
Appendix A Algorithms of model-based graph learning

A.1 An ADMM approach for solving model-based graph learning

Besides PDS in Algorithm 1, we also consider an alternating direction method of multiplier (ADMM)
approach in Algorithm 3 for solving the model-based graph learning problem in Eq.(4) as a baseline.
The algorithm is specifically derived from Algorithm 1 in [21], where we use v to denote the dual
variable. Compared to PDS, ADMM has another relaxation factor {�(t)}t2N. From grid search, �(t)
is normally taken a value in [1.5, 2] for all t. Also, the update steps are not entirely separated in
ADMM. As shown in Figure 3a, it converges more slowly than PDS. Therefore, we choose PDS in
the unrolling framework.

Algorithm 3 ADMM

Input: y, �, {�(t)}t2N, ↵, � and D.
1: Initialisation: w

(0) = 0, v
(0) = 0

2: while |w(t) �w
(t�1)| > ✏ do

3: r
(t)
1 = w

(t) � �(2�w(t) + 2y +DT
v
(t))

4: p
(t)
1 = prox�,⌦1

�
r
(t)
1

�
= max{0, r(t)1 }

5: r
(t)
2 = v

(t) + �D(2r(t)1 �w
(t))

6: p
(t)
2 = prox�,⌦2

�
r
(t)
2

�
, where

�
prox�,⌦2

(r2)
�
i
=

r2,i�
p

r22,i+4↵�

2

7: w
(t+1) = w

(t) + �(t)(p(t)
1 �w

(t))

8: v
(t+1) = v

(t) + �(t)(p(t)
2 � v

(t))
9: end while

10: return w
(t) = ŵ

A.2 Derivations for PDS in Algorithm 1

The derivations for Step 5 and Step 6 in Algorithm 1 are as follows.

Lemma 1. The proximal projection step for primal variable (i.e. Step 5) in Algorithm 1 is

prox�⌦1
(r(t)1) = max{0, r(t)1 }.

Proof. From Algorithm 6 in [21], the proximal projection step for primal variable (i.e. Step 5 in
Algorithm 1) is p(t)1 = prox�⌦1

(r(t)1). ⌦1(r
(t)
1) = 0 if r(t)1 � 0 else ⌦1(r

(t)
1) = 1. We have

�⌦1(r
(t)
1) = ⌦1(r

(t)
1) and hence prox�⌦1

(r(t)1) = prox⌦1
(r(t)1) = max{0, r(t)1 }.

Lemma 2. The proximal projection step for dual variable (i.e. Step 6) in Algorithm 1 is

prox�⌦⇤
2
(r(t)2) =

r(t)2 �
q

r(t)22 +4↵�

2 .

Proof. From Algorithm 6 in [21], the proximal projection step for dual variable for our case is

p(t)2 = prox�⌦⇤
2
(r(t)2), where ⌦⇤

2 is the conjugate of ⌦2. Denote h(r(t)2) = �⌦2(
r(t)2
�). We have

h(r(t)2) = �(�↵1T log(r
(t)
2
�)) = �(�↵1T log(r(t)2) + ↵1T log �) = �(⌦2(r

(t)
2) + constant). By

the affine rule of proximal operators, proxh(r
(t)
2) = prox�⌦2

(r(t)2). Meanwhile, by Theorem 6.9

of [3], prox�⌦2
(r(t)2) =

r(t)2 +
q

r(t)22 +4↵�

2 . By Theorem 6.12 of [3], if h(r(t)2) = �⌦2(
r(t)2
�), then

proxh(r
(t)
2) = �prox 1

� ⌦2
(r

(t)
2
�). We thus have proxh(r

(t)
2) = prox�⌦2

(r(t)2) = �prox 1
� ⌦2

(r
(t)
2
�).

Plugging it back to the Moreau decomposition leads to prox�⌦⇤
2
(r(t)2) = r(t)2 � �prox 1

� ⌦2
(r

(t)
2
�) =

r(t)2 � prox�⌦2
(r(t)2) = r(t)2 � r(t)2 +

q
r(t)22 +4↵�

2 =
r(t)2 �

q
r(t)22 +4↵�

2 .

15

Appendix B Experimental details

B.1 Model Configurations

Figure 6: Model Configurations of TopoDiffVAE in L2G.

For the experiments in Section 5, the configurations for the proposed L2G are illustrated in Figure 6.
The notations for neural network modules are defined as

• GCN(a, b): graph convolution with the learnable matrix H in a dimension of a⇥ b in Eq.6.
• Readout: a pooling layer in GCN that takes the average of node embeddings.
• FC(c, d): a fully connected layer with the input dimension c and the output dimension d.
• ReLU, Tanh: the activation functions.

The number of hidden neurons (nhid and nhid2), the dimension of the graph embedding (emb_out)
and that of the latent code z (nlatent) are tuned for different types and sizes of graphs. For learning
graphs with a size of m = 20 in Section 5, we set nhid = 64, nhid2 = 256 and |z| = 16. The input
and output size are fixed to be m⇥ (m� 1)/2.

We notice that the original proximal operator in Step 5 of PDS (Algorithm 1) corresponds to the
non-negative constraints of edge weights, which is not a complicated structural prior but a must-have.
Meanwhile, replacing it with TopoDiffVAE at every unrolling layer might lead to a overly complex
model that is hard to train and might suffer from overfitting. Therefore, for the experiments we
only use TopoDiffVAE in the last layer of L2G while keeping the handcrafted prior, i.e. Step 5 of
Algorithm 1, for the first T � 1 layer. The experimental results in Section 5 show the effectiveness
and efficiency of L2G.

