
Machine learning structure preserving brackets for
forecasting irreversible processes

Kookjin Lee
School of Computing

and Augmented Intelligence
Arizona State University

Tempe, AZ 85281

Nathaniel Trask
Center for Computing Research

Sandia National Laboratories
Albuquerque, NM 87123
natrask@sandia.gov

Panos Stinis
Pacific Northwest National Laboratory

Richland, WA 99354

Abstract

Forecasting of time-series data requires imposition of inductive biases to obtain
predictive extrapolation, and recent works have imposed Hamiltonian/Lagrangian
form to preserve structure for systems with reversible dynamics. In this work we
present a novel parameterization of dissipative brackets from metriplectic dynami-
cal systems appropriate for learning irreversible dynamics with unknown a priori
model form. The process learns generalized Casimirs for energy and entropy guar-
anteed to be conserved and nondecreasing, respectively. Furthermore, for the case
of added thermal noise, we guarantee exact preservation of a fluctuation-dissipation
theorem, ensuring thermodynamic consistency. We provide benchmarks for dis-
sipative systems demonstrating learned dynamics are more robust and generalize
better than either "black-box" or penalty-based approaches.

1 Background and previous work

Modeling time-series data as a solution to a dynamical system with learnable dynamics has been
shown to be effective in both data-driven modeling for physical systems and traditional machine
learning (ML) tasks. Broadly, it has been observed that imposition of physics-based structure leads to
more robust architectures which generalize well [1]. On one end of the spectrum of inductive biases,
universal differential equations (UDE) [2] assume an a priori known model form, thus imposing the
strongest bias. On the other, neural ordinary differential equations (NODEs) [3] assume a completely
black-box model form with minimal bias.

Many recent approaches have turned to structure preserving models of reversible dynamics to obtain
an inductive bias that lies in between [4, 5, 6, 7, 8]. One may use black-box deep neural networks
(DNNs) to learn an energy of a system with unknown model form, while the algebraic structure
of Hamiltonian/Lagrangian dynamics provides a flow map which conserves energy. Typically, the
learned flow map has symplectic structure so that phase space trajectories are conserved. In classifi-
cation problems, this mitigates the vanishing/exploding gradient problem and improves accuracy [9];
in physics, this guarantees that extrapolated states are physically realizable [10].

Such approaches are only appropriate for reversible systems lacking friction or dissipation. In the
physics literature, the theory of metriplectic dynamical systems provides a generalization of the
Poisson brackets of Hamiltonian/Lagrangian mechanics which model not just a conserved energy, but
generalized Casimirs such as entropy [11, 12]. Physical systems which can be cast in this framework

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

obtain a number of mimetic properties related to thermodynamic consistency: satisfaction of the
first and second laws of thermodynamics and, for closed stochastic systems, a fluctuation dissipation
theorem (FDT) that guarantees thermal forcing is balanced exactly by dissipative forces in equilibrium
[13]. This FDT property is particularly critical to analyzing rare events in molecular phenomena
driven by thermal noise [14].

Classically, metriplectic systems are obtained by deriving a model from first principles and then
observing that the system admits a requisite algebraic structure. While effective for a wide range
of physical systems [15], the requisite first principles modeling may be restrictively complex for a
general system, particularly for multiscale problems involving time history. In this work we reverse
the process by assuming our time-series data has been generated by a metriplectic system and then
inferring the requisite algebraic objects using a training strategy similar to that used in NODEs.
This presents several technical challenges. First, dissipative systems typically have non-observable
states (i.e. internal entropy or temperature) which may not be measured. Second, the metriplectic
algebraic structure is particularly restrictive, requiring discovery of matrices with carefully designed
null-spaces to separate reversible and irreversible components of the dynamics.

Anticipated impact: Finally, we note that this work is an important first step toward handling
more complicated dissipative chaotic systems ubiquitous to science and engineering problems. For
example, for chaotic systems the “butterfly effect” causes arbitrarily small perturbations in initial
data to exponentially diverge, and it is only possible to provide long-term forecasting by learning a
corresponding “strange attractor” whose latent dimension is governed by the dissipative structure
[16, 17]. In reduced order-modeling, many have looked toward data-driven means of fitting dynamics
to latent representations of solution space, with Hamiltonian structure particularly useful for finding
long-time accurate surrogates[18, 19]. In this situation as well, structure-preserving treatment of
dissipation is critical to account for entropic/memory effects which emerge from coarse-graining
[20]. Another success of reversible structure-preserving ML is in robotic control [21]. Again these
models fail to account for friction due to wear, which is inevitable in realistic applications. There are
also problems where we have access to time-series and no guaranteed way of modeling from first
principles that can account for all the important mechanisms e.g. system-identification in biology
[22, 23], the study of cascading failures for realistic power grid models [24], social dynamics [25],
and accounting for memory effects in empirical eigenfunction expansions of turbulent flows [26]. All
these cases can benefit by a structure-preserving method for identifying dynamics.

