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Abstract

Most existing works in few-shot learning rely on meta-learning the network on a
large base dataset which is typically from the same domain as the target dataset. We
tackle the problem of cross-domain few-shot learning where there is a large shift
between the base and target domain. The problem of cross-domain few-shot recog-
nition with unlabeled target data is largely unaddressed in the literature. STARTUP
was the first method that tackles this problem using self-training. However, it
uses a fixed teacher pretrained on a labeled base dataset to create soft labels for
the unlabeled target samples. As the base dataset and unlabeled dataset are from
different domains, projecting the target images in the class-domain of the base
dataset with a fixed pretrained model might be sub-optimal. We propose a simple
dynamic distillation-based approach to facilitate unlabeled images from the nov-
el/base dataset. We impose consistency regularization by calculating predictions
from the weakly-augmented versions of the unlabeled images from a teacher net-
work and matching it with the strongly augmented versions of the same images
from a student network. The parameters of the teacher network are updated as
exponential moving average of the parameters of the student network. We show
that the proposed network learns representation that can be easily adapted to the
target domain even though it has not been trained with target-specific classes during
the pretraining phase. Our model outperforms the current state-of-the art method
by 4.4% for 1-shot and 3.6% for 5-shot classification in the BSCD-FSL benchmark,
and also shows competitive performance on traditional in-domain few-shot learning
task. Our code is available at: https://git.io/Jilgs.

1 Introduction

The tremendous success of deep learning in visual recognition tasks is, to a great extent, attributed to
the availability of large scale labeled datasets. While humans can recognize an object by looking only
at a few examples, modern deep neural networks require hundreds or thousands of images for each
category to achieve human-level visual recognition capability. This has led to the research on few-shot
learning which aims at learning from a much smaller dataset. In a typical few-shot learning setting,
there are two stages: meta-training and meta-testing. In the meta-training stage, a base dataset with
labeled images is provided to train the model. In the meta-testing stage, the learned model is quickly
adapted to a set of novel classes with only a few examples per class (the support set) and evaluated on
a set of test images from the same novel classes (the query set). The base classes and novel classes
are typically disjoint, but the images are obtained from the same domain. However, in many real
world settings, training the model on a base dataset from the same domain as the target dataset is
difficult and infeasible. Guo et al. [7] proposed a cross-domain few-shot benchmark, BSCD-FSL,
which contains datasets from extremely different domains. In this benchmark, the meta-training is
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Figure 1: Problem setup. (Left) In typical few-shot learning task, a model is trained on a base dataset first
during meta-training stage. In meta-testing stage, a few examples from novel classes, referred to as support set,
are provided, and the network predicts the categories of different samples from the same classes as support set.
The base dataset and the target dataset generally come from the same domain with disjoint categories. (Middle)
In cross-domain few-shot learning, there is a domain gap between the base dataset and the target dataset. For
example, in the figure, the base dataset contains natural images from miniImageNet [29], and the target dataset
consists of satellite images from EuroSAT dataset [8]. (Right) Our setting is similar to cross-domain few-shot
learning setup. However, additional unlabeled images are also available during meta-training stage. Although
the unlabeled dataset comes from the same domain as the target dataset, it does not contain any images either
from the support set or query set.

done on a labeled source dataset, and the few-shot evaluation is performed on a target dataset which
is from different domain than the source dataset. The benchmark shows that traditional pretraining
and finetuning outperforms more complicated meta-learning based few-shot learning methods by a
significant margin.

In the real-world scenarios, the target domain should have many unlabeled images, and it might
be beneficial to use the unlabeled data to learn more target domain specific representations. We
hypothesize that using both labeled base data and unlabeled target data during training provides a
common embedding for both base and target domain. Then the natural question could be - why not
use the unlabeled target data only, it might provide more target-specific representation. One issue
with this approach is that self-supervised learning generally requires a large amount of unlabeled data
to work, and, as pointed out by Phoo and Hariharan [18], plain self-supervised learning struggles to
outperform the naive transfer learning baseline in few-shot learning setup. Secondly, it has been shown
that combining supervised and unsupervised learning during training provides more transferable
representation [9]. We argue that similar conclusion holds for cross-domain few-shot learning, i.e.,
combining supervised and unsupervised loss provides better representation for the downstream task.
Figure 1 illustrates our experimental setup in contrast to traditional few-shot learning or cross-domain
few-shot learning setup. We show that labeled images from the base dataset are still important to learn
generic image features, and images from the target domain, even if unlabeled, can help developing
more target domain specific representations.

