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A Derivations

This appendix contains the derivations of recursive update rules for the log-likelihood and its gradient
for efficient implementations of AdOMP and computation of the adaptive de-biased deviance differ-
ence (Section A.1). The appendix also includes the derivations of the de-sparsified AdOMP estimate
whose asymptotic behavior is characterized in Theorem 1 (Section A.2). Additionally, this appendix
summarizes the forward/backward algorithm applied to obtain smooth baseline rate parameters for
the null hypothesis (Section A.3).

A.1 Recursive Computation of the Gradient and Log-Likelihood

The AdOMP algorithm uses the gradient of the log-likelihood at each iteration of the matching
pursuit to determine the next addition to the parameter support set and to solve the new maximization
problem with a gradient descent algorithm. We derive a recursive update to compute the gradient at
the kth window.

The gradient of the objective subsumes the gradients with respect to eachω(m). That is,∇ω`βk(ωk) =[
∇ω(1)`

β
k(ωk), . . . ,∇ω(C∗)`

β
k(ωk)

]′
, where, for each m = 1, . . . , C∗,

∇ω(m)`
β
k(ωk) =

k∑
i=1

βk−i∇ω(m)`i(ωk) =

k∑
i=1

βk−iXi
′
[
n∗i

(m) − λ∗i
(m)(ωk)∆

]
. (14)

The mth mark’s CIF over the ith window is denoted by λ∗i
(m)(ωk)∆ =

[λ∗1+(i−1)W
(m)(ωk)∆, . . . , λ∗iW

(m)(ωk)∆]′, and the common term (1 − β) is dropped for
convenience, as it does not affect the optimal solution. Observe that the gradient, evaluated at the lth
iteration ω̂(l),k, can equivalently be written as

∇ω`βk(ω̂(l),k) = β
(
∇ω`βk−1(ω̂(l),k)

)
+∇ω`k(ω̂(l),k), (15)

suggesting a recursive update. However, this definition requires the value of the gradient (and
consequentially, the CIFs) from the previous window evaluated at ω̂(l),k, which is unavailable in an
online setting. However, the values λ∗i (ω̂i)∆ have been evaluated at previous windows; thus, each
λ∗i (ω̂(l),k)∆ is approximated by its first-order Taylor approximation around ω̂i. In the following, we
consider only the mth mark, noting that each component of the gradient may be obtained by applying
the procedure to each mark in parallel.
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First, the aforementioned Taylor approximation is computed for the CIFs of the mth mark at window
ith. Defining the diagonal matrix

Λ∗i
(m,j) :=


diag

(
λ∗i

(m)∆� (1− λ∗i
(j)∆)

)
, m = j

diag
(
λ∗i

(m)∆� λ∗i
(j)∆

)
, m 6= j

(16)

with diagonal terms given by the specified point-wise products, we find the first-order Taylor approxi-
mation to be

λ∗i
(m)(ω̂(l),k)∆ ≈ λ∗i

(m)(ω̂i)∆ +

C∗∑
j=1

Λ∗i
(m,j)(ω̂i)Xi

(
ω̂

(j)
(l),k − ω̂

(j)
i

)
. (17)

Note that evaluating the approximation of the CIF for the mth requires the CIFs of the other marks
through Λ∗i

(m,j). Making the simplifying assumption that (λ∗i
(m)∆) · (λ∗i

(j)∆) = o(∆), m 6= j, the
cross-terms are rendered negligible and the parallelized CIF approximation is given by

λ∗(l),k
(m)∆ := λ∗i

(m)(ω̂(l),k)∆ ≈ λ∗i
(m)(ω̂i)∆ + Λ∗i

(m,m)(ω̂i)Xi

(
ω̂

(m)
(l),k − ω̂

(m)
i

)
. (18)

Substituting this approximation, the gradient evaluated at ω̂(l),k becomes

g
(m)
(l),k := ∇ω(m)`

β
k(ω̂(l),k) ≈

k∑
i=1

βk−i
[
Xi
′ε

(m)
(l),i −Xi

′Λ∗i
(m,m)Xi

(
ω̂

(m)
(l),k − ω̂

(m)
i

)]
, (19)

where ε(m)
(l),i := n∗i

(m) − λ∗(l),i
(m)∆. Defining the quantities

b
(m)
k := βb

(m)
k−1 +Xk

′ε
(m)
(l),k +Xk

′Λ∗k
(m,m)(ω̂(l),k)Xkω̂

(m)
(l),k,

B
(m)
k := βB

(m)
k−1 +Xk

′Λ∗k
(m,m)(ω̂(l),k)Xk,

(20)

the parallelized, fully recursive gradient update rule for the mth mark is thus

g
(m)
(l),k =b

(m)
k −B(m)

k ω̂
(m)
(l),k

=β
(
b
(m)
k−1 −B

(m)
k−1ω̂

(m)
(l),k

)
+Xk

′ε
(m)
(l),k.

(21)

The AdOMP algorithm, and the utility of the recursive gradient update, is detailed in Algorithm 1.
Let the initial support set of size r0 be denoted by S(0), and the maximum support size by s∗. The
maximum support size can be obtained by cross-validation. We assume that S(0) is non-empty here,
where a reasonable initialization is made; it is then necessary to solve the preliminary problem in
Step 3. Alternatively, we may initially set S(0) = ∅ and ω̂(0),k = 0.

Additionally, the log-likelihoods of the full and reduced models can be computed in an online fashion.
We use the Taylor approximation of `i(ω̂k) around ω̂i to obtain the following recursion:

`βk(ω̂k) = ak +

C∗∑
m=1

(
ω̂

(m)
k

′
b
(m)
k − 1

2
ω̂

(m)
k

′
B

(m)
k ω̂

(m)
k

)
, (22)

where the variable ak is defined as

ak := βak−1 + `k(ω̂k)−
C∗∑
m=1

(
ω̂

(m)
k

′
X ′kε

(m)
k +

1

2
ω̂

(m)
k

′
X ′kΛ

∗(m)
k Xkω̂

(m)
k

)
, (23)

and bk, Bk have been previously defined. The bias term Bk =(
∇`βk(ω̂k)

)′ (
∇2`βk(ω̂k)

)−1 (
∇`βk(ω̂k)

)
can also be computed recursively. The recursive

computations of the log-likelihood and bias terms enable the adaptive de-biased deviance difference
to be computed efficiently.
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Algorithm 1 AdOMP : Adaptive Orthogonal Matching Pursuit

Input: {n∗k
(m)}C∗m=1,Xk, {b(m)

k−1}C
∗

m=1, {B(m)
k−1}C

∗

m=1, S(0), s∗, β

Output: ω̂k, {b(m)
k }C∗m=1, {B(m)

k }C∗m=1

1: r0 = |S(0)|
2: S(r0)

k = S(0)

3: ω̂(r0),k = arg maxsupp(ωk)⊆S
(r0)

k

`βk(ωk)

4: for r = r0 + 1 to s∗ do
5: for m = 1 to C∗ do
6: g

(m)
(r),k = βg

(m)
(r−1),k−1 +Xk

′ε
(m)
(r−1),k

7: end for
8: j = arg max

i/∈S(r)
k

∣∣∣{g(i)(r),k}
∣∣∣

9: S
(r)
k = S

(r−1)
k ∪ {j}

10: ω̂(r),k = arg maxsupp(ωk)⊆S(r)
k

`βk(ωk)