2 Related work

Neural ordinary differential equations As noted, learning time-continuous dynamics in the form
of a system of ODEs is an active topic with seminal works including [27, 9, 28, 3, 29]. There have been
many follow-up studies to enhance neural ODEs in different aspects, e.g., enhancing the expressivity
of neural ODEs by augmenting extra dimensions in state variables [30], checkpoint methods to
mitigate numerical instability and to enhance memory efficiency [31, 32, 33], allowing network
parameters to evolve over time together with hidden states [34, 35], and spectrally approximating
dynamics by using a set of orthogonal polynomials [36]. Applications of NODEs for learning
complex physical processes (e.g., turbulent flow) can be found in [37, 38, 39].

Structure preserving neural networks A thorough accounting of works embedding structure-
preservation into neural networks include pioneering works for Hamiltonian neural networks [4, 40],
followed by development of Lagragian neural networks [41, 5] and neural networks that mimic
the action of symplectic integrators [6, 7, 8]. More recently, there has been efforts to add physical
invariance to learned dynamics models, e.g., time-reversal symmetry [42]. Works pursuing related
but distinct spatial-compatibility related to conservation structure other than geometric integration
include: graph architectures with associated a data-driven graph exterior calculus [43], solving
optimization problems with conservation constraint in latent space [44], and adding conservation
constraints as a penalty in training loss [45]. The closest work to our approach is in [46], which
proposed a time integrator that leverages the GENERIC (general equation for the nonequilibrium
reversible–irreversible coupling) formalism to impose the structure, but enforces the degeneracy
condition as penalty terms in the training loss objective. We will provide results demonstrating that a
penalty approach is insufficient to guarantee preservation of metriplectic structure.

2

3 Theory and fundamentals

We consider the GENERIC formalism as a particular metriplectic framework amenable to parame-
terization. Consider time series dataD = f (t i ; x (t i))gN

i =1 , where the statex i = x (t i) � Rd has a
known initial conditionx 0. In GENERIC, it is assumed that an observableA(x) evolves under the
gradient �ow

dA
dt

= f A; E g + [A; S] (1)

whereE andS denote generalized energy and entropy,f� ; �g denotes a Poisson bracket, and[�; �]
denotes an irreversible bracket. The Poisson bracket is given in terms of a skew-symmetric Poisson
matrixL and the irreversible bracket is given in terms of a symmetric positive semi-de�nite friction
matrix M ,

f A; B g =
@A
@x

L
@B
@x

; and [A; B] =
@A
@x

M
@B
@x

:

A system governed by Eq. 1 is a GENERIC system if the following degeneracy conditions hold

L
@S
@x

= 0 ; and M
@E
@x

= 0 : (2)

TakingA = x in Eq. (1) provides the evolution ofx

dx
dt

= L
@E
@x

+ M
@S
@x

: (3)

Remark 3.1 (Hamiltonian dynamics) For canonical coordinatesx = [q; p]T , and canonical Pois-

son matrixL =
�

0 1
� 1 0

�
, andM = 0, Eq.(3) recovers Hamiltonian dynamics.

Remark 3.2 (First and second laws of thermodynamics)TakingA = E andA = S, we obtain
dE
dt = 0 and dS

dt � 0, respectively. This follows easily by application of the degeneracy conditions
and noticingf A; A g = 0 , [A; A] � 0.

Remark 3.3 (Fluctuation dissipation theorem) Introducing thermal noise to Eq.(3) provides the
stochastic differential equation (SDE)

dx t =
�

L
@E
@x

+ M
@S
@x

+ kB
@

@x
� M

�
dt +

p
2kB M dWt ; (4)

where
p

M denotes the Cholesky factor ofM , kB is a Boltzmann constant, anddWt is a Wiener
process. The equilibrium statistics of this SDE reach a stationary distribution under appropriate
conditions [13].

4 Parameterization of bracket structure

We now introduce a parameterization of the dissipative and reversible brackets that exactly satis�es
the degeneracy conditions described in Section 3, and review the penalty approach from [46] which
imposes degeneracy conditions via soft constraints. Our approach is motivated by the work in [47]
which we summarize in Sections 4.1–4.3. For the remainder, we adopt the Einstein summation
convention.

First, we parameterize the energy and the entropy as neural networks, i.e.,E (x) � E � (x) and
S(x) � S' (x), where� and' are weights and biases for the neural networksE andS respectively.