Figure 2 illustrates our approach. Our goal is to train a feature extractor which will be used to
evaluate few-shot learning performance on the target dataset. We propose a dynamic distillation-
based approach to this end. The student network consists of an encoder fs and classifier gs, and
the teacher network shares similar architecture as the student network (denoted as ft and gt). The
classifier gs is a linear layer that predicts the class-logits of the samples from the base dataset. We
calculate a supervised cross-entropy loss between the student’s predictions and ground-truth labels
on the base dataset. For the unlabeled target data, we compute the teacher’s prediction for a weakly-
augmented version of an image and the student’s prediction for a strongly augmented version of the
same image, and optimize a distillation loss to match the predictions. We also apply sharpening in
the teacher prediction to encourage low-entropy prediction from the student. Both the supervised
loss and distillation loss are used to learn the student’s weights. The teacher network is updated
as a moving average of the student network. During few-shot evaluation, we only use the student
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encoder fs as a feature extractor, learn a classifier head on the labeled support images consisting of
few examples per category, and calculate the class predictions of the query images.

Our main contributions are:

• We propose a simple method for few-shot learning across extreme domain difference.

• We use dynamic distillation based approach that uses both labeled source data and unlabeled
target data to learn a better representation for the few-shot evaluation on the target domain.

• Our method significantly outperforms the current state of the art in the BSCD-FSL bench-
mark with unlabeled images by 4.4% for 1-shot and 3.6% for 5-shot classification in terms
of average top-1 accuracy. It even shows superior performance for in-domain few-shot
classification on miniImageNet and tieredImageNet datasets.

2 Related Work

Few-shot classification Few-shot learning methods can be divided into three broad categories -
generative [36], metric-base [21, 28, 23] and adaptation-based [10, 14]. Early work on few-shot
learning was based on meta-learning [29, 23, 10, 13]. Matching Networks [29] uses cosine similarities
on feature vectors produced by independently learned feature extractors, while Relation Networks
[23] learn its own similarity metric. MAML [10] learns good initialization parameters that can be
quickly adapted to a new task. Prototypical Networks [21] learn a feature extractor that is used
to calculate distances between features of test images and the mean features of support images.
MetaOptNet [14] uses a discriminatively trained linear predictor to learn representations for few-shot
learning.

Self-training Self-training trains a student model that mimicks the predictions of a teacher model.
Self-training can improves ImageNet classification [33]. It is also a dominant approach in semi-
supervised learning, where the teacher network is used to create pseudo [35, 34] or soft labels [33]
for a huge set of unlabeled images, and the student network is trained to mimic the teacher.

Semi-supervised Learning Our method is inspired from recent developments in semi-supervised
learning. Both [16] and [27] uses supervised cross-entropy loss with unsupervised regularization
loss. Pseudo-labeling based approaches first train a model on a labeled dataset, use the trained
model to create pseudo-labels of the unlabeled samples, and retrain the model with both labeled and
pseudo-labeled samples [12, 1]. FixMatch [22] proposes a simplified model which simultaneously
optimizes cross-entropy loss on the labeled samples and generates pseudo labels using the model’s
prediction on weakly-augmented unlabeled images. If the pseudo labels are confident enough, the
model is trained to predict the pseudo labels with a strongly augmented version of the same images.
We adopt a similar approach by imposing consistency regularization. However, while FixMatch
is a semi-supervised technique where the unlabeled data is assumed to be from the same domain,
our approach is applicable to the cross-domain few-shot learning problem. We also calculates the
prediction from a mean teacher network instead of using the same network as FixMatch.