11: end for
12: for m = 1 to C∗ do
13: Λ∗(s∗),k

(m) = diag
(
λ∗(s∗),k

(m)∆� (1− λ∗(s∗),k
(m)∆)

)
14: b

(m)
k = βb

(m)
k−1 +Xk

′ε
(m)
(s∗),k +Xk

′Λ∗(s∗),k
(m)Xkω̂

(m)
(s∗),k

15: B
(m)
k = βB

(m)
k−1 +Xk

′Λ∗(s∗),k
(m)Xk

16: end for
17: return ω̂k = ω̂(s∗),k, {b(m)

k }C∗m=1, {B(m)
k }C∗m=1

A.2 De-Sparsifying the AdOMP Estimate

We show that the AdOMP parameter estimates can be de-sparsified, as in [1], by inspecting the
Karush-Kuhn-Tucker (KKT) conditions of the optimization problem. Note that ω̂k = ω̂(s∗),k, solves
the maximization problem

ω̂(s∗),k = arg max
supp(ωk)⊆S(s∗)

k

`βk(ωk). (24)

The support constraint is equivalent to requiring the parameter’s ith component ω(i)
k = 0, i /∈ S(s∗)

k .
Collectively, these linear equality constraints can be expressed as A(s∗)

k ωk = 0, where the diagonal

matrix
[
A

(s∗)
k

]
i,i

= 0 for i ∈ S(s∗)
k and 1 otherwise. The KKT conditions on the primal and dual

parameters (ωk and ν(s∗)
k , respectively) are straightforward to derive. Of particular relevance is the

stationarity condition:
∇`βk(ωk)−A(s∗)

k ν
(s∗)
k = 0. (25)

Substituting `βk(ωk) for its quadratic approximation around ω̂(s∗),k into the stationarity condition
and rearranging terms, we thus define the de-sparsified parameters as

ŵk := ω̂(s∗),k −
(
∇2`βk(ω̂(s∗),k)

)−1 (
∇`βk(ω̂(s∗),k)

)
, (26)

in the same fashion as van de Geer et al. in [1]. The asymptotic normality of the de-sparsified
AdOMP parameters is established in Theorem 1.

A.3 Forward Filtering and Backward Smoothing of γ̂(m)
k

To quantitatively characterize the null hypothesis that coordinated rth-order spiking occurs at the same
rate as between r independent neurons, recall that the reduced model is estimated by fixing µ(m)

k at
µ̂
(m)
k − γ̂(m)

k for m ∈ Kr. However, the estimated exogenous factors γ̂(m)
k can vary abruptly between

adjacent windows, noisily reflecting the null hypothesis. Hence, we apply Kalman forward/backward

3



smoothing [2] for stability; the procedure is summarized in Algorithm 2 for the estimated exogenous
factors of the mth mark, {γ̂(m)

k }Kk=1.

The estimated exogenous factors are smoothed independently, assuming a linear Gaussian forward
model for each, as described in Eq. (27). The mark index is dropped here for clarity.

γ̂k = xk + vk vk ∼ N (0, σ2
v)

xk = xk−1 + wk wk ∼ N (0, σ2
w)

(27)

Algorithm 2 Smoothing {γ̂k}Kk=1 via Kalman Forward/Backward Algorithm

Input: {γ̂k}Kk=1, σ2
v,(0), σ

2
w,(0), L

Output: {γ̆k}Kk=1, {γ̃k}Kk=1, σ2
v,(L), σ

2
w,(L)

1: for l = 1 to L do
2: σ2

0|0 = 1, x0|0 = 0

3: for k = 1 to K do
4: xk|k−1 = xk−1|k−1
5: σ2

k|k−1 = σ2
k−1|k−1 + σ2

w,(l−1)

6: xk|k = xk|k−1 +
σ2
k|k−1

σ2
k|k−1

+σ2
v,(l−1)

(
γ̂k − xk|k−1

)
7: σ2

k|k = σ2
k|k−1

σ2
v,(l−1)

σ2
k|k−1

+σ2
v,(l−1)

8: end for
9: for k = K to 1 do

10: xk−1|K = xk−1|k−1 +
σ2
k−1|k−1

σ2
k|k−1

(
xk|K − xk|k−1

)
11: σ2

k−1|K = σ2
k−1|k−1 +

(
σ2
k−1|k−1

σ2
k|k−1

)2 (
σ2
k|K − σ

2
k|k−1

)
12: end for
13: σ2

w,(l) = 1
K

∑K
k=1

[(
γ̂k − xk|K

)2
+ σ2

k|K

]
14: σ2

w,(l) = 1
K

∑K
k=1

[(
xk|K − xk−1|K

)2
+

(
1− 2

σ2
k−1|k−1

σ2
k|k−1

)
σ2
k|K + σ2

k−1|K

]
15: end for
16: {γ̆k}Kk=1 = {xk|k}Kk=1 and {γ̃k}Kk=1 = {xk|K}Kk=1

17: return {γ̆k}Kk=1, {γ̃k}Kk=1, σ2
v,(L), σ

2
w,(L)

Forward filtering is described in Steps 3–8, and backward smoothing in Steps 9–12. The Expectation-
Maximization algorithm is used to update the initial values of the noise variances σ2

w and σ2
v over L

iterations The backward-smoothed estimated exogenous factors, {γ̃k}Kk=1, were utilized to test for
significant higher-order coordination.
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B Supplementary Results

This appendix contains supporting results that demonstrate: the effects of varying the window length
and forgetting factor (Section B.1); a statistical measure of model goodness-of-fit (Section B.2); and
the utility of the algorithm in analyzing ensembles with more complex latent dynamics (Section B.3).

B.1 Varying Hyperparameters W and β

The hyperparameters W and β together control the effective integration window of the proposed
adaptive model, defined as W

1−β . The role of the effective integration window is demonstrated in
relation to the simulated example in Section 5.1. The simulated data is analyzed with varying values
of β, as shown in Figure 1.
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Figure 1: Varying W and β in history-dependent analysis of simulated data. A. Simulated ensemble spiking
of five neurons (top) and the sum of the rth-order simultaneous spiking events for r = 2, 3, 4, 5 (bottom). B.
Significant rth-order coordination with W = 10 and β = 0.99 (see also Fig. 2 in main text). C. Significant
rth-order coordination with W = 10 and β = 0.975. D. Significant rth-order coordination with W = 10 and
β = 0.995. Testing in B–D performed at level α = 0.001.

The simulated spiking and rasters of rth-order events for the example are reproduced in Figure 1–A, as
are the main results of history-dependent analysis of higher-order coordination (Fig. 1–B) for which
hyperparameters W = 10 and β = 0.99 were used. We first compare the main simulated results to
an analysis with β = 0.975 (Fig. 1–C). The choice of smaller β results in faster dynamics: note that
3rd-order coordination is detected at the start of the second epoch. However, as a consequence, the
analysis is less stable (noting 3rd-order coordination later in the second epoch) and more prone to false
detection over short intervals (4th-order coordination). Next we compare the main simulated results
to an analysis with β = 0.995 (Fig. 1–D). The choice of larger β results in more stable detection of
coordination over time (i.e. less jitter in 2nd-order coordination), but has slower dynamics that make
the analysis less sensitive to fast state transitions; consequently, no 3rd-order coordination is detected.

