Functional Regularization for Representation Learning: A Unified Theoretical Perspective

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Siddhant Garg, Yingyu Liang

Abstract

Unsupervised and self-supervised learning approaches have become a crucial tool to learn representations for downstream prediction tasks. While these approaches are widely used in practice and achieve impressive empirical gains, their theoretical understanding largely lags behind. Towards bridging this gap, we present a unifying perspective where several such approaches can be viewed as imposing a regularization on the representation via a learnable function using unlabeled data. We propose a discriminative theoretical framework for analyzing the sample complexity of these approaches, which generalizes the framework of (Balcan and Blum, 2010) to allow learnable regularization functions. Our sample complexity bounds show that, with carefully chosen hypothesis classes to exploit the structure in the data, these learnable regularization functions can prune the hypothesis space, and help reduce the amount of labeled data needed. We then provide two concrete examples of functional regularization, one using auto-encoders and the other using masked self-supervision, and apply our framework to quantify the reduction in the sample complexity bound of labeled data. We also provide complementary empirical results to support our analysis.