B.2 Training settings

For the experiments in Section 5, we train L2G and Unrolling with the Adam optimiser [18]. The
learning rate is exponentially-decayed from an initial value of 10�2 at a rate of 0.95. The number of
training samples is changed with the graph size m. For m = 20, we use 4000 for training and 1000
for validation. Figure 7c shows how many training samples are needed (at different graph size). All
the metrics reported in the paper are computed from 64 test samples that are additionally generated.
The batch size is set to 32. We run all the experiments on a remote machine of Amazon EC2
G4dn-2xlarge instance7. Figure 7b shows training time per epoch with different number of samples.

7https://aws.amazon.com/ec2/instance-types/g4/

16

Once trained, the computational cost of applying L2G to learn a graph from new observations is
negligible. The source code is included in the supplementary file.

(a) training time per epoch in seconds v.s.
number of training samples

(b) validation GMSE v.s. number of
epochs

(c) test GMSE v.s. number of training sam-
ples

Figure 7: Training L2G for different size of graphs m with different number of unrolls T

Appendix C Additional results

C.1 Ability to recover binary graphs

Table 3: A table of GMSE and Structural Metrics in recovering binary graphs
metric / model groundtruth Deep-graph L2G

Scale-free (BA):

GMSE - 0.802± .003 0.060± .002
AUC - 0.565± .101 0.999± .000
KS test score 96.15% 68.32% 96.15%

Community (SBM):

GMSE - 0.901± .016 0.080± .010
AUC - 0.701± .088 0.992± .001
community score 0.472± .002 0.311± .006 0.479± .005

Small-world (WS):

GMSE - 0.873± .010 0.056± .004
AUC - 0.519± .023 0.997± .000
average shortest path 2.23± .028 1.111± .008 2.225± .041

Deep-graph [4] is a state-of-the-art learning-based method, but its output is binary graph structure
that is different from our setting. In order to have a fair comparison, we redo the experiments with
another synthetic dataset with binary groundtruth graphs. The results are shown in Table 3 as an
addition to the results of recovering weighted graph in the main body (see Table 1 and Table 2). Both
results lead to the same conclusion that Deep-graph [3] has a less satisfactory performance compared
to the proposed L2G.

C.2 Ability to recover graph topologies with specific structures.

Continued from Section 5, we test the accuracy of recovering groundtruth graphs of different structural
properties. We deliberately increase the rewiring probability in generating WS graphs in Figure 8
and add inter-community edges on SBM graphs in Figure 10 to increase the learning difficulties in
both cases. PDS may effectively detect the k-NN structure behind the construction of WS and the
communities (block diagonal structure of the adjacency matrix) in SBM, but largely ignored the new
edges from the procedures above. By contrast, L2G can precisely predict the additional rewired edges
and inter-community edges.

C.3 Scaling to large graphs.

In Figure 3c of Section 5, we show that L2G performs better in learning graphs with m = 100 nodes.
The main challenge of scaling to large graphs (i.e. millions of nodes) lies in the memory required

17

(a) groundtruth (b) PDS (c) Unrolling (d) L2G

Figure 8: The ability to recover small-world network

(a) groundtruth (b) PDS (c) Unrolling (d) L2G

Figure 9: The ability to recover scale-free networks

(a) groundtruth (b) PDS (c) Unrolling (d) L2G

Figure 10: The ability to recover community-structured networks

for large training samples including both graphs and data on nodes. Fortunately, we show that
the proposed methods can be pretrained and then transferred to real-world data (see the real-world
applications in Section 5). We can use a similar trick to pretrain an Unrolling model and then
transferred to evaluate a graph with more nodes. This is because the learnable parameters of the
Unrolling model (✓unrolling) are not dependent on graph size. More extensive tests on this is one of the
main directions for future work.

C.4 Stability in learning brain functional connectivity.

Table 4: Mean Spearman correlation between esti-
mated brain graphs

method Control Group Autistic Group

Graph Lasso [2] 0.21 ± .003 0.21 ± .003
DeepGraph [4] 0.23 ± .004 0.17 ± .003
DeepGraph+P[4] 0.19 ± .004 0.14 ± .004
L2G (proposed) 0.76 ± .056 0.34 ± .061

Following the stability experiment in [4], we
also report the mean Spearman correlation in
Table 4. Specifically, we apply L2G to infer the
brain functional connectivity from BOLD time
series collected from 35 subjects in the autistic
group and control group as described in Section
5. In the whole data set, there are a total of 539
and 573 subjects in the two groups, respectively.
At inference time, we apply a pretrained L2G
model on a random collection of 35 subjects
from each group. The inference procedure is
repeated for 50 times, which yields 50 brain functional connectivity graphs for each group. For every
pair of 50 graphs in each group, we apply the Spearman correlation to the rank of inferred edge
weights. In Table 4, we report the mean (with 95% confidence interval) of the Spearman correlation
between pairs of 50 graphs in each group, where the graphs are inferred using different models. The

18

results show that L2G outperforms the state-of-the-art models in producing stable predictions on
brain connectivity.

19