B.2 Model Goodness-of-Fit

The goodness-of-fit of the estimated multinomial GLM for ensemble activity can be assessed by
invoking the multivariate generalization of the time-rescaling theorem. For univariate point processes,
the theorem states that interspike intervals (ISIs) rescaled with respect to the CIF (see [3] for details)
are independent an exponentially distributed with unit rate. Hence, the uniformity of the ISIs
rescaled by the estimated CIFs is assessed by comparison to uniform quantiles via the Kolmogorov-
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Smirnov (KS) test. Additionally, the uncorrelatedness of empirically rescaled ISIs is assessed by the
autocorrelation function (ACF) test.
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Figure 2: Assessing Goodness-of-Fit of History-Dependent Model in Simulation. A. Kolmogorov-Smirnov plot
for mark index m = 8 with 95% confidence intervals (red). B. Autocorrelation Function for mark index m = 8
with 95% confidence intervals (red).

The time-rescaling theorem can be extended to multivariate point processes [4, 5], and in its general-
ization establishes that time-rescaling renders the marks mutually independent and rescaled marked
ISIs (the interval between events of the same mark) are independent and exponentially distributed
with unit rate. Consequently, the KS and ACF tests may be applied to each mark in order to assess
goodness-of-fit. An example of the KS and ACF tests are shown in Figure 2 for the history-dependent
analysis of simulated ensemble activity in Section 5.1 of the main text in the case of one mark.

B.3 Simulated Ensemble Spiking Data: Example 2

We present a second simulated example in which the ensemble spiking of 5 neurons was generated
with more complex latent dynamics, shown in Figure 3. In the first simulated epoch (time bins
0 − 4000), 4th-order spiking events were excited by amplifying the default history-modulation
parameters. In the second (bins 4000−6000), no simultaneous spiking events were excited by history
effects or exogenous influences. However, during the third epoch (bins 6000 − 8000), 3rd-order
spiking events were induced by increasing the base rate parameter. The base rate parameter was
similarly increased for 3rd-order spiking events in the fourth epoch (bins 8000 − 12000), while
4th-order spiking events where concurrently excited by ensemble spiking history in the same manner
as during the first epoch.

The simulated spiking activity, shown in Figure 3–A, does not observably reflect these latent dynamics
precisely, though related changes in firing rate can be seen. The aggregate rth-order marks (Fig. 3–B),
however, do show increased rates of 3rd- and 4th-order spiking events.

Statistical analyses of rth-order coordination for r = 2, . . . , 5 using the history-independent model
(W = 10; β = 0.975) indicates facilitated 3rd-order coordination during the third and fourth
epochs by large positive values of the J-statistics (Fig. 3–C). Facilitated 4th-order coordination is
also detected during the first and fourth epochs. By analyzing ensemble spiking using the history-
dependent model (W = 10; β = 0.99) (Fig. 3–D), conditional facilitation of 3rd-order coordination
was correctly detected during the third and fourth epochs while 4th-order coordination was correctly
conditioned out. The history-dependent analysis also detected conditional suppression of 2nd-order
coordination.

The three control measures, however, are unable to capture the underlying dynamics. Significant
pairwise correlations (Fig. 3–E) are indicated in each epoch except the second, but vary in magnitude
with the average firing rate rather than based on the latent dynamics. Similarly, the spiking regularity
(Fig. 3–F) indicates Poisson spiking statistics rather than coordinated activity. The 3rd- and 4th-order
mark CIF differences (Fig. 3–G) once again only weakly reflect the changing rates of simultaneous
events; closer inspection re-emphasizes the oscillatory nature of this measure that diminishes its
reliability (Fig. 3–G, insets).
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Figure 3: Analysis of ensemble spiking with concurrent 3rd- and 4th-order coordination. A. Simulated ensemble
spiking of five neurons. B. Sum of the rth-order simultaneous spiking events for r = 2, 3, 4, 5. Spiking
coordination varies across 4 epochs, demarcated by vertical dashed lines. C. Significant rth-order coordination
neglecting ensemble history. D. Significant rth-order coordination based on history-dependent ensemble spiking
model. Statistical testing in C–D performed at level α = 0.001. E. Average Pearson correlation with 95%
confidence interval. F. Average spiking regularity: coefficient of variation ±2 SEM. G. Average mark CIF
differences of 3rd- (green) and 4th-order (teal) spiking interactions ±2 SEM.

C Theoretical Results for the Statistical Inference of Higher-Order Spiking
Coordination

The procedure for analyzing rth-order coordination is summarized in Algorithm 3 below. Inferring
coordinated spiking uses the limiting distributions of the adaptive de-biased deviance difference. This
appendix contains the details of our theoretical analysis of limiting distributions. First, preliminary
results are established. Namely, the limiting behavior of the Hessian matrix, ∇2`βk(ω0

k), and gradient
of the exponentially-weighted total data log-likelihood,∇`βk(ω0

k), are characterized in Section C.1.
Theorem 1, which concerns asymptotic normality of de-sparsified estimates, is proven in Section C.2.
Similarly, the limiting distributions of the adaptive de-biased deviance difference, i.e. Theorem 2, is
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proven in Section C.3. Finally, in Section C.4, testing for synchrony with contemporaneous-event
models is addressed directly as a corollary to Theorem 2.

C.1 Preliminaries

The limiting behaviors of ∇2`βk(ω0
k) and ∇`βk(ω0

k) are characterized in Propositions 1 and 2, respec-
tively. Limits are evaluated over a monotonically increasing sequence {βl}∞l=1 that converges to 1;
the shorthand β → 1 is used throughout for notational convenience. For simplicity, we analyze the
case that the windows over which the model is piece-wise constant are of size W = 1 and indexed
i = k −N + 1, . . . , k.

Proposition 1. As β → 1,

∇2`βk(ω0
k)→ E

[
∇2`i(ωk)

]
=: −Ik

Proof. First, note the following decomposition of the Hessian:

∇2`βk(ω0
k) = (1− β)

k∑
i=k−N+1

βk−i∇2`i(ω
0
k).

Taking Vi = βk−i∇2`i(ω
0
k) and the sequence cβ := 1

1−β that tends to∞ as β → 1, a version of the
LLN for φ-mixing random variables, [6], is invoked to find that

∇2`βk(ω0
k)− E

[
∇2`βk(ω0

k)
]

= (1− β)

k∑
i=k−N+1

(
βk−i∇2`i(ω

0
k)− βk−iE

[
∇2`i(ω

0
k)
])

= c−1β

k∑
i=k−N+1

(Vi − E [Vi])
a.s.−−→ 0.

