-W W-D A-D D-A W-A Avg
Source Model [13] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DAN [22] 81.3±0.3 97.2±0.0 99.8±0.0 83.1±0.2 66.3±0.0 66.3±0.1 82.3
DANN [11] 81.7±0.2 98.0±0.2 99.8±0.0 83.9±0.7 66.4±0.2 66.0±0.3 82.6
ADDA [27] 86.2±0.3 78.8±0.4 96.8±0.2 99.1±0.2 69.5±0.1 68.5±0.1 83.2
JDDA [4] 82.6±0.4 95.2±0.2 99.7±0.0 79.8±0.1 57.4±0.0 66.7±0.2 80.2
MCSD [33] 94.9±0.3 99.1±0.1 100.0±0.0 95.6±0.3 77.6±0.4 77.0±0.3 90.7
DSR [3] 93.1 98.7 99.8 92.4 73.5 73.9 88.6
DM-ADA [29] 83.9±0.4 99.8±0.1 99.9±0.1 77.5±0.2 64.6±0.4 64.0±0.5 81.6
rRevGrad+CAT [8] 94.4±0.1 98.0±0.2 100.0±0.0 90.8±1.8 72.2±0.6 70.2±0.1 87.6
SAFN [30] 90.1±0.8 98.6±0.2 99.8±0.0 90.7±0.5 73.0±0.2 70.2±0.3 87.1
MDD [30] 94.5±0.3 98.4±0.1 100.0±0.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
CAN [16] 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6
RSDA-MSTN [12] 96.1±0.2 99.3±0.2 100.0±0.0 95.8±0.3 77.4±0.8 78.9±0.3 91.1
SHOT [19] 90.9 98.8 99.9 93.1 74.5 74.8 88.7
SRDC [26] 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8
BSP-TSA [5] 93.3±0.2 98.2±0.2 100.0±0.0 93.0±0.2 73.6±0.3 72.6±0.3 88.5
FixBi [23] 96.1±0.2 99.3±0.2 100.0±0.0 95.0±0.4 78.7±0.5 79.4±0.3 91.4
Ours 98.5±0.3 99.3±0.1 100.0±0.0 96.2±0.1 77.0±0.1 78.9±0.1 91.7

Table 2: Test accuracy(%) on Office-Home dataset for unsupervised domain adaptation based on
ResNet50.

Method Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Source Model [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [22] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [11] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DSR [3] 53.4 71.6 77.4 57.1 66.8 69.3 56.7 49.2 75.7 68.0 54.0 79.5 64.9
MDD [34] 54.9 73.7 77.8 60.2 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
JDDA [4] 46.4 60.1 70.3 48.3 59.3 61.3 47.3 44.5 68.9 64.1 53.7 77.8 58.5
MCSD [33] 51.6 76.9 80.3 68.6 71.8 78.3 65.8 50.5 81.2 73.1 54.2 82.4 69.6
SAFN [30] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
CAN [16] 53.4 76.8 77.6 63.0 75.0 73.4 63.3 53.8 77.5 72.9 58.2 81.7 68.9
RSDA-MSTN [12] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
SHOT [19] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
SRDC [26] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
BSP-TSA [5] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
FixBi [23] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
Ours 57.6 77.6 81.6 71.9 77.8 78.7 72.0 56.3 82.5 77.9 61.3 85.3 73.4
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Table 3: Test accuracy(%) on ImageCLEF dataset for unsupervised domain adaptation based on
ResNet50.

Method I-P P-I I-C C-I C-P P-C Avg
Source Model [13] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN [22] 74.5±0.3 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
DANN [11] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
rRevGrad+CAT [8] 77.2±0.2 91.0±0.3 95.5±0.3 91.3±0.3 75.3±0.6 93.6±0.5 87.3
MDD [34] 77.8±0.3 92.2±0.1 97.2±0.2 92.2±0.1 76.7±0.3 95.0±0.2 88.5
JDDA [4] 77.5±0.2 86.7±0.2 86.3±0.1 86.3±0.3 72.5±0.2 90.6±0.1 83.3
SAFN [30] 79.3±0.1 93.3±0.4 96.3±0.4 91.7±0.0 77.6±0.1 95.3±0.1 88.9
CAN [16] 78.2±0.3 93.8±0.1 97.5±0.2 93.2±0.1 77.0±0.2 97.8±0.2 89.6
RSDA-MSTN [12] 79.8±0.2 94.5±0.5 98.0±0.4 94.2±0.4 79.2±0.3 97.3±0.3 90.5
SHOT [19] 78.3±0.2 90.2±0.1 94.3±0.3 88.8±0.2 76.3±0.2 95.2±0.5 87.2
SymNets [32] 80.2±0.3 93.6±0.2 97.0±0.3 93.4±0.3 78.7±0.3 96.4±0.1 89.9
MCSD [33] 79.2±0.2 96.2±0.3 96.8±0.1 93.8±0.2 77.8±0.4 96.2±0.0 90.0
SRDC [26] 80.8±0.3 94.7±0.2 97.8±0.2 94.1±0.2 80.0±0.3 97.7±0.1 90.9
BSP-TSA [5] 78.5 90.8 96.2 93.2 79.3 95.7 89.9
FixBi [23] 75.7±0.4 90.7±0.2 94.0±0.1 89.5±0.4 71.7±0.2 94.2±0.4 86.0
Ours 82.4±0.1 95.3±0.1 97.9±0.2 95.2±0.2 81.0±0.1 98.0±0.1 91.6

