Cooperative Heterogeneous Deep Reinforcement Learning

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback »Bibtex »MetaReview »Paper »Review »

Authors

Han Zheng, Pengfei Wei, Jing Jiang, Guodong Long, Qinghua Lu, Chengqi Zhang

Abstract

Numerous deep reinforcement learning agents have been proposed, and each of them has its strengths and flaws. In this work, we present a Cooperative Heterogeneous Deep Reinforcement Learning (CHDRL) framework that can learn a policy by integrating the advantages of heterogeneous agents. Specifically, we propose a cooperative learning framework that classifies heterogeneous agents into two classes: global agents and local agents. Global agents are off-policy agents that can utilize experiences from the other agents. Local agents are either on-policy agents or population-based evolutionary algorithms (EAs) agents that can explore the local area effectively. We employ global agents, which are sample-efficient, to guide the learning of local agents so that local agents can benefit from the sample-efficient agents and simultaneously maintain their advantages, e.g., stability. Global agents also benefit from effective local searches. Experimental studies on a range of continuous control tasks from the Mujoco benchmark show that CHDRL achieves better performance compared with state-of-the-art baselines.