Algorithm 3 Dynamic Analysis of rth-Order Spiking Coordination

Input: {n∗k}Kk=1, {Xk}Kk=1, r, β, α
Output: {J (r)

k }Kk=1, {ν̂(r)k }Kk=1, {D(r)
k,β}Kk=1

1: Kr = {m ∈ K :
∑C
c=1mc = r} and M (r) = |Kr|

2: for k = 1 to K do
3: hk = 0

4: Estimate ω̂(F )
k using AdOMP; evaluate `βk(ω̂

(F )
k ) and B

(F )
k

5: for m ∈ Kr do
6: Evaluate {u(m)

t }kWt=(k−1)W+1 and {u(m)
0,t }kWt=(k−1)W+1

7: Set γ̂(m)
k = 1

W

∑kW
t=(k−1)W+1

(
u
(m)
t − u(m)

0,t

)
and µ(m)

0,k = µ̂
(m)
k − γ̂(m)

k

8: end for
9: Estimate ω̂(R)

k using AdOMP with constraint µ(m)
k = µ

(m)
0,k for m ∈ Kr

10: Evaluate `βk(ω̂
(R)
k ), B

(R)
k , and D(r)

k,β(ω̂
(F )
k , ω̂

(R)
k ) as defined in Eq. (12) in the main text

11: if F−1
χ2(M(r))

(1− α) < D
(r)
k,β(ω̂

(F )
k , ω̂

(R)
k ) then

12: hk = sgn
(∑

m∈Kr
γ̂
(m)
k

)
13: end if
14: end for
15: Estimate {ν̂(r)k }Kk=1 via non-central χ2 filtering/smoothing
16: J (r)

k = hk × (1− α− Fχ2(M(r),ν̂k)(F
−1
χ2(M(r))

(1− α)))

17: return {J (r)
k }Kk=1, {ν̂(r)k }Kk=1, {D(r)

k,β}Kk=1
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The limiting behavior of the Hessian is thus given by

E
[
∇2`βk(ω0

k)
]

= lim
β→1

(1− β)

k∑
i=1

βk−iE
[
∇2`i(ω

0
k)
]

= E
[
∇2`i(ω

0
k)
]
.

From the Fisher information equality, we have that E
[
∇2`i(ω

0
k)
]

= −Ik

Next, we establish the asymptotic normality of the score function.
Proposition 2. As β → 1, √

1 + β

1− β
∇`βk(ω0

k)→ N (0,Ik)

Proof. The result is established by invoking a version of the CLT for martingales [6, 7].

First, recall that the gradient with respect to the parameters of the m-th mark,

1

1− β
∇ω(m)`

β
k(ω0

k) =

k∑
i=k−N+1

βk−i∇ω(m)`i(ω
0
k)

=

k∑
i=k−N+1

βk−iXi
′
[
n∗i

(m) − λ∗i
(m)(ω0

k)∆
]
,

(28)

and that the covariatesXt are the ensemble spiking history {n(c)j }
C,t−1
c=1,j=t−p. Let Ft be the σ-field

generated by {n(c)t }
C,t−1
c=1,t=t−p. It is straightforward to verify that each element of ∇`βk(ω0

k) is the
sum of martingale differences with respect to the filtration {Ft}kt=1.

Employing the Cramer-Wold device, it will suffice to characterize the limiting distribution of Zβk =

z′
(

1
1−β∇`

β
k(ω0

k)
)

for an arbitrary unit vector z. Let

Ut := βk−t∇`t(ω0
k), Vt := β2(k−t)∇2`t(ω

0
k), (29)

so that we may write
1

1− β
∇`βk(ω0

k) =

k∑
t=k−N+1

Ut. (30)

Defining Yt = Zβt − Z
β
t−1 = z′Ut, note that E [Yt| Ft−1] = z′E [Ut| Ft−1] = 0; thus, Zβk is a

martingale. Also, noting that

E
[
Y 2
t |Ft−1

]
= z′E

[
UtUt

′|Ft−1
]
z = z′E [−Vt|Ft−1] z, (31)

we define
s2β := E

[
Zβk

2
]

=
∑
t

E
[
Yt

2
]

= z′E

[
−
∑
t

Vt

]
z

=
1

1− β2
z′Ikz.

(32)

Thus, we must establish that Zβk /sβ
d−→ N (0, 1) as β → 1. The version of CLT for martingales in [7]

stipulates this result if the following two conditions hold:

(i) s−2β
∑
t E
[
Yt

2|Ft−1
] p−→ 1, and

(ii) s−2β
∑
t E
[
Yt

21 {|Yt| ≥ εsβ}
]
→ 0,∀ε > 0,

9



where 1{·} denotes the indicator function.

We first address condition (i). Substituting for sβ and Yt2, the condition is rewritten as

(1− β2)
∑
t z
′E [−Vt|Ft−1] z

z′Ikz
→ 1. (33)

Letting ρ = β2, and using the definition of Vt, the condition may be equivalently expressed as

(1− ρ)z′
∑
t ρ
k−t (E [−∇2`t(ω

0
k)|Ft−1

]
− E

[
−∇2`k(ω0

k)
])
z

z′E [−∇2`k(ω0
k)] z

p−→ 0, (34)

where we have used the Fisher information equality; this condition is implied by monotone conver-
gence and the result of Proposition 1.

We next consider condition (ii), also known as the Lindeberg condition. As β → 1, note that

sβ =

(
1

1− β2
z′Ikz

) 1
2

→∞,

while
|Yt| =

∣∣z′βk−t∇`t(ω0
k)
∣∣→ ∣∣z′∇`t(ω0

k)
∣∣ .

Thus, 1{|Yt| ≥ εsβ} → 0 for all ε > 0, and the Lindeberg condition holds, thereby proving

Zβk /sβ
d−→ N (0, 1). To relate the statement of the proposition to Zβk /sβ more explicitly, observe that

Zβk
sβ

=
z′∇`βk(ω0

k)/(1− β)

(z′Ikz/(1− β2))
1/2

=

√
1 + β

1− β
z′∇`βk(ω0

k)√
z′Ikz

.

(35)

C.2 Asymptotic Normality of the De-Sparsified AdOMP Estimates

Theorem 1 establishes the asymptotic normality of the de-sparsified greedy estimate based on the
following set of technical conditions.

(C1) For i = 1, . . . , k, define zi := [z
(1)
i

′
, . . . ,z

(C∗)
i

′
]′ such that {z(m)

i }m=1:C∗ :=

{Xiω
(m)
k }m=1:C∗ . Writing `i(ωk) equivalently as `i({z(m)

i }m=1:C∗), the second derivatives
∇2
zi`i({z

(m)
i }m=1:C∗) exist and satisfy the following for all zi and for some δ-neighborhood

(δ > 0):

max
z0∈{zi}ki=1

{
sup

|ẑ−z0|∨|z−z0|<δ

‖∇2
zi`i({ẑ

(m)
i }C∗m=1)−∇2

zi`i({z
(m)
i }C∗m=1)‖

‖ẑ − z‖

}
≤ 1

(C2) Assuming the true parameters, ωk ∈ Rd, to be (s, ξ)-compressible with ξ < 1
2 , as in [8], the

error ‖ω̂k − ω0
k‖1 = OP(ζ

√
d), where ζ :=

√
(1− β)log(s)log(d) and ω0

k is the maximum
likelihood estimate.

(C3) Letting Σ̂k := ∇2`βk(ω̂k), and Σk := E
[
∇2`k(ωk)

]
, one of the following two conditions holds.

For every βl in the monotonically increasing sequence {βl}∞l=1 that converges to 1, Θ̂k = Σ̂−1k
exists. Alternatively, Θ̂k is a consistent estimator of Σ−1k , and ‖Θ̂kΣ̂k − I‖∞ = OP(

√
1− β).