Table 4: Test accuracy(%) on VisDA dataset for unsupervised domain adaptation based on ResNet101.
Method airplane bicycle bus car horse knife motorcycle persion plant skateboard train truck Avg
Source Model [13] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN [22] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
JDDA [4] 88.2 65.4 77.5 44.9 90.6 44.3 86.3 54.2 52.3 37.5 85.9 23.0 62.5
SAFN [30] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SHOT [19] 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6
BSP-TSA [5] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
FixBi [23] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 87.2 94.2 90.9 25.7 87.2
CAN [16] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
CAN+Mirror(Ours) 97.2 88.2 84.9 76.0 97.2 95.8 89.2 86.4 96.1 96.6 85.9 61.2 87.9

E.2 Detailed Results for Ablation Study

Mirror Loss Ablation Study. The task-level results for Ablation Study for Office-Home and
Office-31 are in Table 5 and Table 6 respectively.

Table 5: Ablation Results for Office-Home
Model Setups Ar–Cl Ar–Pr Ar–Rw Cl–Ar Cl–Pr Cl–Rw Pr–Ar Pr–Cl Pr–Rw Rw–Ar Rw–Cl Rw–Pr Avg.

Baseline 46.3 70.0 76.4 66.0 71.4 73.1 67.0 49.8 76.3 70.6 52.0 79.4 66.5
Bk Mirror 51.4 76.2 82.2 70.3 76.8 78.5 70.6 55.0 82.4 76.7 56.8 85.2 71.8
FC Mirror 52.1 74.9 81.7 70.3 76.6 77.9 70.6 55.3 82.2 76.4 58.1 84.8 71.7

FC + Bk Mirror 57.6 77.6 81.6 71.9 77.8 78.7 72.0 56.3 82.5 77.9 61.3 85.3 73.4

Table 6: Ablation Results for Office-31
Model Setups A-W D–W W–D A–D D–A W–A Avg.

Baseline 92.8 94.1 93.7 91.7 69.5 71.4 85.5
Bk Mirror 96.6 98.7 99.0 95.4 73.6 76.4 90.0
FC Mirror 95.5 98.9 99.0 94.8 74.3 76.0 89.7

FC + Bk Mirror 98.5 99.3 100.0 96.2 77.0 78.9 91.7

Sensitivity of k. The task-level results for parameters k w.r.t. Office-Home and Office-31 are given
in Table 7 and Table 8. We can see that the best choice of k for both Office-Home and Office-31 is 3.
But for Office-Home, when k = 5, there are two tasks (i.e. Ar to Rw and Pr to Rw) achieving the best
accuracy; while for Office-31, when k = 1 there are also two tasks (i.e. A to W and W to D) having
the best results. When k is large, such as 7 or 9, the overall accuracy drops significantly, meaning
that large k leads to inaccurate mirror estimations.

Robustness of Mirror Construction The mirror sample is estimated as x̃s(xtj) =∑
x∈X̃S(xt

j) ω(x, xtj)x, where ω(x, xtj) is the weight of the element x in the mirror set X̃S(xtj).

Besides the k, we tried different methods of calculating ω(x, xtj) to investigate the impacts. One is

ω(x, xtj) = e−d(x,xt
j)/

∑
x∈X̃s(xt

j) e
−d(x,xt

j), which is denoted as “weighted mirror sample” the other
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Table 7: The influence of k in Mirror Selector for Office-Home
k Ar–Cl Ar–Pr Ar–Rw Cl–Ar Cl–Pr Cl–Rw Pr–Ar Pr–Cl Pr–Rw Rw–Ar Rw–Cl Rw–Pr Avg.
1 52.3 75.3 81.4 71.0 76.9 77.3 70.0 54.6 82.3 76.6 57.2 85.2 71.7
3 57.6 77.6 81.6 71.9 77.8 78.7 72.0 56.3 82.5 77.9 61.3 85.3 73.4
5 51.5 75.4 81.5 70.7 76.2 76.9 70.9 54.9 82.4 77.0 58.7 84.9 71.8
7 51.2 74.7 80.9 70.3 76.4 76.1 70.3 54.6 81.6 76.6 58.2 84.9 71.3
9 51.1 74.7 80.5 70.9 76.3 76.4 70.9 55.0 81.6 77.2 57.9 84.7 71.4

Table 8: The influence of k in Mirror Selector for Office-31
k A-W D–W W–D A–D D–A W–A Avg.
1 98.4 98.6 100.0 95.6 74.8 77.4 90.2
3 98.5 99.3 100.0 96.2 77.0 78.9 91.7
5 95.6 99.2 99.8 96.2 74.5 78.1 90.3
7 96.3 98.3 98.6 95.8 72.9 76.6 89.8
9 95.5 98.9 99.0 94.5 74.2 76.7 89.8

is ω(x, xti) = 1/k. For the distance d, besides the Eculidean distance, we also use Gaussian kernel
based distance with standard deviation as 1. The results are in Table 9. We can see that the mentioned
variation does not impact the average results too much. Although using the Euclidean distance with
constant weight 1/k have the best results, the other combinations can still have competitive results.
This means the proposed method is robust w.r.t. the distance and weight definition in the construction
method.