4.1 Parameterizing skew-symmetric reversible dynamics

The reversible dynamics are characterized by a skew-symmetric Poisson bracket,

f A; B g = � ��

@A
@x�

@B
@x�

@S
@x

;

3

where� ��
 is an skew-symmetric 3d tensor. To enforce the anti-symmetry exactly, we consider a
generic 3 tensor~� ��
 with learnable entries and apply the following skew-symmetrization trick.

� ��
 =
1
3!

�
~� ��
 � ~� �
� + ~� �
� � ~� ��
 + ~�
�� � ~�
��

�
:

The reversible part may then be written asf x ; Eg = � ��

@x

@x�
@E
@x�

@S
@x

and the reversible dynamics
are given by �

dx �

dt

�

r
= � ��

@E
@x�

@S
@x

:

4.2 Parameterizing symmetric irreversible dynamics

Next, we parameterize the irreversible dynamics via the bracket,

[A; B] = � ��;��
@A
@x�

@E
@x�

@B
@x�

@E
@x�

;

where
� ��;�� = � m

�� Dmn � n
�� :

Here,� andD are skew-symmetric and symmetric positive semi-de�nite matrices, respectively, such
that

� m
�� = � � m

�� ; and Dmn = Dnm :
Again, the skew-symmetry and the symmetric positive semi-de�niteness can be achieved by the
parameterization tricks

� =
1
2

(~� � ~� T); and D = ~D ~D T ;

where~� and ~D are matrices with learnable entries. Finally, the irreversible part may be written as
[x ; S] = � ��;��

@x
@x�

@E
@x�

@S
@x�

@E
@x�

and the irreversible part of the dynamics is given by
�

dx �

dt

�

irr
= � ��;��

@E
@x�

@S
@x�

@E
@x�

:

4.3 Degeneracy conditions

With the above parameterizations the degeneracy conditions described in Eq.(2) may be easily veri�ed
by direct calculation following the de�nition of the brackets and the symmetry/skew-symmetry
conditions.

f x ; Sg =
@x
@x

L
@S
@x

= � ��

@x
@x�

@S
@x�

@S
@x

= � ��

@S
@x�

@S
@x

= 0 ;

and

[x ; E] =
@x
@x

M
@E
@x

= � ��;��
@x
@x�

@E
@x�

@E
@x�

@E
@x�

= � ��;��
@E
@x�

@E
@x�

@E
@x�

= 0 :

4.4 Alternative parameterization – penalty-based method

An alternative strategy to incorporate GENERIC structure is to enforce the degeneracy condition
by soft penalty as advocated in [46]. In this approach,E , S, L , andM , may be approximated
independently of each other. Again,E andS are parameterized as neural networks (E � andS'),
andL andM are parameterized as skew-symmetrizations/symmetrizations of matrices� and� with
learnable entries as follows

L � =
1
2

�
� � � T �

and M � = �� T :

With this parameterization, the degeneracy conditions are simply enforced by minimizing two

penalty terms,

 L �

@E�

@x

 and

 M �

@S'
@x

 . We stress that this penalty will be enforced only to within

optimization error.

If we write a system of neural ODEs as@x
@t = f � , where� consists of learnable parameters, then

Table 1 summarizes the components comprisingf � for black-box NODE, the penalty-base method,
and GENERIC NODE (GNODE).

4

Table 1: Model summary

NODE Penalty GNODE

f � f � = f � f � = L �
@E�

@x + M �
@S'
@x f � = f x ; Eg + [x ; S]

Components black-box MLP E � andS' (MLPs) E � andS' (MLPs)
L � andM � (2-tensor) � (3-tensor),� andD (2-tensor)

� � = � � = f � ; ' ; � ; � g � = f � ; ' ; �; � ; Dg

5 Experiments

In this section, we assess the performance of the three parameterizations of the ODE dynamics which
apply progressively more stringent priors. We implement the algorithms inPYTHON 3.6.5, NUMPY
1.16.2, andPYTORCH 1.7.1[48]. For the time integrator, we use aPYTORCH implementation of
differentiable ODE solvers,TorchDiffEq [3]. All experiments are performed onMACBOOK PRO
with 2.9 GHz i9 CPU and 32 GB memory.

5.1 Dataset and training

The statesx of GENERIC systems may generally be partitioned between “observable” states (e.g.,
position and momentum variables) denoted byx o and “non-observable” states (e.g., entropy, con�g-
uration variables, etc) denoted byx u , i.e.,x = [x oT ; x u T]T . We assume that training data is only
available for the observable states, with the non-observable states functioning as hidden variables dur-
ing training. For each benchmark problem, we take as manufactured training data a single trajectory
of observable states obtained by integrating a reference ODE with known GENERIC structure from a
known initial condition. We then split the sequence into three segments,[0; t train], (t train ; tval], and
(tval ; t test] for training, validation, and test such that0 < t train < t val < t test .