(C4) The covariates satisfy ‖X‖∞ := max
∣∣∣[X]i,j

∣∣∣ = O(c1) for some constant c1, where X :=[
X1
′, . . . ,Xk

′]′ is the collection of history covariate matrices over all windows.
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(C5) The covariates satisfy ‖X̃Θ̂k‖∞ = OP(c1), where the T × d matrix X̃ is obtained by tiling
X horizontally C∗ times.

(C6) The covariates satisfy ‖X̃(ω̂k − ω0
k)‖2 = OP

(
c2ζ

2
)

for some constant c2.

Theorem 1 is established by decomposing the difference
(
ŵk − ω0

k

)
into two components, one

negligible and the non-negligible, using conditions (C1)-(C6). We also provide the rate of decay of
negligible terms explicitly, but summarily treat them as oP(1). Then, Propositions 1 and 2 are used
show to the non-negligible component is asymptotically normal.

Proof. To begin, we analyze the de-sparsified estimates ŵk = ω̂k − Θ̂k∇`βk(ω̂k) element-wise,
attending particularly to the latter term of the right hand side. For the jth element,

(Θ̂k)j∇`βk(ω̂k) =(Θ̂k)j∇`βk(ω0
k)

+ (Θ̂k)j∇2`βk(ω̂k)
(
ω̂k − ω0

k

)
+ ∆

(j)
1 ,

(36)

where
∆

(j)
1 = (Θ̂k)j

(
∇2`βk(ω0

k)−∇2`βk(ω̂k)
) (
ω̂k − ω0

k

)
. (37)

Note that based on the expansion in Eq. (36), the difference between the desparsified and maximimum
likelihood estimates (for the jth component)

(ŵk)j − (ω0
k)j = (ω̂k)j − (ω0

k)j − (Θ̂k)j∇`βk(ω̂k)

= (ω̂k)j − (ω0
k)j − (Θ̂k)j∇`βk(ω0

k)

− (Θ̂k)j∇2`βk(ω̂k)(ω̂k − ω0
k)−∆

(j)
1

= −(Θ̂k)j∇`βk(ω0
k)−∆

(j)
2 ,

(38)

where
∆

(j)
2 = ∆

(j)
1 +

(
(Θ̂k)j∇2`βk(ω̂k)− e′j

)
(ω̂k − ω0

k), (39)

with ej a standard basis vector. In the following, we derive uniform upper bounds on both |∆(j)
1 | and

|∆(j)
2 | for all j = 1, . . . , d.

We reintroduce two notations from conditions (C1) and (C5) to proceed. Recall that the collection
of covariate matrices over all windows is denoted asX =

[
X1
′, . . . ,Xk

′]′; letting X̃i denote the

matrixXi tiled horizontally C∗ times, we also define the T × d matrix X̃ =
[
X̃ ′1, . . . , X̃

′
k

]′
. Thus,

for i = 1, . . . , k, we defined zi := X̃iωk, and the log-likelihood function for the ith window can be
written as `i(ωk) = `i(zi).

For the ith window, note that

∇z`i(ẑi) = ∇z`i(z0i ) +∇2
z`i(z̃i)

(
ẑi − z0i

)
, (40)

for some z̃i such that ‖z̃i − ẑi‖2 ≤
∥∥ẑi − z0i ∥∥2. Using condition (B1), we have that∥∥(∇2

z`i(z̃i)−∇2
z`i(ẑi)

) (
ẑi − z0i

)∥∥
2
≤ ‖z̃i − ẑi‖2

∥∥ẑi − z0i ∥∥2
≤
∥∥ẑi − z0i ∥∥22 . (41)

Additionally, note that, by the chain rule for derivatives,

∇2
ω`i(ωk) = X̃ ′i∇2

z`i(zi)X̃i. (42)

Using these two relations, a uniform upper bound for {∆(j)
1 }dj=1 is derived as follows. The residual

is expanded as

∆
(j)
1 = (1− β)

k∑
i=1

βk−i(Θ̂k)jX̃
′
i

(
∇2
z`i(z

0
i )−∇2

z`i(ẑi)
)
X̃i(ω̂k − ω0

k). (43)
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First the ith term in the summation, neglecting βk−i, is addressed:∣∣∣(Θ̂k)jX̃
′
i

(
∇2
z`i(z

0
i )−∇2

z`i(ẑi)
)
X̃i(ω̂k − ω0

k)
∣∣∣

≤
∥∥∥(Θ̂k)jX̃

′
i

∥∥∥
∞

∥∥∥(∇2
z`i(z

0
i )−∇2

z`i(ẑi)
)
X̃i(ω̂k − ω0

k)
∥∥∥
1

≤
∥∥∥(Θ̂k)jX̃

′
i

∥∥∥
∞

√
d
∥∥∥(∇2

z`i(z
0
i )−∇2

z`i(ẑi)
)
X̃i(ω̂k − ω0

k)
∥∥∥
2

≤
∥∥∥Θ̂kX̃

′
∥∥∥
∞

√
d
∥∥∥X̃i(ω̂k − ω0

k)
∥∥∥2
2
,

where the first inequality is a consequence of Hölder’s inequality, the second is due to the equivalence
of norms, and the third follows by invoking condition (C1), as in Eq. (41). Using the fact that β < 1,
it follows that ∣∣∣∆(j)

1

∣∣∣ ≤ (1− β)

k∑
i=1

βk−i
∥∥∥Θ̂kX̃

′
∥∥∥
∞

√
d
∥∥∥X̃i(ω̂k − ω0

k)
∥∥∥2
2

≤
∥∥∥Θ̂kX̃

′
∥∥∥
∞

√
d
∥∥∥X̃(ω̂k − ω0

k)
∥∥∥2
2
.

(44)

Consequently, the term |∆(j)
2 | is upper-bounded as follows:∣∣∣∆(j)
2

∣∣∣ ≤ ∥∥∥Θ̂kX̃
′
∥∥∥
∞

√
d
∥∥∥X̃(ω̂k − ω0

k)
∥∥∥2
2

+
∥∥∥(Θ̂k)j∇2`βk(ω̂k)− e′j

∥∥∥
∞

∥∥ω̂k − ω0
k

∥∥
1
.

(45)

Invoking conditions (C5) and (C6),∥∥∥Θ̂kX̃
′
∥∥∥
∞

√
d
∥∥∥X̃(ω̂k − ω0

k)
∥∥∥2
2

= OP

(
c1
√
d(1− β)log(s)log(d)

)
= oP(1),

(46)

and hence,
∣∣∣∆(j)

1

∣∣∣ is negligible for each j = 1, . . . , d. Similarly, condition (C2) implies that∥∥ω̂k − ω0
k

∥∥
1

= OP

(√
1− β

√
log(s)log(d)

√
d
)

= oP(1); invoking the consistency of the estimator

Θ̂k, the second part of condition (C3), it follows that
∣∣∣∆(j)

2

∣∣∣ = oP(1). Of course, this conclusion

follows immediately from Eq. (45) if ∇2`βk is invertible, as per the first part of condition (C3). Thus,
we have shown that ŵk − ω0

k = −(Θ̂k)∇`βk(ω0
k) + oP(1) · 1.

