Belief-Dependent Macro-Action Discovery in POMDPs using the Value of Information

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental


Genevieve Flaspohler, Nicholas A. Roy, John W. Fisher III


This work introduces macro-action discovery using value-of-information (VoI) for robust and efficient planning in partially observable Markov decision processes (POMDPs). POMDPs are a powerful framework for planning under uncertainty. Previous approaches have used high-level macro-actions within POMDP policies to reduce planning complexity. However, macro-action design is often heuristic and rarely comes with performance guarantees. Here, we present a method for extracting belief-dependent, variable-length macro-actions directly from a low-level POMDP model. We construct macro-actions by chaining sequences of open-loop actions together when the task-specific value of information (VoI) --- the change in expected task performance caused by observations in the current planning iteration --- is low. Importantly, we provide performance guarantees on the resulting VoI macro-action policies in the form of bounded regret relative to the optimal policy. In simulated tracking experiments, we achieve higher reward than both closed-loop and hand-coded macro-action baselines, selectively using VoI macro-actions to reduce planning complexity while maintaining near-optimal task performance.