We employ mini-batching to train all three considered architectures. Each mini-batch consists of multi-
ple short sequences of lengthL whose initial conditions are randomly chosen from[0; t train]. To train
“black-box” neural ODEs, we simply use a stochastic gradient descent (SGD) optimizer to update the
network weights and biases using the mini-batches on the observable states,f x o

` ; x o
` +1 ; : : : ; x o

` + L � 1g.

As opposed to the black-box neural ODEs, training the penalty-based approach and the GENERIC
approach requires data to impose mini-batch initial conditions on non-observable states, i.e.,
f x ` ; x ` +1 ; : : : ; x ` + L � 1g with x ` = [x o

` ; x u
`]T , wheref x u

` g are unavailable. To address this is-
sue, we propose a training strategy that alternately updates the model parameters and infers the
non-observable states. We start with a guess for the non-observable states. We then alternate between
(1) updating the model parameters using SGD while �xing the current non-observable states and (2)
updating the non-observable states by solving an initial value problem using the most recent model.

Algorithm 1: Neural ODE training
1 Initialize �
2 for (i = 0; i < n max ; i = i + 1) do
3 Sample initial pointsf x o

` (k) g
N b
k =1 , where`(k) 2 [0; t train � L � 1] for k = 1 ; : : : ; N b

4 ~x o
` (k)+1 ,. . . ,~x o

` (k)+ L = ODESolve(x o
` (k) ,f � ,t1 ,. . . ,tL) for k = 1 ; : : : ; N b

5 Compute loss:L (x o
` (k)+ m ; ~x o

` (k)+ m)
6 Update� via SGD

ForODESolve, we use the Dormand–Prince method (dopri5) [49] with relative tolerance10� 5 and
absolute tolerance10� 6. The loss functionL measures the discrepancy between the ground truth
states and approximate states via mean absolute errors, and the network weights and biases are
updated using Adamax [50] with an initial learning rate 0.01.

In the following, we test the proposed algorithms with two benchmark problems: a damped nonlinear
oscillator and two gas containers problems. Data for all considered benchmark problems can be
found in [51].

5

Algorithm 2: Penalty or GENERIC training
1 Initialize � andf x u

0 ; : : : ; x u
t train

g
2 Construct a dataset asx i = [x o

i
T ; x u

i
T]T , for i = 0 ; : : : ; t train

3 for (i = 0; i < n max ; i = i + 1) do
4 Sample initial pointsf x ` (k) g

N b
k =1 , where`(k) 2 [0; t train � L � 1] for k = 1 ; : : : ; N b

5 ~x ` (k)+1 ,. . . ,~x ` (k)+ L = ODESolve(x ` (k) ,f � ,t1 ,. . . ,tL) for k = 1 ; : : : ; N b

6 Compute loss:L (x o
` (k)+ m ; ~x o

` (k)+ m)
7 Update� via SGD
8 if i mod nupdate == 0 then
9 ~x 1 ,. . . ,~x t train = ODESolve(x 0 ,f � ,t1 ,. . . ,t train)

10 Update a dataset asx i = [x o
i

T ; ~x u
i

T]T , for i = 0 ; : : : ; t train

5.2 Damped nonlinear oscillator

As a �rst benchmark problem, we consider a damped nonlinear oscillator which exhibits a natural
GENERIC structure:

dq
dt

=
p
m

;
dp
dt

= k sin(q) �
p;
dS
dt

=

q 2

mT
; (5)

where(q; p) denote the position and momentum of the particle, andS is the entropy of the surrounding
thermal bath. The constant parametersm,
 , andT represent the mass of the particle, the damping
rate, and the constant temperature of the thermal bath. The total energy of the GENERIC system is

E(q; p; S) = H (q; p) + TS =
p2

2m
� k cos(q) + TS;

whereH (q; p) is the Hamiltonian of the particle (the sum of the kinetic and the potential energy).

In this benchmark problem, the observable states consist of the position and the momentum variables,
i.e., x o = [q; p]T . We consider a single non-observable variable, i.e.,x u = s. Now, our goal is
to learn a system of ODEs that conforms the GENERIC structure described in Section 4 and infer
the non-observable variable via Algorithm 2. That is, for GNODE, we modelE � andS' to take
x = [q; p; s]T as an input.