Proposition 1 establishes that ∇2`βk(ω0
k)→ E[∇2`i(ωk)], or equivalently that Σ̂k → Σk; invoking

condition (C3), it follows that Θ̂k → Σ−1k . Recall that this is a sequential limit in β, if Σ̂k is invertible
for each β, Θ̂k → Σ−1k by the continuous mapping theorem. Alternatively, if Θ̂k is not invertible, the
statement follows directly by second part of condition (C3). Proposition 2 establishes the asymptotic
normality of∇`βk(ω0

k); in conjunction with the aforementioned limiting behavior of Θ̂k and Slutsky’s

theorem, we thus conclude that
√

1+β
1−β

(
ŵk − ω0

k

)
is asymptotically normal with zero-mean and

covariance matrix Σ−1k IkΣ−1k = I−1k .

C.3 Limiting Distributions of the Adaptive De-biased Deviance Difference

This proof of Theorem 2 characterizes the limiting behavior of the de-biased deviance difference
statistic for testing rth-order spiking coordination. However, the arguments also generalize to any
nested model, being closely related to the treatment in [9] for the de-biased deviance difference in
testing Granger causal links.

We first characterize the limiting behavior of the de-biased deviance difference under the null
hypothesis; then, the treatment of Davidson and Lever [10] for a sequence of local alternatives is
adapted to establish the result under the alternative hypothesis. In each case, we first characterize
the limiting behavior of the de-biased deviance (between the estimated and true parameters) and
subsequently establish the result for the deviance difference.
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Proof. We begin with the adaptive de-biased deviance statistic for the estimated parameters ω̂k and
the true parameters ωk:

Dk,β(ω̂k,ωk) =

(
1 + β

1− β

)[
2
(
`βk(ω̂k)− `βk(ωk)

)
−Bk

]
, (47)

where Bk := ∇`βk(ω̂k)
′ (
∇2`βk(ωk)

)−1
∇`βk(ω̂k). To write the deviance in a more convenient form,

we first note the quadratic expansion of `βk(ωk):

`βk(ωk) =`βk(ω̂k) + (ωk − ω̂k)′∇`βk(ω̂k)

+
1

2
(ωk − ω̂k)′

(
∇2`βk(ω̃k)

)
(ωk − ω̂k).

(48)

Substituting into Eq. (47) and expressing the bias correction term Bk explicitly, the deviance is
equivalent to (

1− β
1 + β

)
Dk,β(ω̂k,ωk) =2(ω̂k − ωk)′∇`βk(ω̂k)

− (ω̂k − ωk)′
(
∇2`βk(ω̃k)

)
(ω̂k − ωk)

−∇`βk(ω̂k)
′ (
∇2`βk(ωk)

)−1
∇`βk(ω̂k),

(49)

where ω̃k intermediates ω̂k and ωk. By rearranging terms and recalling that the de-sparsified estimate

ŵk = ω̂k −
(
∇2`βk(ω̂k)

)−1
∇`βk(ω̂k), the deviance can be compactly expressed as:(

1− β
1 + β

)
Dk,β(ω̂k,ωk) = − (ŵk − ωk)

′∇2`βk(ωk) (ŵk − ωk) + ∆1, (50)

with ∆1 = (ω̂k−ωk)′
(
∇2`βk(ω̃k)−∇2`βk(ωk)

)
(ω̂k−ωk). It can be shown based on the conditions

of Theorem 1 that |∆1| = OP
(
‖ω̂k − ωk‖3

)
= oP

(
(1− β)3/2

)
, and thus negligible. Once again,

negligible terms are summarized as oP(1) terms. Similar arguments were presented in the course of
proving Theorem 1.

We now explicitly define the null and sequence of local alternative hypotheses in order to adapt
Davidson and Lever’s treatment [10]. Recall first that limits in β are understood to be sequential limits;
i.e., they are evaluated for the sequence {βl}∞l=1 where βl → 1 as l→∞. Then, for window k, we
test the null hypothesis H0,k : ω0

k = (ω0,k,ω1,k) against the sequence of local alternative hypotheses{
Hβl

1,k : ωβl

k =
(
ω∗0,k,ω

βl

1,k

)}∞
l=1

, where ωβl

1,k = ω1,k +
√

1−βl

1+βl
δk; the limiting true parameter

vector under the alternative is denoted by ω∗k. The partition of the d−dimensional parameter vector
corresponds to the free parameters under the null hypothesis (ω0,k, for example) and the restricted

sub-vector (ω1,k). Thus, the statistical test seeks to detect local perturbations of order O
(√

1−β
1+β

)
from the null hypothesis. In the statistical inference of rth-order coordination, ω1,k corresponds to
the base rate parameters of rth-order events, the number of which is denoted by M (r); however, since
a similar partition can be made for any nested hypothesis test, the result shown here generalizes.

We now establish the limiting behavior of the de-biased deviance difference under the null hypothesis.

By Proposition 1,∇2`βk(ωk)→ −Ik. Additionally, by Proposition 2,
√

1+β
1−β∇`

β
k(ω̂k)→ N (0, Ik).

Thus, recalling the definition of the the de-sparsified estimate ŵk and invoking Slutsky’s Theorem,√
1+β
1−β (ŵk − ωk) → N (0, I−1k ) and consequently, the deviance [Dk,β(ω̂k,ωk)|H0,k] → χ2(d),

asymptotically following a χ2 distribution with d degrees of freedom. Finally, invoking classical
results for likelihood ratio tests of nested models [11, 12], we conclude that under the null hypothesis,
the adaptive de-biased deviance difference converges in distribution to a χ2 random variable with
M (r) degrees of freedom: [

D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

) ∣∣∣H0,k

]
→ χ2(M (r)) (51)
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It remains to establish the limiting behavior of the adaptive de-biased deviance difference under
the sequence of alternative hypotheses. Though Proposition 1 establishes that ∇2`βk(ω∗k)→ −I∗k,

the asymptotic normality of
√

1+β
1−β (ŵk − ω∗k) does not follow as readily. To establish asymptotic

normality, we first derive an alternative expression for the difference (ŵk − ω∗k) using the following
two Taylor expansions. The gradient of the log-likelihood evaluated at ω̂k and ωβk may equivalently
be written as:

∇`βk(ω̂k) = ∇`βk(ω∗k) +∇2`βk(ω∗k) (ω̂k − ω∗k) + ∆2

∇`βk(ωβk ) = ∇`βk(ω∗k) +∇2`βk(ω∗k)
(
ωβk − ω

∗
k

)
+ ∆3,

(52)

respectively. The remainder terms

∆2 :=
(
∇2`βk(ω′k)−∇2`βk(ω∗k)

)
(ω̂k − ω∗k)

and
∆3 :=

(
∇2`βk(ω′′k )−∇2`βk(ω∗k)

)(
ωβk − ω

∗
k

)
,

are negligible at rate ‖ω̂k − ω∗k‖2 = oP(1− β), which can also be shown based on the conditions of
Theorem 1. Thus, we can rewrite

ŵk − ω∗k = ω̂k − ω∗k −
(
∇2`βk(ω∗k)

)−1
∇`βk(ω̂k)

= −
(
∇2`βk(ω∗k)

)−1
∇`βk(ω∗k) + oP(1)

= ωβk − ω
∗
k −

(
∇2`βk(ω∗k)

)−1
∇`βk(ωβk ) + oP(1).