Table 9: Robusness analysis w.r.t. the mirror construction(k = 3) for Office-Home. The we use
Gaussian kernel with standard devariation as 1.

d weight Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Euclidean ∝ 1/d 52.0 76.7 81.6 71.2 76.5 78.9 70.5 55.5 82.2 78.2 59.8 85.3 72.4
Gaussian ∝ 1/d 53.1 76.8 81 71.8 77.4 79.0 69.7 55.3 82.1 76.4 59.7 84.8 72.3
Gaussian 1/k 52.0 75.6 81.9 71.9 77 78.6 70.5 54.8 82.1 77.3 58.5 85.1 72.1
Euclidean 1/k 57.6 77.6 81.6 71.9 77.8 78.7 72.0 56.3 82.5 77.9 61.3 85.3 73.4

Sensitivity of γ. Then sensitivity analysis of γ is given in Table 10 and 12 on Office-Home and
Office-31 Dataset. The best choice in those 2 datasets are 1.0. For Office-Home, γ can be between
1.0 and 2.0 with little performance decrease. For Office-31, the empirical γ should be between 0.0
and 1.0.

Comparison with Generative Methods Generating virtual sample of target domain to train the
domain-agnostic classifier is one series of method. The typical works include CoGAN([21]),
CyCADA([15]),CrDoCo([18]), DRANet[17] etc.. However as CrDoCo stated, those works are
working to capture the pixel-wise domain adaptation. Although the generated samples can be seen as
the mirror sample, they only apply for the domain gap like “style” difference. That’s why CyCADA
and its following work were justified mainly in image segmentation benchmark. Our proposed
method, from another viewpoint, uses the samples of the target domain to generate the mirror sample.
By definition, our proposed virtual sample generation does not presume any form of the domain shift.
We also carry out experimental comparison on Digit Dataset with those typical methods in Table 11.
We can see that our method outperforms them by large margins, justifying the claims above.

Table 10: The sensitivity of γs for the Mirror Loss for Office-Home
γ Ar–Cl Ar–Pr Ar–Rw Cl–Ar Cl–Pr Cl–Rw Pr–Ar Pr–Cl Pr–Rw Rw–Ar Rw–Cl Rw–Pr Avg.

0.0 51.2 74.8 80.7 70.7 76.1 77.5 70.1 54.6 81.8 76.2 56.8 84.3 71.2
1.0 57.6 77.6 81.6 71.9 77.8 78.7 72.0 56.3 82.5 77.9 61.3 85.3 73.4
2.0 51.8 75.4 80.8 71.0 76.0 77.4 70.5 55.0 81.7 77.7 59.1 84.3 71.7
3.0 48.4 74.2 79.6 70.9 77.0 76.8 69.9 53.9 80.7 77.9 58.4 84.1 71.0

Visualizations by t-SNE on Office-31. In this section, we also visualize feature distribution by
t-SNE [14] on Office-31 to visually show the alignment procedure for the underlying distribution.
We can see that samples belonging to different classes gradually approach the center of their classes
as the training progresses. Specially, in Fig.2(e) and Fig.2(f), the “shape” is more similar between
source and target domains by using mirror loss.This reflects the proposed mirror and mirror loss have
achieved higher consistency between the underlying distributions.
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Table 11: Comparison with Generative Methods on Digits Dataset

Methods USPS
→MNIST

SVHN
→MNIST

MNIST
→ USPS

CoGAN[21] 89.1 – 91.2
LC+CycleGAN[31] 98.3 97.5 97.1

CyCADA[15] 96.5 90.4 95.6
DRANet[17] 97.8 – 97.8

Ours 99.2 99.1 99.3

Table 12: The sensitivity of γs for the Mirror Loss for Office-31
γ A-W D–W W–D A–D D–A W–A Avg.

0.0 95.4 97.2 97.3 94.2 74.8 77.4 90.2
1.0 98.5 99.3 100.0 96.2 77.0 78.9 91.7
2.0 95.2 98.4 99.0 92.8 71.7 76.1 88.9
3.0 93.8 99.0 98.8 92.2 70.1 75.0 88.1

(a) W/O Mirror, W-A, epoch 1 (b) W/O Mirror, W-A, epoch 100 (c) W/O Mirror, W-A, epoch 200

(d) Mirror, W-A, epoch 1 (e) Mirror, W-A, epoch 100 (f) Mirror,W-A, epoch 200

Figure 2: Visualization of cluster evolvement for task W-A in Office-31. Different classes are
distinguished by color.
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