For black-box NODEs, we have tested MLPs with combinations of {2, 3, 4} hidden layers with
{5, 10, 15} neurons and observed the best result with an MLP with 4 hidden layers with 5 neurons
in each layer and hyperbolic tangent (Tanh) activation function. For the penalty-based approach,
we have tested MLPs with combinations of {2, 3, 4} hidden layers with {5, 10, 15} and Tanh for
parameterizingE � andS' and observed the best results with MLPs with 3 hidden layers with 5
neurons in each layer. The3 � 3 learnable entries forL � andM � are considered. We add the penalty
terms (see Section 4.4) that are weighted by10� 4 to the main loss objective. We have also tested
10� 2 and10� 6 for weighting, which resulted in signi�cant mis�t in data or inconsistency in physics
(i.e., failure to enforce the degeneracy conditions). Lastly, for the GENERIC approach, we have
tested MLPs with combinations of {0, 1, 2} layers with {5, 10} neurons for parameterizingE �
andS' and we have observed the best results with an MLP with 1 hidden layer with 10 neurons
and Tanh for parameterizingE � , and a linear layer for parameterizingS' . Then, we use3 � 3 � 3
skew-symmetric tensor to parameterize� , 3 � 3 skew-symmetric tensor to parameterize� , and
3 � 1 tensor,d, to parameterizeD , i.e., D = ddT . For initializing layers in MLPs, we use the
PYTORCH default uniform distribution and, for initializing learnable entries, we initialize them with
unit normal distribution. We initialize the non-observable variable asx u

` = s` = t ` (i.e., setting it to
be monotonically increasing) in Line 1 of Algorithm 2.

The dataset consists of a sequence of 180,000 timesteps witht �nal = 180 (in second) and step
size � t = 0 :001. We then split the dataset into training, validation, and testing sets such that
t train = 20, tval = 40, andt test = 180. Each mini-batch consists ofNb = 20 subsequences of
lengthL = 120. The maximum training step is set asnmax = 30000 and the update is performed at
everynupdate = 500 training steps (in Algorithm 2).

In the experiment, we considerm = k = T = 1 , and
 = 0 :01. The initial condition is given as
x 0 = [2 ; 0; 0]T , where the initial condition for the non-observable variable is arbitrarily set. Results

6

of the comparison are given in Figure 1. The results are obtained from 5 independent runs (i.e.,
5 different random seeds). The plots ofdS

dt reveal that the soft enforcement of constraints in the
penalty formulation leads to negative entropy production of large magnitude, while the GNODE
approach enforces by constructiondS

dt � 0. When extrapolating well beyond the training time interval,
both black-box NODE and the penalty approach have a large standard deviation in the predicted
H . GNODE in contrast learns a nearby entropy which consistently dissipates the correct amount of
energy.

5.3 Two gas containers

The second benchmark problem considers two (ideal) gas containers, separated by a moving wall,
exchanging heat and volume. Here, we are interested in the position and the momentum of the
separating wall, i.e.,x o = [q; p]T . This problem possesses a highly nonlinear expression for the
entropy [51]:

dq
dt

=
p
m

;
dp
dt

=
2
3

�
E1

p
�

E2

2L g � p

�
;

dS1

dt
=

9N 2k2
B �

4E1

�
1

E1
�

1
E2

�
;

dS2

dt
= �

9N 2k2
B �

4E1

�
1

E1
�

1
E2

�
;

where(q; p) denote the position and momentum of the separating wall andS1 andS2 are the entropies
of the two subsystems. The constantsm denotes the mass of the wall, 2L g is the total length of the
two containers. Following [51], we setNkB = 1 , which �xes a characteristic macroscopic unit of

(a) Trajectory (b) dS
dt – penalty (c) dS

dt – GNODE

(d) H – NODE (e) H – penalty (f) H – GNODE

Figure 1: For the damped nonlinear oscillator, the physical entropy may be evaluated via the formula
E = H + TS. While all three methods �t training data reasonably well, NODE and the penalty
approach rapidly deviate. An inspection ofdS

dt for the penalty method shows that the soft penalty
is insuf�cient to ensure compatibility with the second law. GNODE is able to consistently learn an
entropyS which closely tracks the physical entropy(E � H)=T.

7

	Background and previous work
	Related work
	Theory and fundamentals
	Parameterization of bracket structure
	Parameterizing skew-symmetric reversible dynamics
	Parameterizing symmetric irreversible dynamics
	Degeneracy conditions
	Alternative parameterization – penalty-based method

	Experiments
	Dataset and training
	Damped nonlinear oscillator
	Two gas containers
	Stochastic damped harmonic oscillator

	Conclusions
	Acknowledgements