(53)

Denoting ωβk − ω∗k as δ̃k :=
[
0′,
√

1−β
1+β δ

′
k

]′
, invoking Propositions 1 and 2, by Slutsky’s theorem

we find that
√

1+β
1−β (ŵk − ω∗k)→ N

(
δ̃k, (I∗k)

−1
)

. In contrast to the null case, the limiting normal
distribution has non-zero mean; thus, we employ Davidson and Lever’s approach [10] to establish the
limiting behavior of the adaptive de-biased deviance difference.

To proceed, we first decompose the Fisher information matrix in accordance with the partition of the
parameter vector introduced earlier. The parameters ω∗k were partitioned into ω∗0,k, corresponding
to the parameters free under the null hypothesis, and ω∗1,k, the parameters restricted under the null
hypothesis; I∗k is similarly decomposed as:

I∗k =

[
I∗0,0,k I∗0,1,k
I∗1,0,k I∗1,1,k

]
,

where I∗0,1,k = I∗1,0,k
′. Utilizing the quadratic form of the de-biased deviance in Eq. (50) and

invoking Proposition 1, the adaptive de-biased deviance difference is expressed as:

D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

)
=

(
1 + β

1− β

)(
ŵ

(F )
k − ω∗k

)′
I∗k
(
ŵ

(F )
k − ω∗k

)
−
(

1 + β

1− β

)(
ŵ

(R)
0,k − ω

∗
0,k

)′
I∗0,0,k

(
ŵ

(R)
0,k − ω

∗
0,k

)
+ oP(1).

(54)

In the following steps, an equivalent expression for the reduced model deviance is derived in terms of(
ŵ

(F )
k − ω∗k

)
. Recalling the Taylor expansion of∇`βk(ω̂k) around ω∗k in Eq. (52), we see that

ŵk − ω∗k = −
(
∇2`βk(ω∗k)

)−1
∇`βk(ω∗k) + oP(1− β),

and that
∇`βk(ω∗k) = I∗k (ŵk − ω∗k) + oP(1− β),
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having invoked Proposition 1. It follows that the partial gradient ∇ω0,k
`βk(ω∗k) =

I∗0,0,k
(
ŵ0,k − ω∗0,k

)
+ oP(1− β), and so the second term of Eq. (54) is equivalent to(

1 + β

1− β

)(
∇ω0,k

`βk(ω∗k)
)′ (

I∗0,0,k
)−1 (∇ω0,k

`βk(ω∗k)
)

+ oP(1). (55)

Note that the partial gradient is a subvector of the gradient, i.e., ∇ω0,k
`βk(ω∗k) =

(
∇`βk(ω∗k)

)
0
.

Hence,
∇ω0,k

`βk(ω∗k) =
(
I∗k
(
ŵ

(F )
k − ω∗k

))
0

+ oP(1− β)

= I∗0,·,k
(
ŵ

(F )
k − ω∗k

)
+ oP(1− β),

(56)

where I∗0,·,k =
[
I∗0,0,k,I

∗
0,1,k

]
. Equation (55) can then be expressed as(

1 + β

1− β

)(
ŵ

(F )
k − ω∗k

)′
A
(
ŵ

(F )
k − ω∗k

)
+ oP(1), (57)

where

A =

[I∗0,0,k I∗0,1,k
I∗1,0,k I∗1,0,k

(
I∗0,0,k

)−1 I∗0,1,k
]
.

Thus, the adaptive de-biased deviance difference is equal to

D
(r)
k,β =

(
1 + β

1− β

)(
ŵ

(F )
k − ω∗k

)′
(I∗k −A)

(
ŵ

(F )
k − ω∗k

)
+ oP(1). (58)

Note that

I∗k −A =

[
0 0

0 I∗1,1,k − I∗1,0,k
(
I∗0,0,k

)−1 I∗0,1,k
]
, (59)

and so, defining Ĩ∗k := I∗1,1,k − I∗1,0,k
(
I∗0,0,k

)−1 I∗0,1,k =
(
I∗k
−1
)−1
1,1

, the deviance difference

simplifies to

D
(r)
k,β =

(
1 + β

1− β

)(
ŵ

(F )
1,k − ω

∗
1,k

)′
Ĩ∗k
(
ŵ

(F )
1,k − ω

∗
1,k

)
+ oP(1). (60)

That
√

1+β
1−β

(
ŵ

(F )
1,k − ω∗1,k

)
→ N

(
δk,
(
I∗k
−1
)
1,1

)
follows from earlier arguments. Using this

fact, we conclude that, under the sequence of local alternatives Hβ
1,k, the adaptive de-biased deviance

difference converges to a non-central χ2 random variable with M (r) degrees of freedom and non-
centrality parameter ν(r)k := δ′k

(
I∗k
−1
)
1,1
δk:[

D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

) ∣∣∣Hβ
1,k

]
→ χ2(M (r), ν

(r)
k ). (61)

C.4 Limiting Distributions of the Adaptive Deviance Difference: A Special Case for
History-Independent Models

As has been previously proposed [13], the statistical inference procedure summarized in Algorithm 3
can be adapted to history-independent analysis. The two hypotheses,

H0 : rth-order simultaneous spikes occur as frequently as they would between
independent units

H1 : rth-order simultaneous spikes occur at a significantly different rate than they
would between independent units

(62)
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are quantified as in Section 4.1, excepting the history covariates. The distinction between this test
and that specified in (10) in the main text is that the former seeks only to determine if observed rates
of simultaneous spiking events are facilitated or suppressed, while the latter seeks to determine if
observed rates of simultaneous spiking events are attributable to unobserved or neglected processes.

Estimates of the history-independent model parameters are unbiased, as no sparsity constraints are
imposed to solve this special case of the maximum likelihood problem, (7). Hence, the adaptive
deviance difference, D(r)

k,β

(
µ̂

(F )
k , µ̂

(R)
k

)
:=
(

1+β
1−β

) [
2
(
`βk(µ̂

(F )
k )− `βk(µ̂

(R)
k )

)]
, is used as the test

statistic. It is shown here, as a corollary to Theorem 2, that the asymptotic distributions of the adaptive
deviance difference under the null and alternative hypotheses are characterized similarly.

Corollary 0.1. Let µ̂(F )
k and µ̂(R)

k respectively be the full and reduced maximum-likelihood estimates
of the history-independent model parameters at window k, where µ̂(R)

k assumes conditionally
independent rth-order simultaneous spiking. Then, as β → 1,

i) if rth-order synchrony matches independent rth-order interactions, the adaptive deviance differ-
ence D(r)

k,β

(
µ̂

(F )
k , µ̂

(R)
k

)
d−→ χ2(M (r)), and

ii) if rth-order synchrony diverges from independent rth-order interactions, and assuming the base

rate parameters of rth-order interactions scale at least as O(
√

1−β
1+β ), the adaptive deviance

difference D(r)
k,β

(
µ̂

(F )
k , µ̂

(R)
k

)
d−→ χ2(M (r), ν

(r)
k ),

where ν(r)k is the non-centrality parameter at time k that depends only on the true parameters, and
M (r) = |Kr| is the difference in the cardinalities of the full and reduced support sets.

As in Theorem 2, we address the case when the window over which parameters are constant are
of length W = 1. In the following, we prove the corollary result, with emphasis on the points of
departure from Theorem 2.