Cross-domain few-shot learning Guo et al. [7] proposed a cross-domain few-shot learning bench-
mark, and noted that existing state-of-the-art approaches fail to achieve good accuracy on this
benchmark. One potential solution could be to use an unlabeled dataset from the target to learn
representations that are adaptable to a completely different domain. Many approaches also explored
few-shot learning with unlabeled data [11, 15, 19]; however, most of these works still assume a
smaller gap between the base and target domains. Our method shares some similarity with the
recently developed STARTUP [18] method for cross-domain few-shot learning. STARTUP also
uses unlabeled data for learning a better representation. However, STARTUP uses a fixed pretrained
model to produce pseudo labels for the unlabeled samples, and then train the network with the
labeled base dataset and pseudo-labeled target dataset. Additionally, STARTUP also incorporates
a self-supervised contrastive loss on the unlabeled images to improve accuracy, where our method
does not require additional contrastive loss. Actually, we argue that our distillation loss works like a
self-supervised non-contrastive loss, similar to BYOL [6], for which we might not need to add any
extra self-supervised loss. We propose a dynamic distillation approach, where the parameters of the
teacher network are updated during training. We obtain the prediction for the weakly-augmented
version of an unlabeled image from the teacher network, and optimizes the model such that the
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Figure 2:Diagram of our approach. Given labeled base data and unlabeled target data, our goal is to train a
feature extractor which will be used to evaluate few-shot learning performance on the target dataset. The student
network consists of an encoderf s and classi�ergs , and the teacher network share similar architecture as the
student network. We use the labeled base dataset to optimize the supervised cross-entropy loss. For a target
image, we compute the teacher's prediction for a weakly-augmented and student's prediction for a strongly
augmented version of the image, and optimize the distillation loss to match the predictions. We also apply
sharpening in the teacher prediction to encourage low-entropy prediction from the student. Both the supervised
loss and distillation loss are used to learn student's weights. The teacher network is updated as a moving average
of the student network. During few-shot evaluation, we simply learn a new classi�er header on the few-shot
support images, and evaluate on the query images.

prediction of the strongly augmented version of the same image obtained from the student network
matches that of teacher network. Note that FixMatch [22] also uses similar consistency regularization
loss for semi-supervised learning. To our knowledge, we are the �rst to use consistency regularization
and dynamic distillation for cross-domain few-shot learning.

3 Methodology

3.1 Preliminary

Few-shot Learning Formulation A few-shot learning task consists of a support setS, which
containingK data points fromN classes forN -wayK -shot task, and a queryQ = f x i gm

i =1 consisting
of data points only from theN classes of the support set. The goal is to classify the query points
with the help of the labeled support set. In the typical few-shot learning setting, (1) an embedding
is learned from the base/source datasetDS , (2) a linear classi�er is learned on top of the �xed
embedding on the support set, and (3) the classi�cations of the query data points are determined.

Cross-domain Few-shot Learning The difference between the typical few-shot learning setup
and cross-domain few-shot learning is that the base/source dataset is drawn from a very different
domain than the target domain. Additionally, in our setting, we are provided unlabeled data points
DU = f x i g

N U
i =1 from the target domain. The unlabeled dataset contains more classes than the support

set. Given the base datasetDS , and an unlabeled setDU , we need to learn an embedding that can
extract a representation that can be used for few-shot learning evaluation in the target-domain.

3.2 Proposed Method

Encoder We facilitate knowledge distillation to train our base encoder on both source datatset and
target dataset. Denote the embedding network asf s that embeds an input imagex to a d-dimensional
vectorf s(x). We add a classi�er headergs on top off s, which predictsnc logits from the embeddings,
wherenc is the total number of classes in the base dataset. Since the labels of the data points of the

4


	Introduction
	Related Work
	Methodology
	Preliminary
	Proposed Method

	Experiments
	Experimental Setup
	Main Results
	Analysis
	Addition Ablation Studies

	Conclusion
	Broader Impact
	Acknowledgments