Proof. Maximum-likelihood estimation of the parameters eliminates the need to de-bias the deviance,
since the gradient evaluated at the maximum-likelihood estimate (and consequentially, the bias terms)
is exactly zero. Hence, the test statistic reduces to the adaptive deviance difference:

D
(r)
k,β

(
µ̂

(F )
k , µ̂

(R)
k

)
=

(
1 + β

1− β

)[
2
(
`βk(µ̂

(F )
k )− `βk(µ̂

(R)
k )

)]
(63)

As in the course of proving Theorem 2, we begin with the deviance between the estimated and true
parameters, Dk,β (µ̂k,µk) =

(
1+β
1−β

) [
2
(
`βk(µ̂

(F )
k )− `βk(µk)

)]
. Noting that

`βk(µk) = `βk(µ̂k) +
1

2
(µ̂k − µk)′∇2`βk(µ̃k)(µ̂k − µk), (64)

the deviance can be expressed as

Dk,β (µ̂k,µk) = −
(

1 + β

1− β

)
(µ̂k − µk)′∇2`βk(µk)(µ̂k − µk) + oP(1). (65)

To proceed, we first argue that asymptotic results analogous to Propositions 1 and 2 hold. To
determine the limiting behavior of the Hessian, note that it can be written as ∇2`βk(µk) = (1 −
β)
∑k
t=1 β

k−t∇2`t(µk); evaluating both sides, it can be shown that ∇2`βk(µk) = ∇2`k(µk) and is

not a function of the simultaneous spiking observations. Hence,∇2`βk(µk) = E
[
∇2`βk(µk)

]
= −Ik.

It also follows that∇2`βk(µ̂k) = −Ik by the asymptotic consistency of µ̂k.

The normality of the gradient, i.e., that
√

1+β
1−β∇`

β
k(µ̂k)→ N (0,Ik), is a consequence of Proposition

2. Note that, trivially, E [∇`t(µ̂k)|Ft−1] = 0, where the filtration {Ft}kt=0, as previously defined,
corresponds to past spiking observations. Hence, the martingale CLT of Proposition 2 is applicable
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and the required conditions can be shown to hold. Alternatively, because ∇`βk(µ̂k) is the sum of
independent but not identically distributed random variables, the Lindeberg-Feller CLT may be
invoked to the same effect.

The limiting distribution of the adaptive deviance difference can now be established. First, we
address the null hypothesis H0,k : µ0

k = (µ0,k,µ1,k), where the parameters are partitioned into the
free (µ0,k) and restricted (µ1,k) subsets as before. Through a series of arguments similar to those

presented in proving Theorem 2, the limiting behaviors of∇2`βk(µk) and
√

1+β
1−β∇`

β
k(µ̂k) imply that

Dk,β(µ̂k,µk)→ χ2(d), where d is the dimensionality of the parameter vector; it likewise follows
that the adaptive deviance difference is asymptotically χ2-distributed with M (r) degrees of freedom[

D
(r)
k,β

(
µ̂

(F )
k , µ̂

(R)
k

) ∣∣∣H0,k

]
→ χ2(M (r)), (66)

where, as before, M (r) is the dimensionality of the subvector µ1,k.

Next, we address the limiting distribution of the adaptive deviance difference under the sequence (in

β) of local alternatives
{
Hβ

1,k : µβk =
(
µ∗0,k,µ1,k +

√
1−β
1+β δ

)}
, where β converges to unity and µ∗k

is the limiting true parameter vector. The deviances considered in this case are between the estimated
and true limiting parameter, Dk,β(µ̂k,µ

∗
k).

The characterization of the limiting behavior of the Hessian is true under the sequence of alternatives,

but the asymptotic normality of
√

1+β
1−β (µ̂k − µ∗k) must be established. To this end, we derive an

equivalent expression based on the following Taylor expansions of the gradient at µ̂k and µβk around
µ∗k:

∇`βk(µ̂k) = ∇`βk(µ∗k) +∇2`βk(µ∗k) (µ̂k − µ∗k) + oP(1− β)

∇`βk(µβk) = ∇`βk(µ∗k) +∇2`βk(µ∗k)
(
µβk − µ

∗
k

)
+ oP(1− β).

(67)

By rearranging the terms of these two equations, and by noting that ∇`βk(µ̂k) = 0, the following
equivalence is derived:

µ̂k − µ∗k = −
(
∇2`βk(µ∗k)

)−1
∇`βk(µ∗k) + oP(1− β)

= µβk − µ
∗
k −

(
∇2`βk(µ∗k)

)−1
∇`βk(µβk) + oP(1− β).

(68)

Denoting µβk −µ∗k as δ̃k :=
[
0′,
√

1−β
1+β δ

′
k

]′
, it follows from the limiting behavior of∇2`βk(µ∗k), the

asymptotic normality of
√

1+β
1−β∇`

β
k(µβk) (by Proposition 2, or alternatively by the Lindeberg-Feller

CLT), and by invoking Slutksy’s theorem that
√

1+β
1−β (µ̂k − µ∗k)→ N

(
δ̃k, (I∗k)

−1
)

.

Recalling the partition of the parameter vector into subsets of free and restricted parameters under
the null hypothesis and the corresponding decomposition of the Fisher information matrix I∗k, the
deviance difference between the full and reduced models can be expressed as

D
(r)
k,β

(
µ̂

(F )
k , µ̂

(R)
k

)
=

(
1 + β

1− β

)(
µ̂

(F )
k − µ∗k

)′
I∗k
(
µ̂

(F )
k − µ∗k

)
−
(

1 + β

1− β

)(
µ̂

(R)
0,k − µ

∗
0,k

)′
I∗0,0,k

(
µ̂

(R)
0,k − µ

∗
0,k

)
+ oP(1).

(69)

As before, we focus on the latter term. The first of the Taylor expansions in Eq. (67) implies that

∇`βk(µ∗k) = I∗k (µk − µ̂∗k) + oP(1),

and so the reduce model deviance can be written as(
1 + β

1− β

)
∇µ0,k

`βk(µ∗k)′I−10,0,k∇µ0,k
`βk(µ∗k) + oP(1). (70)
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Following a series of arguments analogous to those presented in the proof of Theorem 2, the deviance
difference can be shown to be equivalent to

D
(r)
k,β =

(
1 + β

1− β

)(
µ̂

(F )
1,k − µ

∗
1,k

)′
Ĩ∗k
(
µ̂

(F )
1,k − µ

∗
1,k

)
+ oP(1), (71)

where Ĩ∗k := I∗1,1,k − I∗1,0,k
(
I∗0,0,k

)−1 I∗0,1,k =
(
I∗k
−1
)−1
1,1

. That
√

1+β
1−β

(
µ̂

(F )
1,k − µ∗1,k

)
→

N
(
δk,
(
I∗k
−1
)
1,1

)
follows from previous arguments. We thus conclude that, in the special

case of the contemporaneous-event model, the adaptive deviance difference converges to a non-
central χ2-distributed random variable with M (r) degrees of freedom and non-centrality parameter
ν
(r)
k := δ′k

(
I∗k
−1
)
1,1
δk under a sequence of local alternative hypotheses:[

D
(r)
k,β

(
µ̂

(F )
k , µ̂

(R)
k

) ∣∣∣Hβ
1,k

]
→ χ2(M (r), ν

(r)
k ). (72)
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